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Preface

Quantitative information (“how many”, “how much”, “at what cost” etc.)
is one of the necessary elements for cognition1. Information of this na-
ture results from a numeric data structure, which depicts (quantifies) the
quantitative features of real objects and processes. Quantification is al-
ways perturbed by uncertainties, therefore methods that can suppress the
imbedded uncertainty must be used to extract information from such data.
The need for information has been growing at an increasing rate and both
data and their processing are expensive.

Following the classical definition of an economic good as a good which is
scarce relative to the total amount desired and economic efficiency as pro-
ducing such goods at the lowest possible cost, then the idea of Economics
of Information as the production of the maximum output of information
given the cost (of data and of their treatment) is reasonable and leads to
economic efficiency as well.

The first requirement of a methodology to treat uncertain data is that it
must: extract the maximum amount of information from a given
collection of data. It is the goal of this book to present

1. a mathematical theory of individual uncertain data,
2. an extension of this theory to small samples of uncertain data,
3. a development of data treatment methods based on this theory,
4. some demonstrations of results achieved by using these methods to

analyzes of real data from several application fields, especially from
economics.

These elements covering both theory and its usage form what will be called
mathematical gnostics2. The book should demonstrate both theoretically
and practically that the challenging task of getting maximum information
from ‘bad’ data can be solved by the methodology of mathematical gnos-

1Cognition is used in the sense of the process used to obtain knowledge.
2There is only a philological relation of this notion to religious interpretation of words connected with

the Greek word gnosis (knowledge).
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tics.

The task is unusual and the approach to its accomplishment is to be
unusual, too. The theory grew up on boundaries where several scientific do-
mains contact each other: abstract algebra, measurement theory, Euclidean
and non-Euclidean geometries, both classical and relativistic mechanics,
thermodynamics, mathematical statistics both classical and robust. Read-
ing of the first two parts of the book cannot be therefore easy for all readers.
The real power of the new methodology can be vividly demonstrated by
solving practical tasks. The Part III not only summarizes theoretical re-
sults important for applications, but contains many examples which can be
understood even without a deep penetrating into the theory. Some readers
can therefore start approaching mathematical gnostics by reading the third
part.

The notion of economics of information can be considered only if the
amount of information is measurable. Because the harvesting of informa-
tion is directly related to decreasing uncertainty it is necessary to have at
hand and to be able to use a scientific model of uncertainty.

There are several concepts of uncertainty and of its paradigm3, the
most popular of which is the statistical paradigm. However, the statis-
tical paradigm—as are other related concepts—is tied to the uncertainty
of mass events: statistical evaluation of a quantity of information is pos-
sible only for a sufficiently large “family” of events, not for a single event
nor for a small number of events. Moreover, in order to successfully under-
take such a task, an a priori model must be available and when the model
does not fit the reality of the data, significant damage to the quality of the
estimates can occur.

The wandering towards the information of individual data has to be
started in the real world, with real objects, quantitative features of which
data to be treated reflect.

3The notion of “paradigm” is understood to mean the prevailing opinion of the scientific community
as to the arrangement and operation of things within a certain scientific field.
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Chapter 1

The Ideal Quantification

1.1 Quantitative Information

The term information has many meanings depending on the context. It
is often related to such concepts as message, meaning, knowledge, text,
image, communication, data, fact and many others. In all these examples
the general definition of the http://en.wikipedia.org./wiki/Information is
satisfied: Information is the result of processing, manipulating and orga-
nizing data in a way, that adds to the knowledge of the receiver. This
book is oriented to a much narrower notion, to the quantitative informa-
tion providing numerical description of real quantities and processes. Such
descriptions are obtained by numerical data, that map the quantitative
features of qualitatively specified real objects and processes. Increasing in-
formation decreases the receiver’s uncertainty. This is why the Shannon’s
information theory measures the amount of signal’s information by the
Boltzmann’s statistical entropy and why the Fisher’s statistical measure of
the information carried by an estimate of an unobservable parameter is a
function of the variance. However, both these measures assume the avail-
ability of “mass data” to estimate a complete probabilistic model for the
former and the variance for the latter evaluation. These measures of the
amount of information cannot be therefore applied to individual data and
to small data samples. Existence of the information contained in each data
item is undoubted, it is justified by the fact, that information is carried
by data sets. Usefulness of the ability to measure the information of the
individual data and small samples results from the practical limitations
of amount and quality of the data available to the treatment in practise.
Unsuitability of the standard methods to solving this problem motivates
the quest to find a suitable alternative method enabling the quantitative

3
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recognition of the reality.

1.2 Quantification

Quantification is a procedure, which relates some real quantities to the num-
bers. The numbers resulting from the quantification will be called data.
There are two modes of the quantification, counting and measuring.

Every physical object has a given quality and exists in some quantity.
Quality is an aggregation of traits, which define the nature of a thing. The
first step in quantification is to establish the boundaries of a set of things
in a qualitative sense, ie to describe the thing by listing its characteris-
tics, so as to ensure the homogeneity and comparability of the underlying
quantities. To quantify a herd of sheep, one must be able to distinguish
between a sheep and a what is not a sheep and to accept as members of
the set only the members of the herd, that fit the description. This set
(flock) can be quantified either by counting or by measuring.

Counting the sheep means to assign to each animal the numeric unit (1)
and to sum up all the units.

The objects of quantification, in this case the sheep, have their own
properties, and these are separate from and independent of those of the
persons, who actually do the counting. The properties of the sheep are
fixed, and objectively given; the assignment of a unit of quantification,
the number ‘one’ to an animal, is an intellectual (and subjective) activity
performed by the “measurer”, dependent on his or her abilities, and there-
fore subject to uncertainty: how well can he/she see? How carefully will
he/she ensure, that all sheep in the flock have been located and counted?
Is he/she sure, that some small animals were not blocked from view by the
larger ones, etc.?

Measuring these same animals could consist eg of weighing the sheep.
Two necessary elements are required for a measuring procedure: a (stan-
dard) unit of measure and a measuring instrument. To weigh a sheep,
one needs a unit weight (pound, kilogram, ton) and a weighing machine
to determine, how many times the weight of the sheep exceeds the stan-
dard unit, or how many times the unit exceeds the weight of the sheep.
Measuring thus requires not only intellectual actions, but also some ma-
nipulations with physical tools. The results of a measuring process are the
positive rational numbers: again a product of an intellectual activity.

Quantification in both of its modes is thus a mapping defined over
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a delimited part of the physical world, providing values, which are ex-
pressed in terms of the ideal world of mathematical objects: in num-
bers. This constitutes the fundamental difference between the art of
the quantification and “pure” mathematics, which deals only with arti-
ficial (abstract) objects—products of the human brain. The quantifica-
tion is a real technology, developed over thousands of years as a nec-
essary element of the merchandizing. Just as with other technologies,
it has been subjected to scientific analyzes, the outcome of which re-
sulted in the establishment of a theory (the theory of measurement) ([17]).
This theory provides us with the rules, which ensure, that the quantifica-
tion procedures are consistent. However, there exists a serious limitation
of this useful theory: it considers only an ideal quantification process,
only the precise mapping and a disturbance-less measuring. Metrologists
are aware of uncertainties, but they leave the treatment of the uncer-
tain data “to statistics”. A symptomatic characteristic can be found in
http://en.wikipedia.org/wiki/Uncertainty/Measurement-Uncertainty:

Measurement uncertainties have to be estimated by means of de-
clared procedures. These procedures, however, are intrinsically
tied to the error model referred to. Currently, error models and
consequently the procedures to assess measurement uncertainties
are considered highly controversial. As a matter of fact, today
the metrological community is deeply divided over the question as
how to proceed. For the time being, all that can be done is to put
the diverging positions side by side.

A significant achievement of the measurement theory was the consider-
ing the quantification not only as a mapping of some real quantities onto
numbers, but more specifically, as a mapping of some empirical relational
structures onto the algebraic structures. This approach has been generally
accepted as fruitful. An interesting requirement results from the Kuhn’s
([65]) conception of the scientific revolution caused by a change of the
paradigm: a new scientific paradigm should reveal some hidden assump-
tions, justification of which conditioned the validity of the old paradigm.
This should make the old paradigm a special case of the new one. An
example of this is the Newtonian mechanics still applicable to sufficiently
slow movements. It could be therefore expected, that a more general theory
of the quantification including the uncertainty would be able to establish
conditions, under which the present measurement theory would hold up.

There are many assumptions about structures considered in the mea-
surement theory ([87]), under which the relations of equivalence and pref-
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erences/ordering hold. A substantial, but plausible, simplification of these
axioms was adopted in [56] about the nature of the underlying structures
being isomorphic with the abstract commutative groups. A detailed math-
ematical justification of this simplified model was presented later in [100]
and [99].

For our purposes, it is sufficient to limit the exposition of this topic to
the presentation of two special cases of the commutative groups. These
are closely connected to the structures of quantified real objects and their
mathematical images.

1.3 Empirical Structure of Quantities

1.3.1 Mathematical Structures

The aim is to develop and justify a theory of individual uncertain data.
The most reliable theories are created by the axiomatic method based on
mathematics because of the power of mathematics to prove and disprove
statements. Such a method essentially always produces a mathematical
structure.

A mathematical structure is a set1 (or several sets) of objects endowed
with some relations and operations satisfying various assumptions (ax-
ioms). Identity of the elements of a set, as well as the rules to which
the relations and operations are subjected, are uniquely and consistently
established in mathematics by definitions. However, subjects of quantifi-
cation are not abstract notions, but traits of the real world thought of as
empirical structures. Moreover, as already mentioned, quantification is not
a purely intellectual activity of men, but a technology including manipu-
lation with real objects and instruments. To warrant consistency of the
mapping of the empirical structures into the abstract world of mathemat-
ics, the measurement theory used the mathematical language to establish
rules for empirical relations and operations. These correspond to the rules
governing the relations and operations in mathematical structures, which
represent the empirical structures.

To illustrate this thought, the notion of the structure of cash flows is
introduced.

1A mathematical set is a collection of distinct objects considered as a whole. The extraordinary
complex problem of deciding if an object is a member of a specific set (the “membership” problem) is to
be postponed until particular sets and structures are considered.
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1.3.2 Additive Group

Amount is one of basic quantitative characteristics of the elements of real
sets. The number of a set’s elements can be increased as well as decreased.
Balance of incomes and expenses is a well-known worry in personal life,
as well as, in the activity of enterprizes and institutions. An individual
financial transaction realized in cash denoted as Ak can be thought of as
an element of the cash flow. It has an empirical nature and a collection
of all such elements forms an empirical set of cash flows (denoted A).
The adjective “empirical” is used to emphasize the material, and not only
abstract, character of the objects. The fact of the membership in the set
A will be denoted Ak ∈ A.

The relation of the equivalence (Aj = Ak) of two elements Aj and
Ak and the relation of preceding/preference (Am < An) for some other
elements of the cash flow can be accepted as natural as the binary operation
of cumulation (the additive aggregation rule) written as Ap ⊕ Ar for each
pair of the elements Ap and Ar of cash flows (denoted as Ap, Ar ∈ A).
Consider following requirements related not only to cash flows, but to all
structures, which satisfy these conditions:

Closedness: Let Am and An be two arbitrary elements of the structure
(Am, An ∈ A). Then the aggregation of these elements is also an
element of the structure:

Am ⊕ An ∈ A. (1.1)

Associativity: For each triple of elements Ak, Am, An,∈ A, it holds, that

(Ak ⊕ Am)⊕ An = Ak ⊕ (Am ⊕ An). (1.2)

Commutativity: The order of operands does not change the aggregation:

Am ⊕ An = An ⊕ Am (1.3)

for all pairs of elements Am and An.
Neutral element: There exists in A an element (the “zero element” de-

noted by O ∈ A), so that its aggregation with an arbitrary element
(Am ∈ A) does not change the value:

Am ⊕O = Am. (1.4)

Invertibility: There is also an element 	Am ∈ A to an arbitrary element
Am ∈ A such that

Am ⊕ (	Am) = O. (1.5)
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The pair 〈A,⊕〉, of the empirical set A and of the aggregation oper-
ator ⊕ satisfying these requirements, can be called the additive empirical
structure. Mathematicians like to deal with the abstract (“dematerialized”)
objects; they call these abstract structures obeying the rules of closedness,
associativity and commutativity, having a neutral element, and inversions
to all elements, the commutative group. A wellknown example of such a
group is Abel’s group of real numbers

G+ := 〈R1,+〉 (1.6)

where R1 denotes the set of real numbers and the + is the operator of
“ordinary” (numeric) addition of real numbers.

The numbers obtained by quantification of an additive group of empir-
ical quantities will be called additive data.

This model is broadly applicable, but only to structures really obey-
ing the formulated assumptions. Before the start of a data analysis, it is
necessary to verify the additive nature of the structure quantified by the
considered data, as they may represent an alternative, multiplicative, or
even a more complex structure. Additivity of data, as well as of quantita-
tive characteristics of real objects, is not a trivial problem. So, for example,
velocities of real objects are not aggregated additively like in Newtonian
mechanics, but in a nonlinear way respecting the limit of the speed of light.
It will be shown below, that data uncertainty should be also aggregated
by addition of certain nonlinear functions of uncertain data and not by
additive aggregation of data like in statistics.

1.3.3 Multiplicative Groups

The task of measuring establishes how many times the measured quantity
exceeds the quantity accepted as a unit, or how many times is the quantity
smaller than the unit. The measurement’s result is thus a ratio (multiplier),
but this is a notion borrowed from the mathematics connected with numeric
multiplication or division. A question may arise as to what is the real
sense of the empirical operations of “multiplication” or “division”. Their
historical roots can be found in the distant past, in the development of
barter markets. An example of a barter exchange can be the transaction
“five arrows for one skin” written as

t1 := (5 arrows) ∼= (1 skin). (1.7)
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This expression establishes a relation (equivalence) between the values
of two assets, ie their prices. Another transaction may follow:

t2 := (1 skin) ∼= (20 eggs). (1.8)

The resulting “price” of arrows expressed in eggs is

t1 ⊗ t2 := (5 arrows) ∼= (20 eggs). (1.9)

Ratios of exchanging things according to 1.7, 1.8 and 1.9 were different
not only numerically (1/5, 1/20 and 5/20), but also with respect to the
“measuring unit” or “dimension”, the “price” being expressed in units of
arrows, skins and eggs. Chaining the barter operations led to the changing
of the units of measurement. A significant simplification of barter opera-
tion modes resulted from introducing of some kinds of currency as “units
of the values of things”. Worth of things could thus be expressed as a price
determined by the ratio of the amount of a thing divided by by the amount
of money. Necessity to determine the amount of things led to introduction
of measuring units and to the development of instruments and measuring
procedures providing the ratios of quantity/unit. Expressing the quan-
tities in the same units allowed the quantitative features of things to be
multiplicatively related by dimensionless ratios (multipliers). Pharmaceu-
tical scales are real objects and when they determine, that two quantities’
weights are W1 and W2 gram, then the relation W2 = W2/W1 ∗W1 be-
comes a mathematical model of the empirical relation existing between two
quantities saying, that the empirical quantity W2 is W2/W1-times larger or
smaller than W1.

The Empirical Multiplication Factor (EMF), depicted by the multiplier
W2/W1, can be defined by the relation

EMFk = Wk � Wk−1 (1.10)

where quantities Wk and Wk−1 are ‘empirical originals’ mapped to the
numbers and where � is the symbol of the empirical operation represented
in mathematics by the operation of numeric division. This extremely sim-
plifying representation of a relation is borrowed from cybernetics. Such
an operation is presented as a black-box, the only interesting feature of
which is its multiplication of the input values. It can serve as an impor-
tant example of the multiplicative group. It is obvious that the output
of a black-box can be used as the input for another black-box. The mul-
tiplicative factors defined by three quantities W1, W2 and W3 can be thus
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chained multiplicatively:

EMF3 ⊗ EMF1 == W3 � W2 ⊗W2 � W1, (1.11)

where ⊗ is a symbol of empirical multiplication.

There are factors in economics, which have similar multiplicative na-
ture: the examples of these characterize inflation/deflation, discounting,
indexing, and interest factors among others. Prices viewed as multipliers
can also be chained in a multiplicative manner: if price P1 is 3-times

higher then P0, and price P2 is 4-times higher than P1, then P2 is 12-
times greater than P0. Another important example relates to measuring
by the application of a physical or chemical unit. Results of measurements
viewed as multipliers (or ratios) can also be chained in the multiplicative
manner: if a quantity Q1 is exceeding the unit Qu 3-times, and quantity
Q2 is 4-times larger than Q1, then Q2 is 12-times larger than Qu.

We have considered in both 1.10 and 1.11 the empirical values W and
empirical multiplication factors EMF . Quantifying mapping (counting
or measuring) enabled the empirical inputs and outputs of operations to
be numerically depicted and the multiplicative factors to be chained in a
manner recalling numeric multiplication and division. The multiplication
factors can be thus thought of as elements of a structure similar to the
structure G∗ formed by the set R+ of positive real numbers, over which
the numeric multiplication (∗) is defined along with its inversion (division
“/”):

G∗ := 〈R+, ∗〉. (1.12)

This structure is the multiplicative commutative group. However, numeric
values of quantities viewed as multipliers, and other numeric multiplication
factors, are abstract images of quantitative features of real things. As such,
they are results of quantification. The structure G∗ is thus a mathematical
image of an empirical structure of the real quantities. So as not to limit
ourselves to a single specific type of subject, we shall denote a multiplica-
tion factor of a general type by M and a set of such elements of the same
kind byM. To ensure consistency in quantification, we assume that there
is an empirical aggregation rule (operation) ⊗ defined over the setM, for
which the following relations hold:

Closedness: Let Mm and Mn be two arbitrary elements of M. Then the
result of the aggregation is also an element of this set:

Mm ⊗Mn ∈M. (1.13)
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Associativity: For each triple of elements Mk,Mm,Mn ∈ M it holds,
that

(Mk ⊗Mm)⊗Mn = Mk ⊗ (Mm ⊗Mn). (1.14)

Commutativity: The order of operands does not change the aggregation:

Mm ⊗Mn = Mn ⊗Mm (1.15)

for all pairs of elements Mm and Mn of the set M.
Neutral element: There exists in M an element (called “unit” and de-

noted I ∈ M) such that its aggregation with an arbitrary element
Mm ∈M does not change its value:

Mm ⊗ I = Mm. (1.16)

Invertibility: There exists an element �Mm ∈M to an arbitrary element
Mm ∈M such that

Mm ⊗ (�Mm) = I. (1.17)

The pair 〈M,⊗〉, of the empirical setM and of the aggregation operator
⊗, which obeys the above defined conditions can be called the multiplica-
tive group. It is obvious that all five of the above conditions are satisfied
for the mathematical structure G∗, which is called the multiplicative group
of positive real numbers. Note that not all multiplicative groups are neces-
sarily commutative, but these particular groups are.

The concept of the multiplicative group is thus general enough to be
applied to the measuring of quantities belonging to very different sets en-
dowed with the operations ⊗ and � of various nature.

The numbers obtained by the quantification of a multiplicative group
of empirical quantities will be called multiplicative data.

1.4 Isomorphism

From iso = same and morph = form. Let us consider two structures
〈S1, σ1〉 and 〈S2, σ2〉 where S1 and S2 are sets of elements s1,m (or s2,n)
for m,n = 1, ...N . Symbols σ1 and σ2 identify structural operations over
the corresponding sets. A characteristic of these structures will be called
an isomorphism if the following conditions are satisfied:

1. A one-to-one mapping τS : S1 → S2 exists, so that s2,m = τS(s1,m) and
s1,m = τ−1

S (s2,m) for all m = 1, ..., N.
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2. For each pair of indices m and n (m = 1, ..., N and n = 1, ..., N) the
following implication holds:

s2,mσ2s2,n = τS(s1,mσ1s1,n). (1.18)

This definition can be illustrated by a simple example. We have already
introduced the additive group of real numbers G+ in equation 1.6. Denote
s1,l an arbitrary element of this group. Consider the relation

s2,m = exp(s1,m). (1.19)

The real number s2,m is strictly positive for all s1,m. Moreover, it holds,
that

s2,m ∗ s2,n = exp (s1,m + s1,n) (1.20)

for all m and n. This means that the commutative group G∗ is isomorphic
with the additive group G+. The role of the mapping τS : G+ → G∗ is
played by the exponential function. The inverse mapping is the natural
logarithm.

The power of the concept of isomorphism comes from focusing on the
fundamental algebraic features of a large number of different structures and
in omitting all their special characteristics. This thought can be illustrated
by considering the group of cash flows. It is isomorphic with the abstract
additive group G+: Each (material) cash flow has its (numeric) image (a
numeric value). Each pair of cash flows produced by the aggregation op-
erator ⊕ has as its (numeric) image the (numeric) sum of images of both
cash flows obtained by the application of the numeric operator +. The
numerical 0 corresponds to the neutral (zero) asset flow O. The inversions
of cash flows are represented by negative images of cash flows.

Analogously, the group of measuring ratios (multipliers) is isomorphic
with the abstract multiplicative group G∗. Images of the multipliers are
positive real numbers. The operator ⊗ is represented by the numeric oper-
ator of multiplication (∗) and the inversion is represented by the reciprocal
values of the ratios. We have already noted that the two abstract groups
G+ and G∗ are isomorphic. The group of measuring multipliers is thus
isomorphic with the group of cash flows although their “material” natures
substantially differ.

Note the differences between an additive an a multiplicative numeric
group. Elements of the former can be positive, as well as negative or zero.
Elements of the latter can only be strictly positive while zero element
cannot exist.
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The typical movement in the additive group is linear (repeated addition
or subtraction of a constant). In contrast, the typical movement in the
multiplicative group is exponential (repeated multiplication or division by
a constant). Members of the additive group can be ‘named’ by having a
measuring, such as eg physical, dimension: kilogram, meter. The group
operation is not prevented by the (same) ‘name’: three meters plus two
meters are five meters. However, the structure operation is not defined for
elements having different dimensions. Unlike this, elements of a multiplica-
tive group are dimensionless. This means, that results of measurements of
quantities, which were expressed in the same measuring units, are to be
viewed as measuring ratios (multipliers).

1.5 Ideal quantification

Using the notion of the isomorphism of groups, we can come to a more
precise definition of quantification. This step is necessary in order to dis-
tinguish between ideal and practical quantification. The notion of ideal
quantification is defined as an isomorphism between a group of empirical
quantities and a group of real numbers. To explain:

It was already demonstrated by the example, that the historical origins
of quantification (counting and measuring) were closely connected with
the development of goods markets. The roots of mathematics are in these
same practical needs of “ordinary life.” Mathematics was primarily cre-
ated to serve such plebeian, but necessary, activities. Due to its power
and its universal generality, it developed as an abstract science completely
isolated from everyday reality. Some of the “rich fruits” of mathematics
were gathered by non-mathematicians: physicists, technicians, economists
and other “practical” people. The idea of quantification is just another
example of such an application. It clearly extends the borders of mathe-
matics because of its reference to structures of a non-mathematical nature:
the empirical quantities. On the other hand, it makes use of such a strictly
mathematical notion as a group to describe the fundamental features of
these non-mathematical structures. We shall see, that this mixture of the
mathematical/non-mathematical approaches is very useful.

At this point we need to recall the one-to-one character of the map-
ping, which defined isomorphism and quantification. This was necessary
to ensure the consistency of the ideal quantification. When the outcome
of counting is five, we want to be sure, that there is a group of exactly



14 CHAPTER 1. THE IDEAL QUANTIFICATION

five sheep in the flock, and that they correspond to number 5 and not to a
greater or smaller number. This means, that the ideal quantification is a
precise mapping. We now come to a difficult point: It is, at least at first
sight, easy to imagine an accurate real number. It is much more difficult
to do the same with real structures. As already stated, qualitative identi-
fication must precede the quantification. Perfect identification of objects
subjected to quantification is difficult or even impossible. The same relates
to quantification because of its necessity to involve real processes and ob-
jects. Imperfections play role in both cases making the results uncertain.
The concept of ideal quantification can be seen as a simplified view of the
way the quantitative features of the real world are observed and measured.
What is urgently needed is a notion of uncertainty.

1.6 Summary

Real data can be considered as an outcome of a quantification process, as
a collection of numeric images of real quantities. These quantities can be
thought of under certain conditions as belonging to one of two (empiri-
cal) structures, the additive and/or multiplicative groups. An example of
an empirical additive group is a set of cash flows over which the additive
aggregation rule is defined. A mathematical model of empirical additive
groups is the commutative Abel’s group. An example of the empirical
multiplicative group is a set of measuring ratios endowed with the mul-
tiplicative aggregation rule. Such groups are represented in mathematics
by the abstract multiplicative group, which is isomorphic with the Abelian
commutative group. Real data can thus be viewed from one of two points
of view:

1. The additive group, that quantifies an empirical additive group of real
quantities.

2. The multiplicative group, that quantifies tan empirical multiplicative
group of real quantities.

Both these views are simplified. They are based on the assumption, that
quantification is ideal, ie, that there is no uncertainty.



Chapter 2

Uncertainty

Unlike ideal quantification, the process of counting or measuring real quan-
tities involves uncertain factors. To prepare mathematical modeling of the
quantitative uncertainty as a component of real quantification, it is useful
to start with consideration of some sources of the uncertainty.

2.1 Nature of Quantitative Uncertainty

G.W.F.Hegel in his Book One of “The Doctrine of Being” considers quality,
quantity and measure as three grades of Being:

Quality is, in the first place, character identical with being: so
identical, that a thing ceases to be what it is, if it loses its quality.
Quantity, on the contrary, is the character external to being, and
does not affect the being at all. Thus, a house remains what it is,
whether it be greater or smaller; and red remains red, whether it
be brighter or darker.
Measure, the third grade of being, which is the unity of the first
two, is a qualitative quantity. All things have their measure: ie
the quantitative terms of their existence, their being so or so great,
does not matter within certain limits; but when these limits are
exceeded by an additional more or less, the things cease to be what
they were.

The last sentence points in the direction developed later in Marxist dialec-
tic materialism in the form of the Law of Transformation allowing for the
reverse with quality affecting quantity: “Continuous quantitative devel-
opment results in qualitative ‘leaps’ in nature, whereby a completely new
form or entity is produced.”

15
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This complex interdependence of the “three grades of Being” is reflected
by complexity of the uncertainty: mistaken qualitative identification con-
tributes to quantitative determination and distortion of the measure. Even
the seemingly simple task of “counting sheep” can be difficult, when the
qualitative recognition fails as demonstrated in Homer’s Odyssea by the
blinded Cyclope Polyphemus incapable to distinguish between sheep and
members of the Odysseus’ crew masked by sheep skins.

Data uncertainty can occur everywhere on their path from the observed
quantity to the analyst’s computer. Its nature can be different in depen-
dence on the essence of the particular field.

To make the notions to be considered below sufficiently specific, we
narrowed the vast idea of information by focusing to its quantitative char-
acter numerically expressible. This information is contained in numeric
data along with disturbances derived from uncertainty.

2.2 Uncertainty in Numeric Data

Numeric data resulting from quantification can be uncertain due to many
different causes:

• Imperfect identification of the quantified object or process.
• Imperfect observation or design of experiment:

– Instability of observed objects or volatility of the process.
– Impacts of environment.
– Insufficient number of repeated measurements.
– Insufficient isolation of the observed quantity from impacts of

other quantities.
– Overlooked or neglected interactions between measured objects.

• Instable or faulty measuring instruments.
• Transformation errors.
• Communication errors.
• Incompleteness of measuring (data censoring).
• Geometric errors.
• Events or data aggregation errors.

Transformation errors can result from the necessity to exchange
information-bearing media: many physical and chemical quantities are ul-
timately measured using electric instruments, but this requires conversion
of the original quantities into electric currents, voltages, impulses or codes.
These conversions can be imprecise and noisy. Further contributions to
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the uncertainty can result from the transmission of these signals. Chemi-
cal measuring can include dilution or concentration of liquids, distillation
and other transformations, which distort the quality of the measurement.

All measuring instruments operate only within a limited scale. Values
of some quantities can occur below the limit of detection, others can ex-
ceed the upper bound of the measuring range. Measurement can be then
interpreted only in terms of an inequality instead of a discrete number.
Neglecting such data would be a bad idea, because these (censored) data
can be the best ones (when signalling, that there is only a small danger)
as well as the vitally important ones (a danger exceeded a limit). Some
censored data can have only an interval nature. All censored data contain
some information in spite of their special uncertainty.

Geometric errors can result from application of an unsuitable geometry
to measuring. A nearly trivial example is using plane maps to quantify
distances and angles in the real three-dimensional word. Nontrivial exam-
ples of the necessary application of non-Euclidean geometries to measure
some real processes and objects are known from physics, but relevance of
the non-Euclidean geometries to measuring uncertain data also exists and
will be considered in the sequel.

The simplest (additive) way used to aggregate events and/or data can-
not always be adopted. Sometimes either weighted aggregation or an even
more complex method is to be applied.

Examples of uncertainty in measurements can be seen in systems of the
Quality Assessment Control broadly used in the technology for maintaining
quality standards of industrial products. These standards are defined by
sets of measurable parameters checked by the system. Quality can be dis-
turbed by many factors, causing the uncertainty in the parameters’ values:
bad quality of the raw materials used for production, tools and machin-
ery, deviations from the prescribed technology of production or storing,
malfunction of instruments, human factors and others.

Fundamentally different types of uncertainty exist in economics and in
economic data.

2.3 Uncertainty in Economic Data

An old proverb goes: “When two people do the same thing, it isn’t the
same thing at all.” Applying this thought to “measurement” one could
say: “When an economist measures something, it is not the same process
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as that used by a physicist.” In the methodology of physics, chemistry,
engineering and biology, measurement frequently produces a high level of
precision, perhaps resulting in the convergence of the outcome to a unique
value. This value exists objectively, it is the same for all observers and for
their measuring tools. Trying to emulate this technique in accounting or
in the collection of other economic data is a waste of time. The objective
existence of worth or value of things is for an economist proven only in
terms of philosophy: “Yes, a value exists always, if the thing can be sold or
exchanged.” Divergence of opinions inevitably starts with quantification
of the value, because there is no objective economic value of a thing. The
first problem stems from the use of the same word “measurement” and the
manner, in which it may be understood by economists. Another problem
is connected with uncertainty.

Paul A. Samuelson [97] introduces uncertainty in economic behavior in
the following way:

. . . No study of the realities of economic life is complete without
a thorough study of the fascinating interplay of uncertainty and
strategy . . .
. . . In reality, business life is teeming with risk and uncertainty.
The demand for a firm’s output will fluctuate from month to
month; input prices of labor, land, machines, and fuel are of-
ten highly volatile; the behavior of competitors cannot be forecast
in advance . . . Life is a risky business . . .

A fundamental role in providing the economics with data is that of
accountancy. The layman’s view, that accounting data represents true
values, is not correct. This is due to the fact, that accounting documents
reflect adjusted historical costs. Prices (or current market values), on the
other hand, reflect the analyst’s or investor’s perception of the present value
of the future, and therefore unknown, cash flows. Problems can be seen
already in the definition of the accounting ([23]):

Accounting is the process of identifying, measuring and communi-
cating economic information to permit informed judgements and
decisions by users of the information.

There are two similar definitions in [23]. They leave some fundamental
questions opened: what should be identified and measured to get and
communicate the information about it? One of these definitions tries to
be more specific by description of the object as “quantitative information,
primarily financial in nature, about economic entities, that is intended to
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be useful in making economic decisions . . . ”. However, this is a tautology.
The missing notion is worth or - as reflected by accounting - value. This
notion is an agelong worry of economists as can be seen in the book [102]
first published in 1776:

The word VALUE, it is to be observed, has two different mean-
ings, and sometimes expresses the utility of some particular ob-
ject, and sometimes the power of purchasing other goods, which
the possession of that object conveys. The one may be called
‘value in use’; the other ‘value in exchange’.

It is worth mentioning, that this dual viewing was introduced ages ago by
Aristotle (384-322 B.C.). It is not less noteworthy, that it is applied even
recently, when the valuation problem became an object of international
efforts directed to standardization of valuation ([37]). International Valua-
tion Standards distinguish nonmarket and market approaches. Nonmarket
values include:

• Value in Use: worth for a particular owner.
• Value in Exchange: a value acknowledged by the market, where could

be a hypothetical exchange of the asset realized.
• Investment Worth: a value for an investor following his specific goals.
• Going Concern Value: worth of an enterprise as a whole.
• Insurable Value: value specified in an contract of insurance.
• Assessed, Rateable or Taxable Value: values defined by corresponding

legal regulation.
• Salvage Value: the net realizable value.
• Liquidation Value or Forced Sale Value: value in a situation, when

the application of the market value is impossible.
• Special Value: value regarding some specific factors distinguishing the

transaction from the current market conditions.
• Mortgage Lending Value: evaluation for securing a mortgage.

The market value is specified as an estimate of the price obtainable in
a hypothetical transaction on a specified date or a measure of the value,
that will accrue from ownership by a particular party. This value depends
on the valuation basis adopted and the required valuation premise.

It is obvious, that all these quantities are evaluated subjectively, being
dependent on the needs of subjects, on the conditions of the market, on
intentions of investors, on the policy of banks and insurance companies,
on law making and especially on judgements of specialists performing the
valuation.
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Fundamental information used for economic valuation stems from ac-
countancy.

2.4 Measuring in Accountancy

To measure, a physicist or engineer applies a measuring tool or apparatus.
Such material instruments do not exist to be used in accountancy. Instead,
“measuring tasks” are realized by “generally accepted” procedures formu-
lated as national and international standards ([35], [36]). Such “measuring
manuals” are not simple, the former has 1265 pages.

It is remarkable, that the International Accounting Standards do not
consider the notion of measurement as a primitive1: a definition is pro-
vided ([35]), and the idea is further clarified by the inclusion of specific
measurement bases:

Measurement is the process of determining the monetary
amounts, at which the elements of the financial statements are
to be recognized and carried in the balance sheet and income
statement. This involves the selection of the particular basis of
measurement.

A number of measurement bases are employed and these are applied to
various portions of financial statements in varying degrees. They include
the following:

(a) Historical cost. The amount of cash or cash equivalents paid, or the
fair value of the consideration given at the time of acquisition.

(b) Current cost. The amount of cash or cash equivalents, that would have
to be paid, if the same or an equivalent asset was acquired currently.
Liabilities are carried at the undiscounted amount of cash or cash
equivalents, that would be required to settle the obligation currently.

(c) Realizable (settlement) value. The amount of cash or cash equivalents,
that could currently be obtained by selling the asset in an orderly
market. Liabilities are carried at their settlement values; that is, the
undiscounted amount of cash or cash equivalents expected to be paid
to satisfy the liabilities in the normal course of business.

(d) Present value. Assets are carried at the present discounted value of
the future net cash inflows, that the item is expected to generate.

1In mathematics, ‘primitive’ is a notion, which does not require a definition because “everybody knows,
what it means.”



2.4. MEASURING IN ACCOUNTANCY 21

This latter idea attempts to inject the notion of market value. One
should be willing to pay just enough for an asset to offset the future value
of the cash flow, which it is expected to contribute. As satisfying as this
thought may be, it brings along as extra baggage several additional sources
of uncertainty.

First of all, the future cash flows are unknown, therefore risky, and they
are represented by a best guess of their magnitude2. Then the present
value of these flows must be estimated using an uncertain discount rate,
which reflects that risk.

Another issue is the relative risk of certain elements in the cash flow
stream. Operational flows are one thing, but once an asset has been ac-
quired, how certain is the depreciation, that will be taken? What about
the resale value of the asset at the end of its useful life?

Another source of uncertainty comes from the fact, that today’s market
rates, whether they are short, intermediate, or long term, all imbed current
perceptions of expected future market conditions. However, for example,
the second year’s risky cash flow should be discounted at the second year’s
relevant rate, but this rate will not be known until the second year, when
the cash flow is actually received. The rates, that were expected, will
probably not be the ones, that actually occur, and the true value of the
cash flow at the end of the second year will not be that same value, which
was estimated, when the asset was purchased.

Most commonly, enterprises use historical cost when preparing their fi-
nancial statements. However, this is usually combined with other bases
(inventory is usually carried at the lower of cost or market value, mar-
ketable securities can be carried at market value, pension liabilities and
capital lease obligations are carried at their present value, etc.). When
inflation is a persistent and recurrent problem, and where it is permitted,
some firms turn to the use of current cost basis in response to the inabil-
ity of the historical cost accounting model to deal with the effect of the
changing prices of nonmonetary assets. In some countries, accountancy
law specifies the use of different measurement bases for different elements
of financial statements.

There are further sources of accounting uncertainty:

Vagueness of definitions: Complexity of the problems and diversity of
the processes do not enable creation of uniquely interpretable defini-
tions. Neither the basic accounting notion of recognition cannot be

2There are many techniques, which can be used to refine these estimates.



22 CHAPTER 2. UNCERTAINTY

described precisely. According to Standards, an item is recognized if:
• (a) it is probable, that any future economic benefit associated

with the item will flow to or from the enterprise; and
• (b) the item has a cost or value, that can be measured with reli-

ability.
Ambiguity in terminology: Expressions like ...fair value..., ...expected

to be paid..., ...equivalent asset..., ...expected to generate..., the nor-
mal course of business..., ...expected to be required... are more or less
fuzzy and are permanently discussed by specialists of the field.

A degree of tolerance in selection of the particular basis of measure-
ment for a particular task must exist. However, different measurement
bases → different results from measurement.

Subjectivity: Unlike ‘technical’ measurements tending to maximal inde-
pendence of the results on the subject, who performs the measure-
ment, the role of professional judgments is emphasized. However,
different professionals can come to different conclusions.

Ethical issues and criminal actions can also contribute to uncertainty.

It can be concluded, that both measurement and recognition in ac-
counting are inevitably connected with vague notions and actions, which
include unknown and unpredictable factors, that increase the uncertainty
of accounting data. These sources of uncertainty have a fundamental na-
ture, which the intensive long-term effort of the international community
of accountants has not yet been able to overcome.

2.5 Fighting against Uncertainty

Aims to minimize negative effects of uncertainty on quality of measurement
were the driving forces of the development of measurement technology. A
leap in evolution of the field was brought by the development of statistics.
Decreasing uncertainty of the quantification by repeating measurements
followed by statistical analysis enabled results’ quality to be significantly
improved. Moreover, a statistical way of thinking helped to scientists to
effectively model complex natural “uncertain” processes of demography
and public administration and to create new scientific fields like statistical
thermodynamics, nuclear physics along with nuclear engineering and the
theory of information. The development of computers allowed to apply sta-
tistical methods to satisfy rapidly increasing needs of improving the results
of measurements. However, serious problems with applications of statis-
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tics arose in many fields of practice, where uncertainty was not adhering
the necessary assumptions of statistical modeling. Difficulties manifested
significantly around ensuring a “sufficient” amount of data. Modern mea-
suring can be expensive. There is a risk of delay as results must be obtained
as soon as possible. Losses caused by destructive measurements can be ex-
cessive. Monitored processes can be too fast to allow many measurements.
Application of statistical methods in all such cases is no longer feasible.

The efforts to decrease uncertainty are motivated by the aim to maxi-
mize the opposite: the information. However, as already mentioned, statis-
tical models of uncertainty and information are based on the idea of mass
uncertainty.

2.6 Summary

Unlike ideal quantification, real quantification is neither precise nor con-
sistent, although the existence of an unique true value of the quantity can
be assumed in many application fields, apart from economics. However,
there is always an unavoidable participant in quantification - uncertainty.
The nature of uncertainty can be very different; it can originate from many
sources. Its presence in data implies risks, errors and the degradation of
results’ reliability and utility. The availability of the large amounts of data
required to remove uncertainty using statistical methods cannot be always
assumed. Examples of existing causes and sources of uncertainty show,
that the application of statistical models of uncertainty can be therefore
inadequate to many required tasks. To minimize effects of uncertainty on
quantification process in such applications, a realistic theory of real quan-
tification, which is applicable to small data samples, is needed.



24 CHAPTER 2. UNCERTAINTY



Chapter 3

Geometric Paradigm

3.1 Paradigm

A theory is an abstraction conceived to explain or predict reality. It needs
to include sufficient information, but also to suppress irrelevant facts.
Therefore a model is proposed as a reproduction of what is observed as
reality. Theories evolve over time and are improved or negated as em-
pirical investigation either supports or refutes what had previously been
postulated.

The notion of a paradigm is close to that of a model but Thomas Kuhn
introduced [65] a special interpretation which pertains to scientific revo-
lutions. He suggests that a paradigm represents a collection of generally
accepted views which dominate the thinking of “experts” in a scientific
field at some point in the development of a theory. As shown later by
Joel Barker [5], the problem of the paradigm is much more universal in its
nature and it is one of the most important questions in the development
of our everyday life. A paradigm consists of two major parts. It:

1. delimits the boundaries of a class of problems, and
2. includes a collection of rules to solve the problems which exist within

the given boundaries.

The acceptance of an existing paradigm results in several advantages:

The paradigm

• helps to distinguish between the important and the insignificant,
• offers advice and recommendations as to how to move successfully

within the given boundaries,
• aids in communication between its adherents because they are all fa-

miliar with and use the same notions, terms and language,

25
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• helps in the understanding of changes within its “valid” framework
because it is understood as being “legal” and it does not give rise
to suspicions of “heresy” within the domain and it does not lead to
conflicts with the “pontiffs”, who dominate the field,
• assists in legitimizing activities within its boundaries, thus increasing

the number of its adherents and sponsors.

There are also negative features. A paradigm is a “filter”, which selects
and adapts incoming information to support itself and to eliminate incon-
sistencies with any new facts. Murphology has two observations on this
issue [8]:

1. Maier’s law: “If facts do not correspond to your theory, get rid of
them as fast as possible.”

2. Finagl’s credo: “Science is always right. Do not be confused by
facts.”

These theses are (sadly) more than a joke; if these conclusions were not
frequently real, the acceptance of a new paradigm would be much easier
and faster. Blind and uncritical adherence to an existing paradigm often
results in a closed mind and to an erroneous conviction that everything
successful in the past must be successful in the future because the future
is nothing more than a simple extrapolation of the past.

In defense of maintaining the old order, a change in the paradigm might
encompass large risks:

• At the moment, when a revolutionary paradigm is accepted, a great
deal of the built-up intellectual or spiritual “capital” of those, who
supported, nurtured, and maintained the supplanted paradigm is lost,
and nearly everyone starts from zero once again.
• New paradigms ordinarily appear at the boundaries of several scientific

fields, which are not familiar to the “priests” of the old paradigm.
Younger scholars with fresh new knowledge, and newcomers from the
new “neighboring” fields are favored.
• As a potential revolution of the paradigm develops, it is not sure, who

will win. Many will prefer to wait on the sidelines to see, which way
the wind blows, before putting their necks on the chopping block or
opening themselves to criticism.
• The old paradigm is rarely completely refuted; this permits the estab-

lished ideas to continue to be harvested until the new ones are com-
pletely established. Moreover, some new paradigms are more general
than the old ones and include the former as valid special cases. This,
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of course, does not apply to conflicts between hostile paradigms such
as between social systems or between paradigms, which exclude each
other (such as the Ptolemaic versus the Galilean paradigms).
• Occasionally, a seemingly new and better paradigm appears to be

more a fashion or a fad than a well justified innovation (eg many
slimming cures, following the ‘herding instinct’ in jogging, etc.).
• “New” is not automatically the same as “progressive” or “better”.

History is replete with many new ideas or discoveries, which have lead
to dead end roads or U-turns, eg DDT, cheap and safe nuclear energy,
small-pox vaccinations for children, etc.
• Some paradigms, especially those related to the use of power may be

highly dangerous, (eg Hitler’s “Blitzkrieg” or religious fundamental-
ism).

Having considered the advantages of continuing to subscribe to an old
paradigm with the risks of accepting new or revised ideas, one can develop
a better understanding of conservatism in thought and general resistance
to change.

It is logical to ask, why such a philosophical problem is dealt with in a
book, which aims to contribute to the analysis of real data . The answer is
that to analyze, one needs data and analytical methods. Real data contain
strong uncertainty. Hence, the methodology, which will be applied, must be
able to cope with the inherent uncertainties. There are different paradigms
of uncertainty; to select the most suitable, it is necessary first to reflect
on the choice of the proper geometrical paradigm, then to pick correct
paradigm of uncertainty.

3.2 Why Geometry?

The purpose of this book is to present a new method for the solution of
problems in the applied sciences; therefore, at first, it may seem puzzling
to have geometry play a major role. However, applied sciences deal with
data. Data result from measurement, and measurement is the main task
of geometry.

Let us now explore this problem. It is a widely held point of view
that geometry is the branch of mathematics that deals with the proper-
ties, measurement, and the relationship of points, lines, planes, and solids
[112]. Three notions of fundamental importance are missing here: space!
transformations, and invariants. These are necessary because all geo-
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metric objects must be placed somewhere and in some manner moved or
changed. Felix Klein1 stated (Klein, 1921) that these particular notions
are the most important features of geometry:

Geometry is the science studying invariants of figures, ie proper-
ties, which do not change by movements.

3.2.1 Space and its Geometry

One idea is that space is something like a box “containing” geometric ob-
jects. Such thoughts are promoted by the traditional approach to geometry,
which focuses on only a single geometry (the Euclidean one) and ignores
the existence of a large number of others, some of which are extremely
important in our lives. Indeed, one box (eg a shoe box) is very similar
to another box (a hotel room) in that the distance between two points is
the length of a straight line connecting the points. We even know that
this length is the minimum of lengths measured along all possible different
paths (this feature is called the variational principle). The notions of the
“right angle” and “parallelness” are identical in both boxes. The same
relates to angles between lines, which can be measured using the same
protractor. These notions are simple and natural, but only because we
are accustomed to viewing the world from the standpoint of Euclidean ge-
ometry, ie because we were educated to uncritically accept the Euclidean
geometric paradigm.

When evaluating distances in Euclidean geometry, the elements of the
path are summed, giving each the same weight, but are they all of the same
importance?

• The manager of a citrus grove monitoring a winter forecast would not
care if the temperature was expected to fall to 60◦ from 65◦. However,
he might need to start thinking about how to react should this five
degree change be between 40◦ to 35◦, and he would certainly take
desparate action should it range from 33◦ to 28◦. The “weight” of a
degree of temperature change depends on its level!
• The CEO of a firm would probably find justification for a 2% drop

in revenue or net income by blaming a competitor’s new product,
inflation, or a blip on the GNP growth chart, but were this change

1(1849-1928) A well known mathematician and geometer at the University of Göttingen.
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to amount to 10%, some very serious activity would take place in the
boardroom.

This idea of imposing different weights on different segments of a dis-
tance scale depending on a “locally” determined value bears a close resem-
blance to the assessment of uncertainty (or the errors) in data by measuring
the distances between an (unknown) true datum and the observed value. If
there are several observations and an estimate of the true value (the “cen-
tral” value), it is natural to weight the observations closer to the center
more heavily and to give smaller weights to those more distant. This is
a straightforward application of a non-Euclidean geometry. What is more
complex is the determination the “weighting function,”—in other words—
the choice of the particular non-Euclidean geometry to be employed.

The point is:

Different geometries ⇔ different measures.

The German mathematician Bernhard Riemann (1826-1866) developed
his geometric paradigm in the middle of the 19th century. Riemannian
space is a set of points (manifold) endowed with specific instructions
defining the way lengths and angles are measured at all points in the
space. (The measurement method—metric—may be different for different
points). All the characteristics of the space depend on its specifications
(curvature, variational principles, etc.). One of Riemann’s hypotheses is
of special importance to our purposes; it can be roughly stated in this way:

It is not for mathematicians to choose metrics of spaces to
model real processes. Metrics are given objectively by laws of
Nature.

No one could confirm Riemann’s hypothesis in his time because the
progress of science had not matured sufficiently and very few, if any,
had any conception of what he was saying. It was more than half a
century later before Albert Einstein proved through his special theory of
relativity that the space we live in is not Euclidean but substantially
different—Minkowskian. This conclusion resulted from experiments docu-
menting the finite speed of light—a law of Nature. Einstein’s gravitation
theory (the general theory of relativity), a decade later, explained other
physical experiments, which proved that the geometry of outer space is
Riemannian. The (local) metric at each point is determined by the (local)
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gravitation forces—again by something objective.

It is now the right moment to ask a modified Riemannian question:

What is the proper metric to use to measure the uncertainty
of real data obtained by quantification?

In other words:

What is the proper geometric paradigm and the proper
paradigm of uncertainty, on which methods for analyzes of real
data should be based?

Indeed, data uncertainty results in data errors. What is the “size” of an
error? If the reply were that the error should be measured as the difference
between the true (ideal) value and the observed data, this approach being
derived from Euclidean geometry, the immediate follow-up question would
be to explain the reasons, which motivate the choice of Euclidean
geometry. Error is obviously distance but to measure distances, we
should know the geometry of the space.

It should now be clear, why we are concerned with geometry, when
dealing with data treatment. Our problem is to find the reasons that es-
tablish the “proper” geometry of spaces for real events and processes. One
intuitively feels that this geometry is closely connected with uncertainty.

3.2.2 Transformation of a Space

Transformations play an important role in geometry. Three notions are
essential for our purposes:

1. geometric movement,
2. invariants of transformations,
3. replacement of coordinates.

Anyone, who has used computer graphics, is familiar with various types
of geometric movement. Moving a point by means of the “mouse,” one
produces straight lines or curves. Rotating a line having a constant
length about a point draws a circle. Using the sequence of operations
‘copy’—‘paste’—‘rotate’ a square can be constructed from one of its sides.
Not all users of these techniques are aware of the fact that they are
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actually applying geometric transformations. They slightly modify the
values of the coordinates of the last point thus generating a new point,
store the new point’s coordinates and use the new point as the point of
departure for the next movement. By such movements, geometry creates
lines from points, figures from lines and solids from figures. Further, by
geometric movement, a space with a higher dimension can be created from
one of a lower dimension.

It is important not to confuse geometric (virtual) with physical (or—
more generally—real) movement. A geometric movement can model a
physical one, but it is a more general notion. Not all possible geometric
movements can be realized in the real world. A plate lying on a table
cannot move down vertically but a geometrical point on the plate can
move down freely along a vertical line as well as up. Another significant
difference between geometric and physical movement is that of the time
aspect. Physical movement is strongly parametrized by the time coordi-
nate and its speed cannot exceed the speed of light. Geometric—purely
mathematical—movement (not represented by the physical movement of
the cursor on the screen) has no relation to time. Geometric movement can
of course model other kinds of movement, eg movements taking place in
the financial world. The development of the individual price of shares can
be thought of as a geometric movement (this is what “chartists” try to do
in attempting to predict future prices by drawing straight lines, or other
more complicated geometric shapes representing the path of past prices).

Examples of a “collective” movement in the financial world are inflation
or the devaluation of currency. The affected group participates in a real
macroscopic movement, yet its individual members interact with each
other on the “micro” level. These movements also have a double nature,
when they occur: they are real, but on the analysts’ screens. They have
a different character, since the real (financial) movement is modeled by
the physical movement of electrons, which draw lines, thus representing a
geometrical movement.

There are many kinds of transformations; a convenient way to classify
them is by the use of invariants. Invariants are features of geometric ob-
jects, which permit them to remain unchanged through certain transforma-
tions. It is important to emphasize that there is a requirement for a triple
of notions: space—transformation—invariant, all of which are mutu-
ally bounded. There are affine transformations within Euclidean space
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such as shifts and orthogonal rotations. Invariants with respect to these
transformations are lengths and angles. Note that these words “lengths,”
“angles” and “orthogonal” should be understood as “lengths”, “angles”
and “orthogonal” in the sense of Euclidean geometry. In a different geom-
etry they may mean something entirely different.

There are invariants of transformations also in the space, which rep-
resents the financial world: the rate of interest is a time invariant of the
exponential curve depicting the change in value of a bank deposit in the
case of a constant interest; the ratio of liabilities to receivables does not
change with a currency’s devaluation.

Mathematicians have the freedom to choose the coordinate system of a
space from a whole class of permissible systems and they ordinarily use the
most convenient one. To solve problems of a rectangular nature, they use
a Cartesian system of coordinates (eg 〈x, y, z〉). When working within
a sphere, they choose spherical coordinates (〈ρ, φ, θ, 〉) where ρ is the
diameter, φ the azimuth and θ is the altitude) and so on. This does not
mean that another system, perhaps the Cartesian system, cannot be used
to measure the position of stars, just that it might be more cumbersome.
However, it is sometimes necessary to change from one coordinate system
to another, to replace coordinates. One extremely important aspect of
replacing coordinates is that of invariants. This is especially familiar to
physicists because it allows objective features to be distinguished from
subjective ones. A good example is a tension within a solid body. Such a
stress together with resulting deformations is something objective, it exists
independently of the observer trying to model it mathematically. However,
the written appearance of equations, which describe the state of the body,
is dependent on the choice of coordinate system, it is thus subjective. If
the load and resulting stresses exceed a certain critical value, the body
will break. This outcome is objective, it is independent of the chosen
coordinates. The tensions therefore must be invariant to transformations
that exchange coordinates. There is an ideal mathematical tool, tensor, ()
which can determine invariants as eigenvalues of tensors for a whole class
of transformations, which replace coordinates.

3.3 Summary

To analyze real data, which, as a rule, are strongly disturbed by uncertain
components of various origins, one needs good analytical methods. To
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develop good analytical methods, a well conceived theory is essential.
Every theory is based on a paradigm, which is a collection of views
which have been generally accepted during the historical development
of a field and which dominate the collective thinking of experts in that field.

The choice of geometry to be used to represent real quantities (or their
movement) is critical to the nature of the results, that will be obtained.
Since there is no freedom in the selection of the geometric paradigm, it is
necessary to find suitable laws of Nature, which can determine the ap-
propriate geometry. Preliminary consideration of the problem reveals,
that there is no confidence in the suitability of the Euclidean geometric
paradigm and its corresponding analytical methodology for the treatment
of real data. A difficult problem which remains is the justification of the
specific geometry of a Riemannian type for this class of applications.
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Chapter 4

Paradigms of Uncertainty

4.1 Statistical Paradigms

When using the word statistics, one must distinguish between two substan-
tially different meanings:

1. numbers, that have been collected in order to provide information
about something,

2. the science of collecting and analyzing these numbers.

The numbers cited in both definitions are data, ie outputs of the quan-
tification process, which map real quantities. A quantitative depiction of
reality would be impossible without data. The statistical activity described
by the first definition is an absolutely necessary part of all methods used
to obtain quantitative information. The second meaning also defines an
objective of mathematical statistics, but it does not imply its uniqueness
as a tool for data analysis.

The use of the plural in the heading above might be a shocking reve-
lation for one, whose acquaintance with statistics is via the most popular
paradigm, that of relative-frequency statistics. It is based on one of the
oldest paradigms closely connected with games of chance such as dice,
cards or roulette. The relative frequency (number of successes divided by
the number of trials) characterizes the success of repeating a given (ran-
dom) experiment under fixed conditions. The thrust of this paradigm is
described by [22] as follows:

1. In many important cases relative frequencies appear to converge or
stabilize, when the random experiment is repeated a sufficient number
of times.

2. This apparent convergence is an empirical fact and a striking instance
of order in chaos.

35
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3. The apparent convergence imputes a hypothesis, that the relative fre-
quency of outcomes in as yet unperformed trials of an experiment can
be extrapolated from the observed relative frequency of trials already
run.

4. Probability can be interpreted through the limit of relative frequency
and assessed from relative frequency data.

This statistical paradigm is not unique. There are altogether seven classes
of theories of probability based on different paradigms described in detail
and analyzed in [22]. The conclusions drawn therein are far from optimistic:

. . . The many difficulties encountered in attempts to understand
and apply present-day theories of probability suggest the need for
a new perspective. Conceivably, probability is not possible. A
careful sifting of our intuitive expectations and requirements for
a theory of probability might reveal, that they are illusory or even
logically inconsistent. Perhaps the Gordian knot, whose strands
we have been examining, is best cut. However, where would such
a drastic step leave the world of practice?
. . . Clearly much remains to be understood about random phenom-
ena before technology and science can be soundly and rapidly ad-
vanced. It is not only the “laws” of today that may be in error,
but also our whole conception of the formation and meaning of
laws.

Perhaps this sad state of affairs can be interpreted as a call for a good
nonstatistical paradigm to assess uncertainty.

4.2 Nonstatistical Paradigms of Uncertainty

Many problems of a theoretical nature have given rise to new attempts to
reconsider various statistical paradigms. The rapid development of com-
puters after World War II enabled existing statistical methods to be applied
to real problems to an extent never thought possible before. However, re-
sults have been far from satisfactory. This may be explained by the fact,
that statistical methods are products of mathematics; and as such, if they
were developed from nonconflicting assumptions in a consistent manner,
they cannot be wrong. If a mathematical statistics methodology fails, when
it is applied to real data, it is necessary to look for the cause in the conflict
between the theoretical assumptions and the real nature of the data. A
statistician may warrant his methodology to one, who requests an analy-



4.3. IS THERE A NEED FOR AN ALTERNATIVE TO STATISTICS? 37

sis, only if he in turn provides the statistician with a warranted statistical
model of the data. Statisticians ordinarily make the requester responsible
for the choice of data model. The stumbling block is, that one very
rarely knows the statistical model of real data.

Both theoretical and practical problems with statistical paradigms have
lead to the fast development of methods based on alternative, nonstatis-
tical paradigms. As outlined in [72], several of these methods are being
applied in forecasting and decision making in the financial markets. The
use of methods based on pattern recognition, neural networks, fractal ge-
ometry, deterministic chaos, fuzzy logic, genetic algorithms and nonlinear
dynamic theory are discussed. However, this list of existing alternatives
to statistics is short by at least one candidate. It seems, that there is an
informal, but ferocious, “race” running for alternative paradigms of uncer-
tainty. It is not the aim of this text to deal with the broad spectrum of
nonstatistical paradigms of uncertainty. Instead, we shall concentrate on
a single participant in the “race,” on the gnostic paradigm, which was
absent from the roll call given in [72].

4.3 Is there a Need for an Alternative to Statistics?

Economists rely on statistics to collect data, but the use of mathematical
statistics as the unique technology of choice for extracting information from
these data may be a questionable procedure1.

The historical achievements of statistics, especially in physics, has jus-
tified consideration of this methodology for use in the analysis of real phe-
nomena. Theories of statistical thermodynamics, chain fission reaction,
and neutron slowdown and diffusion yield precise engineering calculations
for nuclear reactors. These constitute some of the unchallenged successes of
the statistical approach. However, is this sufficient reason to expect, that
the application of the same principles will yield equally successful results
when applied, for instance, to economics? Because economic processes
are substantially different from physical ones, it is not likely. Benjamin
Graham, the father of “fundamental” investment analysis stated [30]:

. . . The art of investment has one characteristic that is not
generally appreciated. A creditable, if unspecular, result can be

1The basis for the material in this section is taken from a presentation made by the authors at the
third international Artificial Intelligence in Economics and Management (AIEM) workshop in Portland,
Oregon in August of 1993.
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achieved by the lay investor with a minimum of effort and capa-
bility; but to improve this easily attainable standard requires much
application and more than a trace of wisdom. If you merely try
to bring just a little (emphasis added) extra knowledge and clev-
erness to bear upon your investment program, instead of realizing
a little better than normal results, you may well find, that you
have done worse.
Since anyone—by just buying and holding a representative list—
can equal the performance of the market averages, it would seem
a comparatively simple matter to “beat the averages”; but as a
matter of fact, the proportion of smart people, who try this and
fail, is surprisingly large. Even the majority of investment funds,
with all their experienced personnel, have not performed so well
over the years as has the general market . . . there is strong ev-
idence, that their calculated forecasts have been somewhat less
reliable than the simple tossing of a coin.

Although there is no reference to specific forecasting methods, it can be
inferred, that the word “calculated” refers to the mathematical methodol-
ogy of statistics, that has almost exclusively dominated econometrics for
decades. Among other pertinent critiques of the statistical approach to
economic problems the following remarks by Los ([70]) can be mentioned:

. . . It is clear to most people, that economic forecasting still
amounts to little more than educated guessing, despite the aura
of precision created by computerized models of the economy.

. . . Scientific economic analysis, in the true sense of these words,
still does not exist.

. . . Since objective modeling has not been practiced, economics as
a science has not progressed.

. . . Recently, simple cost-benefit analysis has created strong finan-
cial incentives to obtain better and more accurate economic fore-
casts in the private sector. But, paradoxically, the main obstacle
to this progress in economics is the conventional pseudoscientific
methodology of econometrics adopted in the 1940’s and 1950’s.
The conclusion is clear: first the problem of objective identifica-
tion from noisy data has to be solved.

Professor R. E. Kalman, who made a substantial contribution to cyber-
netics with his famous filters, expresses his view of the issue as follows
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[42]:

. . . Statistics is not science, but a kind of prescience, a
pseudoscience, a “gedankenscience.”2 Perhaps it’s best called an
“ersatzscience.”3

. . . Uncertainty in nature cannot be modeled (and therefore
must not be modeled) by conventional, Kolmogorov4 probability
schemes, because no such scheme may be identified from real data.

. . . The trouble is, that probabilities are not identifiable.

Even the name of the scientific meeting, where Kalman’s contribution
was presented, could be interpreted as symptomatic—Foundation Crisis in
Econometrics within the Standard Statistical Paradigm. As pointed out in
[70], the criticism of current methodologies of data treatment has long ago
left academia for the popular press, for instance in the Wall Street Journal
[114]:

Fickle Forecasters. How Three Forecasters, After Crash, Revised
Economic Predictions

and [44]:

Into the Void: What Becomes of Data Sent Back From Space?
Not a Lot as a Rule.

We do not reject statistics because it is a “gedankenscience.” The power
of mathematics results from the fact, that it is a “gedankenscience,” due to
its independence from the facts of real life. However, the practical appli-
cability of mathematical or statistical models goes outside the borders of
a “gedankenscience.” Many processes studied in physics are can be mod-
eled by “gedanken-experiments” because useful models of their behavior
are simple enough to be formulated by humans. We can come very close
to describing the orbit of the earth relative to the sun using only New-
ton’s gravitational principle and the masses and distances of the earth,
sun, and moon. For most purposes, we can ignore the effects of other plan-
ets, other stars, and air disturbances due to (say) the flight of butterflies.

2Der Gedanke... the thought (in German). Appears frequently in natural sciences in the word der
Gedanken-experiment —a thought experiment not really performed, but obeying an a priori given system
of laws. In use without translation in many languages. The most popular application of such an approach
was the A. Einstein’s cosmic elevator used in the General Theory of Relativity.

3German word der Ersatz means a not quite perfect substitute, an artificial Christmas tree or a
“hamburger” made from soy beans.

4A. N. Kolmogorov: Russian mathematician (1903-1997), who developed in the 1930’s the most com-
monly accepted version of probability theory.
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However, in economics, it is not simple to distinguish the perturbations
of the data resulting from influences, that (if we knew, what they were)
could be ignored, and the essential ones. It is impossible to discriminate
from the flapping wings of a butterfly and the mass of the sun. Moreover,
we have not yet identified anything that remotely corresponds to Newton’s
laws. Such principles, invariant for all time, may not even exist. Nothing
is stationary and replicable in economics. One of the major issues is the
independence of events; the collision of two gas particles at a specific point
can be considered completely independent of a collision of particles at a
distant point. Economic events not only are influenced by economic trans-
actions, but also by seemingly unrelated activities across the globe, which
may even cause a strong synchronous reaction throughout the world.

The impropriety of statistical applications to many propositions in
real life is reflected by the manner in which many problems are
stated. They begin with the assumption: Let x1, .., xN be the N −
tuple of i.i.d. random variables. The idea of independence, as noted
above, is probably unsuitable for all real events. Identical distribution
refers to stationarity and repeatability, which is also a doubtful charac-
teristic of many real data. However, the most discordant is the notion of
randomness. This is pure agnosticism, a complete abdication of the no-
tion, that the human mind has the ability to discern, confirm, and establish
the cause of events.

Returning to economics: are the fluctuations of prices on the stock
market random? Ask market experts this in a more specific way: “Was
yesterday’s change in company X’s share price random?” The explanation,
(or several explanations) received will suggest, that what occurred was a
necessary consequence of having new public information about X’s earn-
ings or prospects, or a change in the discount rate by the Fed., etc. The
change might seem random for those, who perceive the market only as a
big roulette wheel. Often, no reason can be elicited, and the response is:
“I have no idea;” (read, “I have no information,”) rather than, “It was
random.” Corporate financial data in the form of various financial state-
ments play an important role as ‘raw materials’ of economic and financial
analysis. Market analysts and economists use data from multiple sources;
even those, who are responsible for a single firm’s planning and policies
will examine information on the competition as well as the economy as a
whole. To estimate the financial position of a company, an analyst uses
data not only of the company under consideration, but also data of other
companies. Using the language of statistics for a moment, we may say,
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that data from a sample of companies will be used.

Let us see how well the standard statistical assumptions are met in the
case of financial statement analysis:

1. To evaluate the financial position of a company one needs to compare
the company’s parameters with those of “similar” enterprises. How-
ever, the number of really comparable companies is always very small.
Finding companies quoted on the NYSE within a range (size, capital-
ization, etc.) in a specific industry will result not only in a strictly
bounded set, but frequently in only a very small number of firms, of-
ten numbering not more than 10. Is it possible to accept the idea,
that analysts are randomly choosing companies for their comparisons
from an infinite population of mutually independent companies, for
which the same statistical model describes their economic and other
parameters? Such an idea is implausible for many reasons. To com-
pare the comparable, the analyst’s choice is systematic. Systematic
choice is of course biased and the exact opposite of random.

2. The small size of a “sample” of comparable companies cannot be in-
creased to raise the reliability of the analysis. It is easy to add to the
number of trials, when throwing dice, but the idea of increasing the
number of companies directly comparable to eg Coca-Cola is absurd.

3. To assume the independence of financial statement data for different
companies, as is required by many statistical methods, would be even
more unrealistic. Comparable companies may react in a similar way to
changes in the economic environment (recession, taxes, custom duties,
inflation, prices of raw materials and energy, technological innovations,
etc.). This similarity of reactions forces the economic parameters of
these companies to be mutually dependent.

4. Another problem is centered on the fact, that many statistical
methods are based on the assumption, that the data fit a particular
probability distribution. One of the most widely used statistical
distributions is the Gaussian or normal. It is customarily chosen
because many applications are based on mass random events, in
which case its choice may be justified. This justification is based on
the Central Limit Theorem (the Law of Large Numbers), which is
the most effective weapon in the arsenal of mathematical statistics.
However, there is no reason to expect, that what works for large
data samples will also be applicable to small ones. Moreover, the
fundamental differences between random events and the actual
causes of real events infer, that the universal application of standard
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statistical reasoning to real data is illegitimate. To demonstrate this,
it is useful to recall the Central Limit Theorem ([110]):

Central Limit Theorem:
Given:

1. The random variable x has some distribution with mean µx and stan-
dard deviation σx.

2. Samples of size N are randomly selected from this population.

Conclusions:

1. The distribution of all possible sample means x will approach a normal
distribution.

2. The mean of the sample means will be µx.
3. The standard deviation of the sample means will be σx/

√
(N).

An (infinite) population is thus assumed, from which samples of size
N are randomly selected. For samples of size N greater than 30, the
sample means are approximated reasonably well by a normal distribution.
However, if there are only 10 comparable enterprises, it will be impossible
to obtain the necessary sample size, and adjustments will have to be made,
each of which will degrade the outcome.

Moreover, some interpret the central limit theorem as being valid for
any distribution of the population. This may be a crucial error because
the theorem applies only to distributions, which have a mean and a stan-
dard deviation. Not all distributions fulfill this requirement, eg a Cauchy
distribution has neither a mean nor a standard deviation, and it is some-
times used by statisticians to describe the effects of gross errors (outliers).
Since outliers are rare in large samples, only a small portion of the data be-
have in this manner. However, if there are only 10 companies in a sample,
a “small part” of these data may number one or two. Moreover, in various
real data, outliers are generally present and they cannot be ignored. Is it
possible to treat these unusual data points as if they have ‘normal’ statis-
tical properties? On the other hand, if we accept a Cauchy distribution to
characterize outliers, we are not able to apply the central limit theorem.
How then can it be expected, that reliable results will be produced from
such an analysis?

If data are not normally distributed, one may still compute any desired
statistic (if it exists), but it is no longer possible to impute any meaning or
significance (in the statistical sense) to these measures. This is applicable
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to several customary tests, for instance:

1. the Student’s distribution (the t-distribution) for testing statistical
hypotheses on population means,

2. the chi-square (or χ2) distribution used for tests on population vari-
ances and for tests in curve fitting,

3. the Fisher’s (or F-) distribution for testing hypotheses on ratios of
variances and for variance analysis (ANOVA) in solving regression
problems.

No longer being able to apply the concept of normality leads to the “illegal”
application of these popular statistical tests. There are those, who try to
escape these difficulties by using nonparametric statistical methods not
relying on the normality assumption, however the danger posed by the
mutual dependence of events may once again subvert their effort.

Another difficult problem is connected with the notion of “identically
distributed.” This idea refers to the homogeneity of the data sample: all
data should be “of the same origin.” This is rarely the case in practice. In
the analysis of an industry, it is not unusual to find subgroups of companies,
within which the members behave in a similar manner, and which manner
is different from the behavior of members of other subgroups. This is
noticeable in the probability density functions of economic parameters:
instead of a single density maximum (typical for eg normal distributions)
several local maxima appear—the density is multimodal. Such “mixtures”
of differently distributed subsamples do not conform to the central limit
theorem.

In fairness, it must be said, that a large number of tests for the above
conditions have been developed and numerous data “treatments” have
been unfolded in an attempt to mitigate these problems, and mathemati-
cal statistics has evolved as new approaches to problem solving have been
developed: more robust statistical methods, Bayesian and recursive proce-
dures, etc. These and similar innovations provide a little extra knowledge
and sometimes a good bit of cleverness (as Benjamin Graham would have
said), but taken as a whole, they do not go a very long way in overcom-
ing the noted dilemmas. The use of these newer methodologies does not
provide a complete solution of the problem.

Some new nonstatistical approaches may yield better results than statis-
tical methods in a particular application, but they are not competitive with
mathematical statistics as products of a scientific theory, which systemati-
cally covers a broad field of theoretical problems. The statistical paradigm
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is perfectly suited to explain the outcome of mathematical models for pro-
cesses in many scientific fields, particularly those in the physical sciences
(treating mass events in physics such as the movements of molecules of a
gas or neutrons in the core of a nuclear reactor). As already discussed, the
development of scientific thought, as new information is discovered, leads to
modifications of theory, in which frequently the “old” processes remain as
special cases. For instance, Einsteinian relativistic mechanics produces the
same dynamic models as Newtonian mechanics, but only for an “asymp-
totic” case of extremely slow movements. However, most nonstatistical
models of uncertainty do not fulfill the same function of “asymptotic con-
sistency” with mathematical statistics.

It might seem, that fuzzy-set theory and the probability theory based on
fuzzy sets provides a desirable “generalization” of the statistical paradigm,
because a fuzzy set may be seen as a generalization of the classical no-
tion of a set. However, there are other difficulties; a major one is, that
the paradigm of fuzzy-set theory is based on the assumptions being the
foundation stones of the theory:

1. The “membership function” is given, which determines the degree, to
which each event belongs to the set.

2. The formulae of the fuzzy logic are given.

These necessary elements must be chosen a priori and subjectively. This
could prove to be even more difficult than to establish an a priori statistical
model of data.

Other nonstatistical methods suffer from the absence of a complete
mathematical theory and have only a heuristic nature.

There exists a more radical solution: to depart entirely from the sta-
tistical environment and the existing paradigms of uncertainty, and to try
something entirely new.

4.4 Paradigm of Gnostics

4.4.1 Gnostic System

The semantics of this unusual word is treated below; we use this notion
extensively, but the word itself is not our creation, it has an extremely long
and exciting history. It is no wonder, that this word has been redefined
and applied to a really recent problem: a cybernetic recognition system,
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by modern philosophers [88]. In a general setting, the gnostic system can
be characterized as the pairing of an object and of a subject (observer),
whose task is to recognize the object. The observer gets his information
by means of an object → subject channel. To compare his improving
knowledge (through repeated observations) about the object’s reality he
uses another channel (feedback subject→ object). The recognition process
is thus active. A typical example is the evolution of experience as an
iterative cycle initiating an action—gaining experience from the action—
evaluating and accumulating experience—using the updated experience to
initiate a new action—etc.

For a gnostic recognition system, a more specialized formulation is
needed. It is sufficient to restrict our exposure to the gnostic system of
quantitative recognition. The idea of such a system is presented in Fig. 4.1.
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There exists an object with quantitative parameters, which should be
recognized by the subject/observer. Recognition is reduced to the ob-
ject’s quantification. As seen previously, quantification is the mapping of a
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structure of quantities onto a structure of numbers (data). This is the feed-
forward link quantity → number in Fig. 4.1. The basic task of the observer
is to estimate the true (ideal) value from the data. This is represented in
Fig. 4.1 as the feedback link number → quantity. The estimating phase
of the cognition cycle is required because of the inevitable disturbances to
quantification caused by uncertainty. We shall examine the problems of
estimation later. The present point of interest is still quantification.

We learned in Chapter 1, that quantification as a mapping is consistent
if some simple rules hold. Using mathematical language, we characterized
structures of both quantities and their numerical images as additive or
multiplicative groups. This scheme of quantification corresponds to that of
measurement theory. We can summarize our notion of ideal quantification
by Fig. 4.2.

 WORLD WORLD WORLD WORLD  MATHEMATICS MATHEMATICS MATHEMATICS MATHEMATICS

EiEiEiEi

EiEiEiEi

NiNiNiNi

NiNiNiNi . . . numerical structure of images I(qi)
. . . empirical structure of ideal quantities qi

Ideal
quantification

Fig. 4.2: Ideal quantification

Anywhere in our world, an empirical structure Ei of ideal quantities
qi exists mapped onto the numerical structure Ni of numbers denoted by
I(qi)—images of qi. We already know the mathematical nature of both
structures: they are both commutative groups isomorphic with Abel’s ad-
ditive group.
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This idea of ideal quantification is suitable for measurement theory, but
it has only a limited use for application to real measurements. There is
consensus among those, who develop and use measurement theory, to limit
their studies to precise measurements and to let statisticians deal with
imprecisions. We are not going to follow this scheme:

1. Such schemes are useful for applications, where data precision is—as
a rule—high, and imprecise data are a rare exception. We saw in
Chapter 2, that the opposite is frequently true in practise: data can
contain gross errors and precise measurements, as a practical matter,
can be impossible.

2. The unreliable results of data treatment in many applications lead to
incorrect decisions, the outcomes of which are too costly to ignore.

3. It is a normal use for statistics to model and treat data having a
statistical character; however, as noted earlier, it is unlikely that all
real data are statistical in nature, and that they can be modeled using
statistical methods. Statistics, as a strongly mathematical discipline,
should not be used to work with nonstatistical data.

4. The main obstacle in the path of consistent successful use of statistics
in many fields, especially in economics, is the specific nature of the
uncertainty, which surrounds real events. They are not always some
consequences of “random” factors, which is a necessary condition for
“good” statistical data.

5. There is a natural and direct way to extend the useful axioms of
measurement theory to the quantification of uncertain data. This is
the primary focus of the theory that will be developed.

The approach we are going to use is based on the gnostic theory of
uncertain data (on mathematical gnostics) or—in short—on gnostics. The
ideas imbedded in the mathematical gnostics were first introduced in the
literature in 1984 in three papers [56], [57] and [58]. A summary [59] of the
new theory was presented at the IX-th World Congress IFAC (International
Federation of Automatic Control). Scientific interest in this contribution
lead to an invitation to publish an extended review of the theory [60] in the
official journal of the IFAC. A more complete exposition of the development
of gnostics through 1990 is in [61].

The word “gnostic”, has already been used and it is therefore time to
look at its semantic roots.
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4.4.2 Gnostics, the Choice of a Name

Every meaningful concept should have a name. There has been a long
and successful experience in using gnostic algorithms, showing their supe-
riority over other approaches under practical non-laboratory (real world)
conditions. This methodology, then, should be distinguishable from other
analytical concepts and procedures. In addition, the uniqueness of this the-
ory and its algorithmic applications place it outside of the framework of
other known methodologies, and the name should distinguish this concept
from all of the others.

A more interesting question is “Why just this name?” The birth of this
idea comes from the very old Greek word gnosis, which can be translated as
“knowledge” or “art of knowing”. Its root is found in many newer words
such as prognosis, diagnosis, physiognomy, gnome, gnomon, gnoseology
and—via the Latin reflection of Greek (gnoscere = know)—cognition, cog-
nizable, cognizance, cognizant, recognition, recognizance, recognize, etc.
All these words are in a way connected with knowledge. However, three
words from this family deserve special comment: agnostic, Gnosticism,
gnostic.

The word Gnosticism is used ([112]) to define a system of mystical doc-
trines combining early Christian, Greek, and Oriental philosophies. Gnos-
tic means 1) “of or having knowledge,” 2) “believer in Gnosticism.” These
definitions are rather formal, however the first use of the word was Plato’s
(427–347 B.C.), while the second is connected with a religious movement
and is about five centuries younger. Gnostic philosophers sought the truth
outside of the official Gospels and were sternly rejected by the Church au-
thorities and the Gnostic movement was considered a great danger and
was repressed. Examples of recent words using this ancient kernel show,
that there is no religious connotation in the modern usage of the notion of
“gnosis”; the accent is on knowing and knowledge as in the time of Plato.
This will also be true here.

The word agnostic is in a way closer to our purpose. According to [112],
an agnostic is one, who thinks it is impossible to know or learn, whether
there is a God, or if anything exists beyond material phenomena. Now
applying this definition to the world of data and substituting the “true
(ideal) value” of a datum5 instead of God, someone could be called “data
agnostic” if he or she thinks it is impossible to know if there is a “true
value” beyond the observed data, and believes, that it is impossible to

5“Datum” is the singular of “data”: a data item.
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approach (to estimate) the true value from the data itself. In contrast, we
shall not only profess the existence of “something like a true or fair value”,
but we shall also look for (and find) the best estimating methods, with
which this value can be approximated. By doing this, we shall attempt at
all times to be “non-agnostic,” ie to be gnostic.

4.4.3 The Framework of Gnostics

The overall breadth of gnostics will encompass the following elements:

1. A specific mathematical theory called The gnostic theory of uncertain
data.

2. Data treatment algorithms based on the gnostic theory—gnostic al-
gorithms.

3. The applications of gnostic algorithms to solve different types of prob-
lems.

By including applications in the framework to be considered, it is intended
to show, that gnostics has been developed to serve practical needs inspired
by close contact with specific problems. The need to provide applications
to solve these real world problems provides a rich source of inspiration and
motivation for the theory and for the development of tools to test and verify
its suitability as well. It will be seen below, that these gnostic applications
have very specific properties.

Each mathematical theory defines the necessary notions, which permit
the formulation of the assumptions or axioms of the theory. Applying
consistent judgment, mathematicians develop and prove all the statements
of the theory from the assumptions. This means, that all the cleverness
and fruitfulness of a theory is hidden or rooted in its assumptions. A
mathematician “only” makes them obvious by using the exact apparatus
of mathematical reasoning. This is why it is important to understand the
main ideas, from which the axioms are derived. With respect to gnostics,
these principal ideas can be summarized as follows:

1. Data are not arbitrary numbers, but products (outputs) of a highly
developed technology called quantification. As such, they obey strict
regularities.

2. A real datum is the pairing of an informative (ideal) and an uncertain
component, which disturbs the observation.

3. The uncertain component is a result of our lack of knowledge of the
causes of discrepancy between the observed datum and its informative
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component. There is no randomness involved.
4. The observed datum is a one-dimensional “projection” of the pair

containing these two components; the direct determination of the ideal
component is thus impossible.

5. The shape of the quantification process is a special path, along which
the image of the datum moves under the influence of the uncertain
data component. This path is thus a geometric model of quantifica-
tion.

6. Neither the metric nor the geometry of the data space is an a pri-
ori assumption, everything is determined by the data following the
principle, “Let the data speak for themselves.”

7. By analyzing the path of the data pair, one can develop a complete
theory of individual uncertain data.

8. The gnostic theory of data samples is developed from the theory of
individual uncertain data by applying a aggregation axiom motivated
by a close relationship to relativistic physics.

The thrust of gnostics is, that in contrast to statistics, gnostics con-
structs its theory of data samples based on its own theory of individual
data; it is finite, not based on samples randomly drawn from an infinite
population.

4.5 Randomness versus Data Uncertainty

The idea of randomness in discussing the disturbance of data pairs will not
be used for the following reasons:

1. Random experiments, random events, random variables and ran-
dom functions have precise mathematical definitions in mathemati-
cal statistics. We introduce a different notion, that of uncertainty.
Different things cannot use the same name.

2. In spite of its importance in mathematics, the notion of randomness
rarely has been given a clear interpretation in statistical literature.
For example, [16]:

“Obviously, it is impossible to define precisely, what is under-
stood by the word ‘random’. Its sense can be clarified best by
means of examples.”

3. The statistical notion of randomness is inherently connected to the
idea of the unlimited repeatability of a random experiment. Gnos-
tics considers finite data samples under no assumption of unlimited
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extensions to the number of data.

Due to the principal ideas of gnostics, which have been exposed above,
there is no “magic” in the gnostic interpretation of the disturbance
component of a datum:

Data uncertainty comes from the observer’s lack of knowledge
of the given quantification process on the observer’s part.

There are three important aspects to this statement:

• Objectivity: The uncertainty of the quantification process is given,
it is a part of the real world.
• Knowledge: If the observer knew perfectly all of the conditions of

the quantification and the factors influencing each datum’s value, he
could completely explain all the details of the data values. Uncertainty
is the unexplained portion of the imperfectly clarified data.
• Subjectivity: The ability to explain a data value depends on the sub-

ject (observer), and on his particular knowledge. What is uncertain
for one observer, can be quite precise for another.

If this is true, then the same—objectively given—piece of data can be
deaggregated into different ideal and uncertain components by different
observers. This individuality in the points of view of the observers is yet
again another reason to search for a law of Nature, that explains quantifi-
cation, and which does not depend on the individuality and capability of
the observer for its outcome.

4.6 Summary

In spite of the commendable praise, which statistics deserves for solving
problems in both scientific and practical application fields, experience does
not support the universal application of methods, which are based on the
paradigm of mathematical statistics. Most of the important problems of
economics attempts to predict the market’s behavior, financial statement
analysis across an industry, and other similar activities remain practically
unsolvable by statistical methods. There are other fields of practice, where
availability of data is limited because of difficulty and/or high costs of mea-
surements like in environmental control, geology, medicine, reliability and
endurance assessment. Other obstacles can be caused by non-stationarity
and a high speed of processes.
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There also exist serious theoretical objections to modeling such processes
by statistical methods. Both theoretical and practical needs have given
rise to a number of alternative, nonstatistical methods based on different
paradigms of uncertainty. One of the new paradigms of uncertainty—the
gnostic one—is represented by a set of simple assumptions, according to
which uncertain data are the products of a quantification process. The
uncertainty of a datum is the result of a lack of information and not due to
a random event. The first goal of gnostic theory is to derive a mathematical
model of uncertainty for individual data from this paradigm.



Chapter 5

Model of Uncertain Quantification

5.1 Model of Uncertain Data Component

In Chapter 1, where the process was defined, the material (real) nature
of quantification was emphasized. Its mapping of a structure not only
involves real elements, but also interactions between objects being quan-
tified and elements and forces belonging to other structures. The results
of these interactions manifest themselves—if they are not explained—as
uncertain components in the observed data. This means, that the un-
certain components have the same nature (and can be expressed using
the same measuring unit) as the ideal component. If we quantify the
value of an asset, then the nature of an observed datum is money and the
numeraire is the dollar; the same units are valid for both the ideal and
the uncertain components of the observed datum. All three quantities
(ideal, uncertain, and quantified components) thus have the same financial
nature. When the concentration of a dangerous pollutant in a river is
to be quantified, the disturbations of the observed quantity are of the
same nature, concentration. If the data structure is additive, then the
influence of the uncertain components is also additive. In the case of
multiplicative data the interaction of both components of the data pairs
is also multiplicative.

We can now proceed one important step further in the analysis of the
features of a structure of uncertainties. It has already been noted, that
the interactions of uncertain/ideal components are the same as ideal/ideal
interactions. To be consistent, we recognize the same rule for uncer-
tain/uncertain interactions. Consider a particular case: the structure of
cash flows. We have already accepted the idea, that this structure (when it

53
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is quantified without the influence of uncertainty) can be modeled by the
multiplicative group. However, the current price of each asset (represented
by the item of the cash flow) is a product of its ideal (historical, original,
nominal) value and of the current value of a factor representing inflation
(inflator). The current prices of assets are thus data pairs having the form
〈 ideal price, inflator 〉. Observations of the data are one-dimensional, only
the product of the two factors can be observed. Each inflator, in itself, can
be a product of factors characterizing different specific influences. Daily
price changes produce an inflator for each day. A change occurring over
two days can be then evaluated by the product of each daily inflator. This
product is commutative. Products of three inflators are associative. Defla-
tion can also occur, so a reciprocal (“inverse”) value can exist. All inflators
are finite and positive and the zero inflator does not exist. Thus it can be
concluded, that the structure of inflators may be also modeled by the mul-
tiplicative group.

We now arrive at a reasonably general model:

The structure of uncertainties is a commutative group.

5.2 Algebraic Model of Real Quantification

Both the objects and the results of an ideal quantification have been rep-
resented by algebraic structures isomorphic with the Abelian group. The
same model was then introduced to represent a structure of uncertainties.
This structure of uncertainties can be quantified in the same manner. It is
also true, that the respective positions of the “ideal” and the “uncertain”
components of a data pair can be interchanged:

Imagine the case of a tourist visiting a foreign country. As he exchanges
money, he receives a sum of local banknote and coins. He believes, that an
“ideal” value for this amount of money exists, but not knowing the current
value of the inflator, he is not able to quantify it. For him, the structure
of inflators is a structure of uncertainties. A second observer’s task is to
analyze the current inflation factors. As he accumulates a set of prices
for comparable products, he considers the inflator as an “ideal” value to
be estimated. His data are “disturbed” by the variability of the historical
(deflated) prices of these mutually comparable products. Hence, for him,
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the group of uncertainties is the structure of unknown historical prices1.
This interchangeability between the roles of the data pair’s components
will be called symmetry.

We have arrived at a two-dimensional structure, which could be math-
ematically modeled as the Cartesian product of two groups. The inter-
actions between elements of these two groups have the same character as
those within the groups: all interactions are either multiplicative or ad-
ditive. This notion of real quantification composed of the pair of ideal
quantification processes can be illustrated by Fig. 5.1.
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EiEiEiEi NiNiNiNi . . . numerical structure of images I(qi)

+ +

NiNiNiNiEiEiEiEi

E+E+E+E+

EuEuEuEu

E+E+E+E+

EuEuEuEu

NuNuNuNu

NuNuNuNu

N+N+N+N+

N+N+N+N+

[ MEASUREMENT ]

. . . empirical structure of quantities  qi+qu

. . . empirical structure of uncertain quantities qu

. . . numerical structure of images  I(qi+qu)

. . . numerical structure of images I(qu)
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of real quantification

REAL QUANTIFICATION

Theoretical model

Ideal quantification II

Ideal quantification I

Fig. 5.1  Real quantification

Elements of a group Ei of ideal (true) empirical (real) quantities are
denoted by qi and their numerical images, (which form the numeric group
Ni) by I(qi). (The operator I(...) symbolizes the ideal quantification).
There also is a group Eu of empirical (real) uncertainties qu and a group
E+ of compositions of ideal and uncertain quantities. The result of the real
quantification (the observed data) are neither group Ni of images of ideal
quantities, nor group Nu of images of uncertainties, but the group N+

1To view prices as elements of the multiplicative group, one applies the same notion of multipliers as
in the case of measuring ratios: a good’s price says how many times the price exceeds the unit of currency.
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of quantities I(qi + qu) obtained by the sums of images of the composed
elements of both empirical groups. (The composition operator is denoted
by the symbol +, which can be interpreted here generally as ⊕ as well as
⊗, or as inverse operations). Each of the three empirical structures can
be (at least theoretically) subjected individually to ideal quantification. In
this way, three views of the data are obtained: theoretical images I(qi) and
I(qu) and the actually observed numeric images I(qi+qu) = N(qi)+N(qu)
of the composition (sum) of numeric images of components qi and qu.
The real quantification is thus modeled as an ideal quantification of the
composition of two (unidimensional) quantifications. Problem to be solved
by data treatment consists in estimation of the N(qi) (and N(qu)) from
the composed pair of images.

This concept can be now described more formally (as in [61]) using the
following notation:

Definition 1: Let A0, A, and N be nonempty sets. Elements of the
set A0 are the ideal values, while elements of A are the data; and those
of N the uncertainties. Let R1 be the set of real numbers and R+ the
set of positive real numbers. Now introduce the following mappings:

υ : A0 −→ R1 (5.1)

ϑ : A −→ R1 (5.2)

ν : N −→ R1 (5.3)

σ : N ×N −→ N (5.4)

π : A0 ×N −→ A. (5.5)

The mapping υ as well as the mapping ν are ideal quantification, while
ϑ is real quantification. The domain of definition of a mapping ξ will be
denoted Dom(ξ) and its range of values Ran(ξ).

Instead of using this model in its full generality, only a special case
delimited by the following axiom will be considered:

Axiom 1 (axiom of the additive model of possible data):

A1.1: Mappings υ, ν and ϑ are one-to-one and the range of values Ran(υ)
is identical to R1.
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A1.2: Mapping ν is an isomorphism of the structure

Gσ := 〈N , σ〉 (5.6)

and of the additive group 〈R1, +〉 .
A1.3: There exists S ∈ R+ such that for all a0 ∈ A0 and for all n ∈ N

the following relation holds:

ϑ(π(a0, n)) = υ(a0) + Sν(n). (5.7)

The structure N is isomorphic with the additive group according to
A.1.2. It might seem, that the assumptions related to the group features
of the set A0 have disappeared from our definitions because there is no
composition operation defined over this set. However, this is not true be-
cause of the already noted interchangeability of the ideal and the uncertain
components, which can be achieved by renaming the two components. On
the other hand, we need only one (fixed) ideal quantity to model the effects
of uncertainty on a datum. The ideal quantity to be quantified is certain,
but for the observer, it is an unknown value. The uncertain component also
has a fixed (but unknown) value; our goal is to explore the consequences as
the uncertain value changes. More specifically, the objective (given a fixed,
but unknown, ideal value ) is to analyze the path of a geometric movement
of the datum-pair driven by an uncertain component.

The main ideas of the axioms A1.1–A1.3 may be thus interpreted in the
following way:

1. Both uncertainties and ideal values can be considered members of
commutative groups.

2. The theoretical model of both uncertainties and ideal values is that of
ideal quantification.

3. The theoretical model of a piece of uncertain data (of real quantifica-
tion) consists of two theoretical models of ideal quantification. The
geometrical model of a piece of real data is thus a point on a plane;
it is two-dimensional.

4. The actually observed piece of uncertain data is a single number, it
is one-dimensional.

5. The actually observed piece of data is formed by composition of the
outputs of both ideal quantifications (I(qi⊕qu)), the composition law
between the two groups of outputs being the same as that between
elements of each of the groups.

The fundamental role is thus played by the assumption, that the ideal
quantification is an isomorphic mapping of a commutative group of
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real quantities (domain of the ideal quantification) onto the commutative
group of real numbers (range of values of the ideal quantification). One
can base such an assumption on practical experience—as was the case of
the group of cash flows or of the group of measuring multipliers. However,
there is a much more reliable reasoning, that derived from measurement
theory, which condenses the experience of thousands years in the form of
its axioms. Based on the axioms of measurement theory , the assumption
that a suitable mathematical model of ideal quantification is a mapping
of a commutative group of real quantities was established in [56] as the
basic axiom of gnostic theory. As shown later in [99], this assumption
can be supported by a strict mathematical reasoning, which shows that
the commutative group is an acceptable model for an empirical structure
of quantities within the framework of measurement theory, as set out in
[87]. This is the sense of the statement, that the first gnostic axiom is
supported by measurement theory.

From A1.2 it is seen, that

(∀n1, n2 ∈ N )(ν(σ(n1, n2)) = ν(n1) + ν(n2)). (5.8)

Using notation

A := ϑ(π(a0, n)), A0 := υ(a0), Φ := ν(n). (5.9)

we recast A1.1 and A1.3 in the form of a relation

A = A0 + SΦ (A, A0, Φ ∈ R1, S ∈ R+), (5.10)

called the additive form of possible data. Data A will be called additive,
and the positive number S is the scale parameter. The scale parameter
will be introduced, when data samples are analyzed to recognize, that suc-
cessive data elements may have different volatilities. The scale parameter
thus unifies the measuring units to evaluate the intensity of uncertainties.

Definition 2:
Multiplicative data will be additive data transformed using the following
relation:

Z := exp(A). (5.11)
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The choice of this transformation is natural. It is defined by the one-to-
one function; the domain Dom(exp(∗)) coincides with that of the additive
data (R1). The range of values Ran(exp(∗)) is the same as that of multi-
plicative data (R+). It is seen from (5.10) and (5.11), that

Z = Z0 exp(SΦ), (5.12)

where
Z0 = exp(A0). (5.13)

The expression (5.12) is called the multiplicative form of possible data.

This and the several following chapters develop the gnostic theory of
an individual datum. The scale parameter S, introduced to take into ac-
count different volatility for different data, remains constant, when only
one datum is being considered. To simplify the formulae, we shall there-
fore temporarily assume, that S = 1 using a unified scale, which provides
a simplified equivalence

Z = Z0 exp(Φ). (5.14)

When the solution of problems requires non-unity scale parameters, the
general multiplicative form (5.12) and its derivatives will be used.

5.3 Realism in Data Models

The customary methodology used to interpret (statistical) data relies on
premises, which are extremely difficult to justify in the treatment of some
real data. The primary thrust of the methodology being developed here is
to overcome these problems.

5.3.1 Statistical Data Models

The first problem concerns the very nature of the data. A data form anal-
ogous to the additive form 5.10 is frequently used as a basis for statistical
analysis, but only after assuming, that the data behave in a specific manner
(defined by an a priori chosen statistical model).

As discussed in the previous chapter, such a model—as a rule—includes
the following assumptions:

1. Data are obtained by sampling from a large population of random
events.
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2. The sampling is purely random and independent (ie the probability of
being chosen is equal for all members of the population—sampling
with replacement—and not influenced by the results of preceding
choices).

3. All events (ie included members) of the population are identically
distributed.

4. A “large” population means, that increasing the number of data in the
sample is actually possible and theoretically reasonable. Moreover,
a “large” population is assumed to be suitable for consideration in
limiting cases, which have an infinite number of data.

The conclusion to be drawn from the above is, that (at least) for some ap-
plications, one can neither rely on the a priori assumptions of a statistical
data model nor verify the realism of these assumptions if such a model is
used.

5.3.2 Gnostic Data Models

It is worth restating here, that the additive data form described previously
was motivated by measurement theory. The choice of such a point of
departure for gnostics is advantageous:

1. Measurement theory summarizes and generalizes technology of precise
quantification. There has been a much longer period of time to verify
and refine the rules of quantification than has been possible in the
case of statistics.

2. Axioms of measurement theory are much more elementary than those
of statistics. They have a purely algebraic nature without the intro-
duction of “magic” and complex ideas of randomness and statistical
independence. This is why the range of applicability of these axioms
is much broader and more universal than those of statistics.

3. The validity of the axioms of measurement theory (as they have been
summarized in the form of the group model of ideal quantification)
can be verified. It is a simple matter to establish experiments to test
(finite) data structure features such as closedness, associativity, com-
mutativity, the existence of the neutral element and invertibility (the
validity of (1.1)–(1.5) or (1.13)–(1.17)). The slightly more complex
assumptions of Axiom 1 could also be tested experimentally.

4. The gnostic paradigm does not contradict classical statistics. Gnostic
theory simply extends the field to (small) finite samples of data, which
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can not have a statistical model.
5. There are strong scientific arguments, which support the use of gnostic

axioms: it will be shown, that this theory bears a close relationship
to recent developments in several important branches of science: mea-
surement theory, geometry, physics and information theory. Further,
gnostics establishes special conditions, under which both gnostic and
statistical methods provide identical results; this occurs if and only if
the uncertainty is very weak.

Each theory, that is proposed, should include the means for its verifica-
tion and/or rejection, and establish the limits of its applicability. All the
implications of a mathematical theory are defined by its axioms and other
assumptions. The more realistic these roots, the greater the usefulness of
the theory in its application to real problems. From a practical point of
view, the broader range of applicability, the more universal the theory be-
comes. Successful applications are then also important tools for validation.

In the context of the universality of mathematical models, a comment
should be made regarding the perception of a limitation of the gnostic
data model. Both data forms 5.10 and 5.12 using the two models of ideal
quantification are basic in the gnostic theory. However, this does not
imply unsuitability of the theory for other data forms. Numbers obtained
from multiplicative or additive data using a suitable transformation can
also be called data, but the transformation, which is applied, must always
be specified. An important notion connected to data transformation is
data support—the domain, over which data values are defined. We have
so far considered only two basic types of data support: R1 and R+—the
infinite ones. However, in practice, most data sets have finite limits −→
bounded data supports. Bounded data can also be treated by gnostic
methods after they have been properly transformed onto the infinite data
support R+, for which the theory was originally developed.

The premise, which has been proposed in this section, infers, that the
thrust of gnostics is to provide a reliable methodology for the treatment
of small samples of “bad” real data. It should therefore not escape the
reader’s attention, that these axioms set out a sufficient foundation for the
establishment of a unique theory of individual uncertain data.
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5.4 Matrix Model of Real Quantification

Using the same symbols Z0 and Φ as shown in (5.9)–(5.14) we introduce
variables

x := Z0 cosh(Φ), y := Z0 sinh(Φ), (5.15)

a matrix

M(A0,Φ) :=

(
x y
y x

)
, (5.16)

and a set of matrices using Definition 1:

M := {M(A0,Φ)|A0 = υ(a0), Φ = ν(n), a0 ∈ A0, n ∈ N}. (5.17)

Matrix products will be written in the usual manner, and the symbol of
matrix multiplication (⊗) will be shown only if necessary. Such a special
case follows:

Theorem 1:
Let

Sm := 〈M,⊗〉 (5.18)

be a structure. Denote sets {A0} := {A0|A0 = υ(a0), a0 ∈ A0} and
{Φ} := {Φ|Φ = ν(n), n ∈ N}.
It then holds, that structure (5.18) is isomorphic with the direct product
of commutative groups 〈{A0},+〉 and 〈{Φ},+〉.

In order not to overburden the reader, only an outline of proofs is
presented.

Outline of the proof:

• Structures 〈{A0},+〉 and 〈{Φ},+〉 are isomorphic with the additive
group by the definition of ideal quantification.
• Matrix (5.16) can be written as a commutative matrix product

M(A0,Φ) = M(A0, 0)⊗M(0,Φ), (5.19)

where

M(A0, 0) =

(
Z0 0
0 Z0

)
(5.20)
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and

M(0,Φ) =

(
cosh (Φ) sinh (Φ)
sinh (Φ) cosh (Φ)

)
. (5.21)

• Show, that both structures 〈{M(A0, 0)},⊗〉 and 〈{M(0,Φ)},⊗〉 are
commutative multiplicative groups.
• Show isomorphism of the structure 〈{M(A0, 0)},⊗〉 with 〈{A0},+〉.
• Show isomorphism of the structure 〈{M(0,Φ)},⊗〉 with 〈{Φ},+〉.
• There exists only one common element to both groups of matrices
M(A0, 0) and M(0,Φ), namely the matrix unit M(0, 0).

Therefore, the matrix structure Sm is also a model of uncertain data.

The uniqueness of this matrix data model is examined below.

5.5 Data Uncertainty as an Operator

Consider the matrix structure (5.18) denoting elements of the matrices
{M(A0,Φ)} placed in the i−th row and the j−th column as mi,j. All
matrices of this type satisfying the condition |Φ| <∞ have several special
properties:

1. It holds for normalized elements of all matrices of this type, that

x/Z0 + y/Z0 = 1/(x/Z0 − y/Z0) = exp(Φ). (5.22)

2. The determinant

Det{M(A0,Φ)} = x2 − y2 = Z2
0 (5.23)

is constant for each fixed Z0 ∈ R+ and for all real values of the
uncertain parameter Φ.

3. Double symmetry:

m1,1 = m2,2 = x, m1,2 = m2,1 = y, (5.24)

where x ∈ R+ and y ∈ R1.
4. Introducing a special symmetric matrix

T :=

(
0 1
1 0

)
, (5.25)

one obtains
(∀M ∈ Sm)(TM = MT ). (5.26)
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The interpretation of these easily verifiable relations starts from (5.19).
When considering a given (fixed) ideal value Z0 under influence of differ-
ent uncertainties (ie different values of the parameter Φ), the fixed matrix
M(A0, 0) is mapped onto the structure Sm. Matrices M(0,Φ) are play-
ing the role of linear operators in these mappings. The relations (5.22)–
(5.25) specify interesting properties of these operators, which (as we already
know) are elements of the multiplicative group.

Relation (5.22) written as a pair of equations uniquely yields (5.15).
Taking into account the double symmetry (5.24), one concludes, that the
matrix operator is uniquely determined by these relations.

Relation (5.23) says exactly the same thing as (5.22), but its form leads
to another interesting interpretation. The equality (5.19) defines a linear
transformation with the matrix M(0,Φ) as the operator. Imagine the pa-
rameter Φ continuously changing from zero to a nonzero value Φ

′
, while

Z0 is constant. Points 〈x, y〉 (5.15) would then “move” along a continuous
line within a real plane, describing a path, which is a geometric repre-
sentation of the quantification process. (This is the geometric—virtual—
movement). The point is, that (according to (5.23) ) the square of the
ideal value, Z2

0 , does not change as Φ varies. This means, that the ideal
value of a data pair is the invariant to the quantification pro-
cess. The equality (5.23) together with the initial and finite values of the
parameter Φ thus defines the geometric path depicting the quantification.

The feature (5.26) of the matrix operator M(0,Φ) can be called com-
mutativity with respect to transposition. We ordinarily understand by the
“replacement of coordinates” of a plane, that a transformation of variables
〈x, y〉 to some function (〈f(x, y), g(x, y)〉) has taken place. Introducing a
different notion, the exchange of coordinates for the special replacement
of the type 〈x, y〉 −→ 〈y, x〉, it is possible to interpret (5.26) as invariance
of the matrix M with respect to the exchange of the definition Dom(M)
and Ran(M) (The matrix (M) is considered here as an operator). In an
explicit form, using the well-known formulae of hyperbolic functions

cosh (Φ1 + Φ2) = cosh (Φ1) cosh (Φ2) + sinh (Φ1) sinh (Φ2) (5.27)

and

sinh (Φ1 + Φ2) = cosh (Φ1) sinh (Φ2) + sinh (Φ1) cosh (Φ2) (5.28)

we can get from (5.21)

M(0,Φ2 + Φ1) = M(0,Φ2)⊗M(0,Φ1) (5.29)
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and from (5.16) and (5.19)(
x21

y21

)
=

(
cosh (Φ2) sinh (Φ2)
sinh (Φ2) cosh (Φ2)

) (
x1

y1

)
, (5.30)

which says exactly the same thing as(
y21

x21

)
=

(
cosh (Φ2) sinh (Φ2)
sinh (Φ2) cosh (Φ2)

) (
y1

x1

)
(5.31)

because the matrix satisfies (5.26). The transformation is thus unchanged
although we have renamed (exchanged) the coordinates of x and of y.
Our choice of coordinate names is subjective, while the transformation
represents the real, objective contribution of uncertainty to the datum. It
would be strange to find, that a real process is dependent on the names we
gave to the coordinates! We can thus take (5.26) as natural and reasonable.
We shall see below, that there are other important reasons supporting this
seemingly trivial property of the operator, which represents the influence
of uncertainty on the observed datum.

5.6 The Uniqueness of the Matrix Model

The structure Sm (5.18) formed by 2∗2 matrices M(A0,Φ) has been shown
above to be a matrix model of uncertain data obtained by real quantifi-
cation. A careful reader will note, that many interesting features of the
matrix model resulted from the special choice of the coordinates x and y
in (5.15). This substitution is legal because of the identity

exp (Φ) = cosh (Φ) + sinh (Φ), (5.32)

which was applied to go from (5.14) to (5.15). This identity results from
the definitions of hyperbolic and trigonometric functions and it is valid for
all real and imaginary values of the argument Φ. However, it is logical to
think, that other decompositions of the exponential function might lead
to different pairs of coordinates, which would imply different models of
uncertain data. A question then arises as to the uniqueness of coordinates
(5.15), which is answered by the following statement:

Theorem 2:
The relation (5.32) is the only additive decomposition of the exponen-
tial function exp (Φ) of a real and imaginary argument Φ into a pair of
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different functions, for which relation 5.26 with Det{M(0,Φ)} = 1 holds
identically for all values of the argument Φ.

Proof of the Theorem 2:
Let

(∀Φ ∈ R1)(exp (Φ) = f(Φ) + g(Φ)), (5.33)

where f(Φ) and g(Φ) be some functions, which satisfy the assumptions
of Theorem 2 so that the M(0,Φ)’s elements are M1,1 = M2,2 = f(Φ) and
M1,2 = M2,1 = g(Φ). The M(0,Φ)’s determinant should be

f 2(Φ) − g2(Φ)) = 1. (5.34)

Substituting f(Φ) = exp (Φ) − g(Φ) into 5.34, relation

g(Φ) = (exp (Φ) − 1/ exp (Φ))/2 (5.35)

follows equal to sinh(Φ) by definition. Hence

f(Φ) = cosh(Φ). (5.36)

This confirms, that the matrix model of uncertain data is unique.

5.7 Summary

Real quantification differs from ideal quantification due to participation of
quantities, which include not only ideal, but also uncertain components.
Gnostic theory considers structures composed of both ideal and uncertain
quantities as commutative groups, which can be manipulated by the same
kind of structural operations. The same operation also composes the ideal
and uncertain quantities to form the quantity, which is observed. The
theoretical model of a real (uncertain) quantification is thus formed by
a pair of ideal quantification processes, which produce three images: the
numerical image of the ideal quantity, the numerical image of the uncertain
quantity and a (multiplicative or additive) numerical composition of both
images, which is equal to the observed, but uncertain, datum. From the
axiomatic setting of this model it has been shown, that the uncertain data
component plays the role of a transformation, the invariant of which is the
ideal value (the numerical image of the ideal quantity). The axioms of
quantification have been used for the derivation of a unique matrix model
of the quantification process.



Chapter 6

The Geometry of Real Quantification

6.1 Distance as a Problem

Let us consider two points a and b on a straight line with coordinates ca
and cb, and ask once more the question, “What is the distance (L) between
the points?” The answer depends on the level of the reader’s mathematical
skill:

Basic: It is simple,
L = |ca − cb|. (6.1)

Thoughtful: It is not that elementary, because the path of integration,
along which the distance should be measured, has not been defined.
For the path denoted P(a, b) the distance would equal to the path
integral

L =
∫
P(a,b)

dp, (6.2)

where dp is the length of an element of the path. Only in the case of the
integration path coinciding with the straight line does the expression
(6.2) reduces to the ordinary integral

L = |
∫ cb
ca
dx|, (6.3)

which provides the same result as (6.1).
Advanced: It is complicated because neither the integration path nor the

geometry is specified. Assume, that the integration path is P(a, b),
and that such geometry is chosen, that the weight of an element dp of
the path of the point z is g(z). Then the distance is

L =
∫
P(a,b)

g(z)dp. (6.4)

67
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This expression reduces to (6.2) only if the weight g(z) is a constant
equal to 1, which is the case, when Euclidean geometry is employed.

The importance of knowing the path, when measuring distances, can be
illustrated by the following: imagine a lady, whose home is at point a and
has an office at point b. Even in the case, when both points are on the
same straight street, the distance to be actually walked or driven between
them would seldom be the same each time. It depends on stops made
to shop, visit a hairstylist or a friend, etc., on the way. This problem of
the path is important particularly, when measuring uncertainty, because
uncertainty can move the geometrical image of data along a curve and not
along a straight line.

The need to use a variable weight g(z) in (6.4) can be also illustrated
by an example. Consider the process of estimating the value of an asset
by several differently qualified experts. Assume, that an “ideal” value for
the property exists, eg as estimated by an omniscient Expert, but no such
expert is on hand. It is felt, that all of these experts, together, should come
close to the ideal value. The estimates are real numbers and the evalu-
ation process is begun by calculating their arithmetic average. A second
approximation is made to produce a more realistic result; it represents a
weighted average using weights, which are dependent on the distance of
each individual’s estimate from the previous round’s mean. Weights equal
to 1 are given to estimates, which have the value of the previous average
and these weights decrease with increasing distances from the mean. The
new value of the weighted average is used for the next round and the it-
erative process ends, when the weighted average remains constant. The
estimates of “bad” experts are thus suppressed and those of “good” ones
are emphasized. The idea is simple—instead of assuming, that judgments
of all experts are the same, and that each have the right to be taken equally
into account, we evaluate the individual qualification of each expert by the
quality of his work. This is accomplished by using a particular weighing
function p(z). The remaining problems are:

1. What is the form of the path, along which the errors (distances be-
tween the “ideal” and “estimated” values) should be measured?

2. What weighing function should be chosen (what kind of geometry) to
get the “best” result?

3. How is “the best result” to be interpreted?

Gnostics can answer these questions for those readers who persevere.
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From the point of view of the “man in the street,” the distance between
two points, assuming that it is to be measured along the segment of the
straight line connecting the points, is “obvious”: “everybody knows, that
this is the shortest path among all those possible.” However, this statement
is true for Euclidean geometry and may be false in another geometry. To
show the changes in the distance, which result from path variations, it is
necessary to extend the dimensionality of the problem—to go over from the
geometry of a straight line to the geometry of (at least) a plane. Because
distance is a special application of the scalar product of two vectors, it will
be instructive to linger a moment on this notion.

6.2 A Bit of Geometry

No one is a complete geometric neophyte, since geometry is as basic as
reading. Notions such as length or distance, angles and circles are part
of the common body of knowledge. The problem—as it has already been
mentioned—is, that many are not aware, that their basic understanding is
tied unequivocally to a single geometry, the Euclidean one. A full course
in non–Euclidean geometries is not going to be presented here, however, a
brief and elemental introduction to this field is required in order to unveil
the secrets of uncertain data.

6.2.1 Riemannian Scalar Product

Let us consider a plane P2, the points of which are presented as coordinate
pairs 〈x, y〉. Let functions η(x, y) and θ(x, y) be continuous, one-to-one
and at least once differentiable functions. The values of functions x and y
will be called coordinates, the mapping

x′ = η(x, y), y′ = θ(x, y) (6.5)

is a sufficiently general form of the replacement of coordinates or transfor-
mation of the plane.

Subjecting the variables x and y to differential changes we obtain

 dx′ dy′

dy′ dx′

 =

 ∂η
∂x

∂η
∂y

∂θ
∂x

∂θ
∂y


 dx dy

dy dx

 . (6.6)
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This is a general formulation; however, rewriting it as(
dx′ dy′

dy′ dx′

)
=

(
g11(x, y) g12(x, y)
g21(x, y) g22(x, y)

) (
dx dy
dy dx

)
(6.7)

and denoting the matrix

G(x, y) =

(
g11(x, y) g12(x, y)
g21(x, y) g22(x, y)

)
, (6.8)

the Riemannian scalar product can be defined over the plane P2 in the
following way:

Definition 3:
Let v and v′ be column vectors defined by two points on the plane P2

v =

(
x
y

)
v′ =

(
x′

y′

)
, (6.9)

and dv and dv′ their differentials. Let the matrix G(x, y) (6.8) satisfy the
conditions of regularity:

g11g22 − g12g21 6= 0, (6.10)

and symmetry:
g12 = g21. (6.11)

Then the matrix G(x, y) is the metric matrix and the expression

[dv, dv′]G = dvTG(x, y)dv′ (6.12)

(where the upper index T denotes the transposition operator) is the scalar
product of the two vectors.

Within this framework, the square (dL)2 of the differential of distance
between two points 〈x+ dx, y + dy〉 and 〈x, y〉 is calculated by

(dL)2 = g11(x, y)(dx)2 + 2g12(x, y)dxdy + g22(x, y)(dy)2. (6.13)

This is the Riemannian metric form to measure lengths.

The differential form of (6.13) together with the dependence of the met-
ric matrix on the point where the element of the distance is to be deter-
mined means, that—in general—
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1. the method of measurement may be different at different points in the
plane,

2. the distance between two points may be dependent on the form of the
curve connecting the points, ie on the path,

3. the distance should be calculated using path integration,
4. each element of the path may receive a different weight, and therefore

have a different influence on the value of a distance.

Making the weight of each segment of the distance dependent on “some-
thing” (ie on the discrepancy of a particular judgment with respect to the
“central” meaning) was exactly, what we did in our practical example by
intuitively treating differently the individual points of view of each member
of an expert team.

Returning to abstract geometry, two important very special cases of
Riemannian planes are considered: the Euclidean and Minkowskian ones.
They both are obtained for some constant metric matrices.

6.2.2 Euclidean Plane

A point (U) in a two-dimensional real plane having coordinates U1 and
U2 can be interpreted both as a couplet 〈U1, U2〉 and as a (column) vec-
tor U . The transposed vector is then the row vector UT = (U1, U2). We
all remember the (Euclidean) formula for calculating the length L of this
vector

L =
√
U 2

1 + U 2
2 (6.14)

equal to the (Euclidean) distance of the point U from the origin 〈0, 0〉 of
the coordinate system. Introducing the seemingly trivial (identity) matrix

G2,E =

(
1 0
0 1

)
, (6.15)

one may rewrite (6.14) in the form of a special case of (6.13)

L2 = [U,U ]2,E, (6.16)

ie as a particular application of the Riemannian scalar product. It is pos-
sible to represent it in the integral form because the (Euclidean) metric
matrix is a constant. Index 2 gives the dimension of the space while index
E designates the type of the metric matrix as Euclidean.
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The cosine of the angle α between two vectors U and V is then evaluated
using the well-known (Euclidean) formula

cos (α) =
U1V1 + U2V2√

U 2
1 + U 2

2

√
V 2

1 + V 2
2

, (6.17)

which can be also expressed using the scalar product:

cos (α) =
[U, V ]2,E√

[U,U ]2,E
√

[V , V ]2,E.
(6.18)

It might appear, that there is no advantage in appealing to Riemannian
geometry and to use more complicated formulae with such simple relations;
however, as it is usually found in mathematics, a higher level of observation
broadens the horizon. This can be shown by using Minkowskian plane
geometry but, before considering the Minkowskian case, it is instructive to
demonstrate, that the important notions of classical statistics are based on
Euclidean geometry.

6.2.3 The Euclidean Scalar Product in Statistics

Imagine N pairs 〈ui, vi〉 of observations, which represent the results of a
set of repeated experiments (i = 1, ..., N). Denote

d =

∑i=N
i=1 di
N

(6.19)

the arithmetical mean of a sample of data di. Let the population variance,

from which the sample was chosen be σ2
d and its point estimate σ̃2

d. Let d be
an N−dimensional column vector, the components of which are di−d. This
data vector is thus—as statisticians say—centralized. Introducing the N ∗
N identity matrix written as an N−dimensional Euclidean metric matrix
GN,E, one may rewrite the well known formula for estimated variance by
means of the arithmetic mean of scalar products

σ̃2
d = [(d− d), (d− d)]N,E. (6.20)

Using the same notation, the point estimate of the covariance between two
N−dimensional data vectors u and v is

c̃ov(u, v) = [(u− u), (v − v)]N,E. (6.21)
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Since correlation coefficients are based on estimated covariances and
variances and correlation functions and correlation matrices are built
using correlation coefficients, all these popular and widely used statistical
tools originate from the notion of the Euclidean scalar product.

It has been already pointed out, that Euclidean geometry is an impor-
tant paradigm. Its axioms are nearly 23 centuries old, and its roots are
even older. So eg the famous Pythagorean theorem—if it really was formu-
lated personally by Pythagoras—could date back as much as 2,600 years.
But, we know today, that it holds in what we now call Euclidean geometry,
and that it may be false in other geometries.

What lesson can we learn from these reminiscences? The following:
there are important notions used in every-day mathematical statistics,
which are based on the Euclidean geometric paradigm and their roots go
back to ancient times. There would be nothing strange in making use of
“good old” knowhow if scientific progress had not shown “in between” the
substantial limitations of the ancient science. It is a habit of small children
to continually ask “why?” It is a pity, that some adults frequently hesitate
to pose the same question. Many unquestioningly believe in the authority
of their schools, their text-books, and the pronouncements of their profes-
sors and other learned persons. In other words, they conservatively accept
the “ruling” paradigm because it is more comfortable and less dangerous
then to independently question the problem.

6.2.4 Minkowskian plane

Let all U1, U2, V1 and V2 be again reals. Let G2,M be the (Minkowskian)
constant metric matrix

G2,M =

(
1 0
0 −1

)
. (6.22)

The vector form of two points on the Minkowskian plane is

U =

(
U1

U2

)
V =

(
V1

V2

)
. (6.23)

The Riemannian differential form (6.12) can in this case be integrated to
get

[U, V ]2,G = U1V1 − U2V2. (6.24)
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The squared length of a (column) radius vector v (having components x
and y) denoted as

ρ2
M(v) = [v, v]2,G (6.25)

obviously equals
ρ2
M(v) = x2 − y2. (6.26)

This is a substantially different notion to that, which we are accustomed
in Euclidean geometry. The square of the length may be negative as well
as positive or zero—it depends on the direction of the vector. Some
paths in the Minkowskian plane leading from one point to another may
thus have not only a real but also an imaginary or zero length. From this
point of view, the Minkowskian plane can be split into several parts. Such
a reasonable splitting will be considered in detail in Chapter 10.

6.2.5 Invariants, circles and rotations

Consider a matrix R2,∗(φ), for which the relation

(∀φ∗ ∈ R1)(RT
2,∗(φ∗) G2,∗ R2,∗(φ∗) = G2,∗) (6.27)

holds. The star designates ‘E’ or ‘M’ depending on the geometry. When
both vectors v and v′ are transformed (multiplied) by a matrix satisfying
(6.27), the scalar product (6.12) does not change. In other words, the scalar
product is invariant to such a transformation. It is obvious, that equation
(6.27) and the metric matrix delimits the form of the matrix R2,∗(φ∗). It
can be verified by substitution, that all matrices having the form

R2,E(φE) =

(
cos (φE) − sin (φE)
sin (φE) cos (φE)

)
(6.28)

satisfy (6.27) with the Euclidean metric matrix G2,E while matrices

R2,M(φM) =

(
cosh (φM) sinh (φM)
sinh (φM) cosh (φM)

)
(6.29)

solve the equation in the case of the Minkowskian metric. Multiplying a
(column) radius vector v of a point on the Euclidean or Minkowskian plane
(having components x and y) by a matrix R2,∗(φ∗) of either class, we obtain

v
′
= R2,∗(φ∗)v. (6.30)

Recall, that a circle is a line, the points of which are equally distant from a
fixed point, center. Distance is specified by geometry, therefore circles can
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have different forms. Denote ρ and ρ′ the lengths of the vector v and of the
transformed vector v′, respectively. From (6.27) substituted into (6.12) for
both transformed vectors, the identity

(∀φ∗ ∈ R1)(ρ
′

∗ = ρ∗) (6.31)

holds. It is worth rewriting this relation in both explicit forms (as in (6.16)
and (6.25) ):

(∀φE ∈ R1)(ρ2
E = x2 + y2) (6.32)

and
(∀φM ∈ R1)(ρ2

M = x2 − y2). (6.33)

Relation (6.32) may be interpreted as the equation of the (Euclidean) circle
with its center at the point 〈0, 0〉 and a radius of ρE. Analogously, (6.33) is
the Minkowskian circle, the center of which is again 〈0, 0〉 with the radius
ρM . It should be emphasized, that all points 〈x, y〉 considered in (6.32)
and (6.33) are points of the same real 2-dimensional linear space R2, which
is endowed with the Euclidean and alternatively with the Minkowskian
metric. The matrix R2,E(φE) defined by (6.28) (resp. R2,M(φM) by (6.29) )
rotates vectors, preserving their lengths and the angles between vectors
measured by either Euclidean or Minkowskian) geometry.

6.3 Minkowskian Nature of Real Quantification

Let us identify variables x and y having the form of (5.15) with those
appearing in (6.33). One obtains by substitution of (5.15) into (6.33)

ρ2
M = Z2

0 . (6.34)

This result is crucial to the theory and is therefore recast as a theorem:

Theorem 3:
Let Z0 be the numerical image of an ideal quantity subjected repeatedly
to quantification under effects of different uncertainties represented by
different values of the variable Φ. Let scale parameter S be fixed equal to
1. Let relations (5.15) define points in a Minkowskian plane.
It holds that:

1. All points representing observed data having an arbitrary uncertain
component Φ lie on the Minkowskian circle.
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2. The center of this circle coincides with the origin of the coordinate
system (〈0, 0〉).

3. The diameter of this circle measured in Minkowskian geometry equals√
Z2

0 .

These statements were derived directly and it is therefore not necessary
to prove them. The message, which they convey, is important and is worth
further analysis.

An objection to the model could be raised on the grounds, that an in-
finite number of data have been assumed because a continuous line (an
arc of a circle) has been used as a model. However, this is not a correct
interpretation of what has been done. What has been modeled is the path
of a single datum as it is transported from the “ideal” point 〈Z0, 0〉 of
a plane to its “final” point 〈Z0, exp (Φ)〉. This “transport” of the point
was characterized by a geometric (virtual, not a real, or physical) move-
ment. Although the model was designed for a single datum, it is valid
for all possible values of its uncertain component thus making the arc
continuous.

6.4 Summary

The notions of the metric matrix and scalar product are basic in deter-
mining the character of a geometry. Starting with the general Riemannian
definition of these notions, one may obtain (among others) two impor-
tant special cases related to constant metric matrices, the Euclidean and
Minkowskian ones. An examination of the basic ideas of mathematical
statistics leads to the conclusion, that they are deeply rooted in the Eu-
clidean geometric paradigm. In contrast, the gnostic theory of real quan-
tification develops a model, which is inherently connected to Minkowskian
geometry. It is important to state, that the Minkowskian character of real
quantification is not an assumption of the gnostic theory, but is only an
interpretation of its results, which are derived from its first axiom. Within
this geometric interpretation, a matrix operator parameterized by the un-
certainty moves the 2-dimensional vector image of the observed datum on
the Minkowskian plane along an arc of a Minkowskian circle. The ideal
value of the observed datum is an invariant of this geometric movement,
playing the role of the (Minkowskian) radius of the circular path.



Chapter 7

Quantification and Relativistic
Physics

7.1 Lorentz’s Transformation

A small excursion into physics will be useful for clarification of the gnostic
paradigm1. Let v∗ be the speed of light and let the general 4-dimensional
time-space model of special relativity theory discussed in [113] be reduced
to 2 dimensions. Define a time-space point in a coordinate system by a
vector u = (v∗t, s)

T , where t is the time and s the space coordinate. In
another coordinate system moving with respect to the former one with a
velocity v, the same vector will be observed as u′ = (v∗t

′, s′)T :

u′ = L(v/v∗)u, (7.1)

where

L(v/v∗) =

 γ( vv∗ ) ( vv∗ )γ( vv∗ )
( vv∗ )γ( vv∗ ) γ( vv∗ )

 , (7.2)

and where

γ(
v

v∗
) =

1√
(1− ( vv∗ )

2)
. (7.3)

The matrix L( vv∗ ) is the matrix representation of the 2-dimensional

proper homogeneous Lorentz’s transformation group2 [113]. Its significant

1The Dutch physicist, Hendrik A. Lorentz (1853-1928); developed the coordinate manipulations in the
late 19th century to explain optical and electromagnetic phenomena.

2Newtonian mechanics is based on so-called Galilean geometry, which permits motion at unlimited
speeds. With the advent of the special theory of relativity, it became necessary to take into account the
limited speed of light. This can be done by using the Lorentz transformation, which makes both place
and time measurements dependent on the speed of the observer.
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feature is that it preserves the Minkowskian scalar product. The squared
length of the vector u is thus invariant to the transformation (7.1):

(∀v/v∗ ∈ R1)([u′, u′]2,M = [u, u]2,M). (7.4)

As shown in [113], the transformations according (7.1)–(7.3) are the only
nonsingular homogeneous coordinate transformations u→ u′ that leave the
scalar product invariant. (Nonsingular means that both u′(u) and u(u′) are
well-behaved differentiable functions. Relation (7.1) is called homogeneous
because it does not include an additive constant.) A stronger version of
this statement related to uniqueness was proved by purely algebraic means
in [100] without requiring the differentiability of the two functions.

The uniqueness of the Lorentz’s transformation and thus of the class of
matrices L(v/v∗) (7.2) might perhaps lead to confusion because another
(also unique) class of matrices R2,M(φM) (6.29), which leave the scalar
product invariant has already been discussed. However, there is no conflict
here because the difference between the two classes is only formal. Indeed,
substituting

tanh (φM) =
v

v∗
(7.5)

and using the formulae of hyperbolic functions, one identifies R2,M(φM)
(6.29) with the Lorentz’s matrix L(v/v∗) (7.2). The importance of this re-
lation is that it gives the fundamental tie between the theory of uncertainty
and well established physical phenomena.

The principal reason for appealing to the theory of special relativity is
to apply the Lorentz-invariance principle, which requires that the form of
equations should be the same in all inertial coordinate systems, i.e. in sys-
tems moving with a constant velocity each with respect to other, since the
speed of light is the same in all inertial systems. The Lorentz’s transforma-
tions explain the time dilation and size contraction of images of objects
observed from a coordinate system moving relative to the object3. This
transformation provides an information channel for the observed input,
which is the real object, and the output, which is a distorted image of the
object. This channel is parameterized by the relative velocity of the ob-
server. One sees an immediate analogy with the idea behind quantification,
which also “works” as an information channel. It has the ideal quantity

3These effects are sometimes misinterpreted as a “dependence of time and size of an object on its
velocity”. In reality, the object remains unchanged (having its proper space and time coordinates mea-
sured in a reference system, in which the object is at rest) and independent of the observer, whose frame
of reference is in motion (relative to the object’s reference system). What is velocity-dependent, is the
(subjective) observation described by Lorentz’s transformation.



7.2. RELATIONS TO RELATIVISTIC MECHANICS 79

as its input and the distorted two-dimensional image as its output, the
distortion being parameterized by the amount of uncertainty. Equation
(7.5) developed earlier establishes the relation between the parameters of
both “information channels”; however, there is much more than a formal
analogy between these seemingly unrelated processes4.

7.2 Relations to Relativistic Mechanics

7.2.1 Isomorphism of Two Groups of Transformation

The first fundamental relation has already been shown: the Lorentz’s trans-
formation matrix L(v/v∗) (7.2) has been identified with the matrix operator
R2,M of Minkowskian rotation. However, the latter matrix is identical to
the matrix M(0,Φ) (5.19). Moreover, this identity exists for all values of
the parameters v/v∗ and Φ, for which (7.5) holds, as can be easily verified:

(∀Φk ∈ R1)(∀vk/v∗|vk/v∗ = tanh(Φk), k = 1, 2)

(M(0,Φ1)M(0,Φ2) = L(v1/v∗)L(v2/v∗)). (7.6)

This result can be formulated as a theorem:

Theorem 4:
The commutative group of matrix operators M(0,Φ) representing the
effect of uncertainties on data within the quantification process is iso-
morphic with the group of Lorentz’s transformation of the Minkowskian
plane formed by matrices L(v/v∗).

The importance of this theorem for the gnostic theory is closely con-
nected with the relation of the quantification process to the conservation
law of relativistic physics.

7.2.2 Quantification and the Relativistic Conservation Law

The idealized model for a system of a large number of freely moving par-
ticles (particles not subject to forces) is a continuously distributed mass

4Of course, relativity theory has a negligible impact on the perceptions of an observer in cases, where
velocities are very small compared to v∗, nevertheless motions at high speed as well as strongly uncertain
data exist and require the application of Lorentz transformations.
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having a density µ. The proper value of this density observed from within
the reference system moving with the mass will be denoted µ0. From the
special theory of relativity [113], the matrix representation of the energy-
momentum tensor E(v/v∗) of the subject mass has the form

E(v/v∗) =

 µ0v
2
∗γ

2( vv∗ ) µ0vv∗γ
2( vv∗ )

µ0vv∗γ
2( vv∗ ) µ0v

2
∗γ

2( vv∗ )

 , (7.7)

where γ( vv∗ ) is the expression as that given in (7.5). Introducing the matrix

E0 =

 µ0v
2
∗

2 0

0 µ0v
2
∗

2

 (7.8)

and using relations

γ(
v

v∗
) = cosh (Φ)

v

v∗
γ(
v

v∗
) = sinh (Φ), (7.9)

which result from (7.5) and identities 2 cosh2(Φ) = cosh (2Φ) + 1 and
2 cosh (Φ) sinh (Φ) = sinh (2Φ), one arrives at a relation, which is impor-
tant enough to be stated as another theorem:

Theorem 5:
Let M(0, 2Φ) be the matrix operator representing the effect of uncertainty
on the observed datum and having the form of (5.16). Let G2,E be the
identity matrix (6.15). Let ⊗ denotes matrix multiplication.
Then following identity holds:

(∀Φ ∈ R1)(∀v/v∗|v/v∗ = tanh (Φ))(E(v/v∗) = E0 ⊗ (M(0, 2Φ) +G2,E)).
(7.10)

This formal statement deserves further comment. Energy and momen-
tum (elements of the matrix E(v/v∗)) are components of one of the most
fundamental notions of physics in view of their role in the formulation of the
Energy-Momentum Conservation Law. This generally accepted theoreti-
cal hypothesis, which has strong empirical support, enables many physical
processes to be mathematically modeled. It will be shown in the follow-
ing sections, that the matrix M(0, 2Φ) plays an important role in gnostics
because its elements evaluate and weigh observed data in a nonlinear and
non-quadratic manner, which is interpretable as an application of Rie-
mannian geometry. The importance of the 7.10 for gnostics lies in its
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ability to motivate the aggregation law of uncertain data. Further, it is
Lorentz-invariant, for it holds for all possible velocities v/v∗ and for all
corresponding uncertainties (Φ).

Theorems 4 and 5 thus provide a link between events and processes,
which exist in different scientific fields: the theory of uncertain data (math-
ematical gnostics) and relativistic mechanics. That such a relationship
exists should not surprise those, who accept, that:

1. there is a mutual dependence between all real processes because of the
unity and universality of the world,

2. the same real process can be analyzed from the points of view of
different sciences,

3. the boundaries between different scientific fields are as ‘fuzzy’ and
‘mixed’ as those between the different features of real processes,

4. classical statistics and classical (Newtonian) mechanics have been
linked for many years.

Most of the above statements will draw general support but statisticians,
with a strong belief in the “purely mathematical roots” of their science
may balk at the last one. We shall return to this important point later,
when the aggregation problem of uncertain data is considered.

7.3 Uncertainty in Relativistic Observations

From the point of view of the gnostic paradigm, data uncertainty is caused
by lack of information. This idea can be illustrated using relativistic obser-
vations. Imagine two space ships S1 and S2 moving along parallel straight
paths with different but constant velocities. An observer in S2 wants to
measure the proper length L1 of S1 (i.e. the length as would be measured
in S1’s own coordinate system). He, of course, can only obtain L2, the only
measurement, which can be obtained from within S2. In order to obtain
the exact result, which he is seeking, the observer must also know the
relative velocity v/v0 of S2 with respect to S1. The observer’s insufficiently
precise knowledge of the energy-momentum tensor “contaminates” the
observed datum by the uncertainty Φ, which is connected to the velocity
by means of (7.5). The example shows that to explain uncertainty, there
is no reason to introduce randomness, mutual independence and unlimited
repeatability of the observations, stationarity, and so on. An improvement
in the quality of one single observation can be achieved by obtaining better
information on the relative velocity and by making use of knowledge of
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Lorentz’s transformation. Analogously, an improvement in the results
of a series of different observations contaminated by uncertainty can be
obtained by using data treatment methods based on knowledge of the
nature of quantification and of optimal estimation.

A question can be expected at this point, as to whether references to
and an understanding of some nonmathematical scientific fields is really a
necessary element of gnostics? The answer is decisively negative. Readers
wishing to consider gnostics as a purely mathematical theory can be sat-
isfied: the skeleton of the theory has been developed using the consistent
‘definition—axiom—theorem—proof’ mathematical procedures. However,
there are others, who may wonder why these and not other definitions
and axioms have been chosen: where are the roots? To explain (and then
to understand) these roots, it is necessary to venture across the boundaries
of mathematics because the roots of gnostics are in the real world.

7.4 Summary

There is a formal link between the mathematical model of uncertain
data obtained by quantification and Lorentz’s transformations of the
Minkowskian plane, which is manifested by

1. the isomorphism of the group of gnostic matrix-operators representing
the data uncertainty with the group of Lorentz’s 2-dimensional time-
space transformations of relativistic physics,

2. the linear relationship between the relativistic energy-momentum ma-
trix and gnostic matrix, which is parameterized by the value of the
uncertainty.

These mappings are Lorentz-invariant, i.e. their forms stay unchanged for
all values of uncertainty. Their existence may be explained as a manifes-
tation of the unity of Nature, where both real processes and information,
which can be obtained about them, are inherently related. Therefore,
information is a complementary dimension of space, time and any other
dimension of the process being examined.



Chapter 8

A Bit of Algebra and Analysis

8.1 Pair Numbers

8.1.1 Complex and Double Numbers

The notion of complex numbers is well-known; and it is an important part
of the mathematics used in several applied sciences. It would be difficult
to solve the simple problem of finding the roots of a quadratic equation
without using them. The basic idea is simple—to map the Euclidean plane
onto the Gaussian one using the mapping

(∀x, y ∈ R1)(〈x, y〉 ↔ x+ i y), (8.1)

where the symbol i is an indeterminate satisfying the relation

i2 = −1. (8.2)

A parallel notion to that of complex numbers can be obtained, when map-
ping the Euclidean plane onto the Minkowskian plane:

(∀x, y ∈ R1)(〈x, y〉 ↔ x+ j y), (8.3)

where the symbol j is another indeterminate, which satisfies

j2 = 1. (8.4)

Elements of the range of this mapping introduced for the first time by
the English mathematician William K. Clifford (1845–1879) will be called
double numbers. Unlike the case of complex numbers, which exist for all

real pairs x, y, the double numbers exist only for real pairs x, y, whose
squares are not equal, ie for those satisfying condition

x2 − y2 6= 0. (8.5)
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This is a natural constraint. It can be seen from (6.26), that condition
(8.5) excludes from consideration all points on the Minkowskian plane
(〈x, y〉), for which the distance from the origin (0, 0) is zero. There are an
infinite number of such points: those on both diagonals (|x| = |y|).

The formal similarity of complex and double numbers enables them to
be combined in a simple way by the introduction of another indeterminate
c so, that it covers both cases:

c ∈ {i, j}. (8.6)

An expression of the form

(x, y ∈ R1)(x2 6= y2)(c ∈ {i, j})(uc = x+ c y) (8.7)

will be called a pair number. A pair number is thus a complex or a double
number depending on the choice of c = i or c = j. As will be seen below,
using the concept of pair numbers will permit the number of formulae used
to be decreased by 50 %.

To understand the idea of an indeterminate, it should be recognized,
that it is not a real number. (Many use the name “imaginary unit” for
the indeterminate i. However, the notion of an indeterminate is more
general [71] and more exact.) An expression such as a + c b for reals
a, b and indeterminate c is not an “ordinary” sum but only the notation
for a pair of two different objects, for which the operation of addition
is not defined, ie, the pair 〈a, b c〉. On the other hand, multiplication
of the indeterminate c by a real b denoted b ∗ c (or c ∗ b because of
commutativity) makes good sense: the product is another indeterminate,
for which (b ∗ c)2 = b2 ∗ c2 is a real number. Because this operation is an
analogue to numerical multiplication, we write these products simply as cb.

8.1.2 The 2-algebra of Pair Numbers

The set of pair numbers will be denoted by Uc, and its subsets (classes) of
complex and double numbers are Ui or Uj, corresponding to their character.
It can be shown [71], that the set Uc can be interpreted as the associative
and commutative 2-algebra (algebra of dimension 2) over the field of real
numbers having a unit uo

uo = 1 + c 0. (8.8)
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The sum of two elements u1 = a1 + c b1 and u2 = a2 + c b2 of this algebra
has the form of

u1 + u2 = (a1 + a2) + c (b1 + b2), (8.9)

while their product is

u1u2 = (a1a2 + c2 b1b2) + c (a1b2 + a2b1). (8.10)

It is worth noting, that both addition and multiplication of pair numbers
is defined only for numbers belonging to the same class, ie either to Ui
or to Uj. Operations between elements of two different classes are not
considered and will not be used.

Let u = a+ c b ∈ Uc be a pair number. The pair number

ū = Co(u) := a− c b (8.11)

is the conjugate of u and

Tp(u) := b+ c a (8.12)

is the transposed pair number u: it is obtained by exchanging the compo-
nents a and b of the pair number.

Expression
|u|c :=

√
a2 − c2 b2 =

√
u ū, (8.13)

is the modulus of the pair number u.

Division of two pair numbers u1, u2 ∈ Uc belonging to the same class
for |u2|c 6= 0 is given by the formula

u1/u2 = u1 ū2/|u2|2c. (8.14)

As a result of these definitions, the following relations hold for both subsets
c = i, j:

(∀u ∈ Uc)(Co(Co(u)) = u), (8.15)

(∀u, u′ ∈ Uc)(Co(u+ u′) = Co(u) + Co(u′)), (8.16)

(∀u, u′ ∈ Uc)(Co(u u′) = Co(u′) Co(u)), (8.17)

(u ∈ Uc)((Co(u) = u)⇐⇒ ((∃a ∈ R1)(u = a uo = a+ c 0)(uo ∈ Uc)),
(8.18)

(∀u ∈ Uc)(u Co(u) = (a2 − c2 b2) uo = Q(a, b) uo), (8.19)

where Q(a, b) is a quadratic form. Let us now cite a reformulation of
the theorem proved in [96] as a generalization of Frobenius’s well known
theorem related to the algebra of complex numbers:
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Theorem 6:
Structures of double and complex numbers are the only 2-algebras with
the unit u0, such that u0 = 1 + c 0, (where c is defined by (8.2), (8.4) and
(8.6) ) and with the unitary conjugate operation satisfying (8.15)–(8.19),
where Q(a, b) in (8.19) is a non-degenerate quadratic form.

Theorem 6 thus ensures the uniqueness of the two 2-algebras. More-
over, it also ensures the uniqueness of two different plane geometries, the
Minkowskian and Gaussian. It has already been shown, that the former ge-
ometry is valid for the range of the unusual function called quantification.
However, each point 〈x, y〉—the theoretical model of the real quantifica-
tion of a real quantity—will be either a double number x + j y ∈ Uj or a
complex number x+ i y ∈ Ui.

More formally: such a mapping η : Uj −→ Ui can be introduced so, that

η : a+ j b←→ a+ i b. (8.20)

In general, this mapping preserves addition but not multiplication.

The double interpretation of the results of real quantification plays a
very important role in gnostic theory because it opens a path to the world
of optimal estimation.

A comment to Theorem 6 is notable related to a degenerated case of
the Q(a, b) in (8.19), where c2 = 0. There is a third geometry attached
to this case called the Galilean geometry in [118]. This name was given to
the oldest geometry which was ruling over a long time period till the XIX-
th century. Its physical interpretation is obvious in the case of variable x
representing time and y stating for a space coordinate of an object moving
along the path x = 0 with an infinite velocity. This path can be called
“Galilean circle”. The Galilean geometry can be helpful in showing the
extreme lengths of paths in Minkowskian and complex plains interpreted
as estimation errors.

8.1.3 Geometric Interpretation of Pair Numbers

The range of the real quantification process is a set of pairs 〈x, y〉 of real
numbers x and y, ie the Cartesian product R1 × R1. This quantification
event can be interpreted from several perspectives:

1. a point (x, y) in the Euclidean plane,
2. a point (x, i y) in the Gaussian (complex) plane,
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3. a complex number x+ i y,
4. a point (x, j y) in the Minkowskian plane dual to the Gaussian one,
5. a point (x, j y) in the plane (x, y) endowed by the Galilean geometry,
6. a 2∗2 twice symmetrical matrix M(A0,Φ) (5.16),
7. a double number x+ j y.

It is easy imagine one-to-one mappings between each pair of these rep-
resentations. There is obviously no fundamental difference between the
interpretations of the first through the third from the geometric point
of view because the same (Euclidean) metric is used to measure the dis-
tances (or the lengths of vectors). Nor is there any difference between cases
No. 4 through No. 6 in the following sense: the determinant of the matrix
M(A0,Φ) equals the squared length of the radius vector of the point (x, jy)
as well as the squared modulus of the double number x + j y. It can be
concluded, that pair numbers are closely connected with the joint use of
the Euclidean and Minkowskian plane geometries, and that there is a one-
to-one mapping between double numbers and the matrix representations
of the quantification events. A much deeper relation can be shown, if the
isomorphism of the structures is considered.

8.1.4 Modeling Quantification with Double Numbers

The structure Sm (5.18) of matrices M(A0,Φ), (which models the quan-
tification process) is isomorphic with the direct product of commutative
groups 〈{A0},+〉 and 〈{Φ},+〉 by Theorem 1. As stated in the outline
proof to Theorem 1, the structure Sm is a direct product of commutative
groups 〈{M(A0, 0)},⊗〉 and 〈{M(0,Φ)},⊗〉 isomorphic with 〈{A0},+〉
and 〈{Φ},+〉. Let us introduce three structures of double numbers:

Definition 4:
Let Md, M0 and Mn be the following sets of double numbers:

Md := {x+ j y |x = Z0 cosh (Φ), y = Z0 sinh (Φ)}, (8.21)

M0 := {Z0 + j 0}, (8.22)

Mn := {cosh (Φ) + j sinh (Φ)}. (8.23)

Let ∗ denotes multiplication of double numbers. Define following struc-
tures:

Sd := 〈Md, ∗〉, (8.24)
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S0 := 〈M0, ∗〉 (8.25)

and
Sn := 〈Mn, ∗〉. (8.26)

It can be easily verified by substitution, that the following implication
holds:

(∀M(A0,k,Φk) ∈Md | k = 1, 2, ...)(∀M(A0,l,Φl) ∈Md | l = 1, 2, ...)

(M(A0,k,Φk)↔ exp (A0,k)(cosh (Φk) + j sinh (Φk))⇐⇒
(M(A0,k,Φk)⊗M(A0,l,Φl)↔

exp (A0,l + A0,k) (cosh (Φl + Φk) + j sinh (Φl + Φk))). (8.27)

The one-to-one mapping of the matrix models of quantification onto
corresponding double numbers thus implies a one-to-one mapping of
matrix products onto products of double numbers. Structure operations
of structures Sm and Sd are therefore preserved by the mapping. Using
relation (8.27), one can prove the following theorem:

Theorem 7:

1. Structures Sm (5.18) and Sd (8.24) are isomorphic.
2. Structure S0 is isomorphic with the structure 〈{A0},+〉 of ideal values.
3. Structure Sn is isomorphic with the structure 〈{Φ},+〉 of uncertain-

ties.

The messages imparted by this Theorem are important:

1. Structure Sd (8.24) of double numbers is also a model of the quantifi-
cation process. These double numbers are the (theoretical) models of
the observed data.

2. The modulus of a double number belonging to the set Md (8.21) is
equal to the multiplicative image Z0 of the ideal value.

3. Double numbers belonging to the set Mn model the effect of the
uncertainty on the observed data.

Consider a double number ej(Φ) ∈ Mn. Taking into account (8.23) and
the definitions of hyperbolic functions, we can write

ej(Φ) = exp (j Φ). (8.28)
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An easy way to verify this expression is to develop functions cosh (β) and
sinh (β) into a power series, and to substitute j Φ for β, while making use
of (8.4). The following identities may be shown by using the same method:

cosh (j Φ) = cosh (Φ), sinh (j Φ) = j sinh (Φ), (8.29)

and
ej(Φ1) ∗ ej(Φ2) = exp (j (Φ1 + Φ2)). (8.30)

A general result of quantification x + j y ∈ Md may thus be presented in
the form

x+ j y = Z0 exp (j Φ), (8.31)

where the modulus Z0 can be calculated by

Z0 =
√
x2 − y2. (8.32)

This is the same result as that obtained by (5.23), which was interpreted
as the Minkowskian length of the radius vector. Other important relations,
which result from (8.21)for the uncertainty 2Φ and from the formulae of
hyperbolic functions, are:

y/x =
exp (2Φ)− exp (−2Φ)

exp (2Φ) + exp (−2Φ)
(8.33)

with its inverse

2Φ = ln

√√√√x+ y

x− y
. (8.34)

It is obvious from (8.32) and (8.34), that the moduli and angles of double
numbers are independent of each other. In other words, the modulus is
invariant to the transformation performed by multiplication by the double
number exp (j Φ) ∈ Mn. This number thus plays the role of the operator
of rotation in the same manner as its matrix image M(0,Φ). On the
other hand, the angle Φ is invariant to the transformation realized by
changing the multiplier Z0. We have seen, that changes of Φ model virtual
movement of the observed data along the circular path. Changes in Z0

may correspond to an increasing or decreasing ideal value, ie they model
real movement along a straight line (if the angle Φ stays unchanged).

There is a counterpart to (8.33), which will be needed: by interpreting
the same real pair 〈x, y〉 as a point in the Gaussian plane, ie as the complex
number

x+ i y =
√
x2 + y2 (cos (φ) + i sin (φ)), (8.35)
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there is an important relation, which links both representations:

tanh (Φ) = sin (φ). (8.36)

Note, that the above equation defines the same point, 〈x, y〉, by using each
of the two geometries (see 8.20).

8.2 Analyticity of Pair Numbers

The notion of analyticity (holomorphy) of functions of a complex variable
is well-known. Let u = x + i y be a complex variable. Then a complex
function u′(u) = x′(x + i y) + i y′(x + i y) of this variable is analytical, if
the following relations (called the Cauchy-Riemann conditions) hold:

∂x′

∂x
=
∂y′

∂y

∂x′

∂y
= i2

∂y′

∂x
. (8.37)

Analytical functions are well-behaved in the sense of unlimited differentia-
bility and predictability. According to [96], the notion of analyticity can
also be used with double functions of double variables having the form
v′(v) = x′(x+ j y) + j y′(x+ j y), if the functions satisfy a modification of
the Cauchy-Riemann conditions:

∂x′

∂x
=
∂y′

∂y

∂x′

∂y
= j2 ∂y

′

∂x
. (8.38)

Double functions, for which (8.38) hold, can also be called analytical.
They are well-behaved in the same sense as complex analytical functions.
It is therefore obvious, that we may rewrite (8.37) and (8.38) in the form
valid for pair functions.

Definition 5:
A function of a pair variable v′(v) = x′(x + c y) + c y′(x + c y) will be
called c-analytical, if generalized Cauchy-Riemann conditions

∂x′

∂x
=
∂y′

∂y

∂x′

∂y
= c2 ∂y

′

∂x
(8.39)

hold.
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All three versions (8.37) through (8.39) of the Cauchy-Riemann condi-
tions of analyticity have interesting interpretations. They can be explained
using the following Theorem.

Theorem 8:
Let v′(v) = x′(x + c y) + c y′(x + c y) be a differentiable pair function of
the pair variable v. Let

dM c :=

(
dx c dy
c dy dx

)
(8.40)

and let dM ′
c be an analogue of (8.40) aggregated of differentials dx′ and

c dy′. Let

Jc :=

 ∂x′

∂x
∂x′

c∂y
∂x′

c∂y
∂x′

∂x

 . (8.41)

Then the relation
dM ′

c = JcdM c (8.42)

holds, if and only if the function v′(v) is c-analytical.

Proof of Theorem 8:
Consider total differentials of the functions x′(x, y) and y′(x, y):

dx′ =
∂x′

∂x
dx+

∂x′

∂y
dy (8.43)

dy′ =
∂y′

∂x
dx+

∂y′

∂y
dy. (8.44)

Multiply the right-hand matrices of (8.42). The resulting diagonal ele-
ments (dM ′

c)1,1 and (dM ′
c)2,2 have a form, which coincides with (8.43),

and there is no need to consider them in the proof. The non-diagonal
elements have different forms:

(dM ′
c)1,2 = c

∂x′

∂x
dy +

∂x′

c∂y
dx (8.45)

and

(dM ′
c)2,1 =

∂x′

c∂y
dx+ c

∂x′

∂x
dy. (8.46)



92 CHAPTER 8. A BIT OF ALGEBRA AND ANALYSIS

A) Let function v′(v) be c-analytical. Then (8.39) holds. Substitution
of both generalized Cauchy-Riemann conditions into (8.45) and (8.46)
results in their equivalence with (8.44) multiplied by c. Hence, (8.42)
holds.
B) Let (8.42) hold. The function v′(v) is differentiable, therefore the total
differential exists and has the form (8.44). The identity of both (8.45)
and (8.46) with the formula of the total differential can be achieved, only
if (8.39) holds, ie only if the function v′(v) is analytical.

The most striking feature of the equation (8.42) is the double sym-
metry of all three matrices, ie the fact, that all three satisfy condi-
tion (5.26) in the same manner as the quantification matrix M(A0,Φ).
Theorem 8 says, that this takes place, if (and only if) the pair function
x′(x+cy)+cy′(x+cy) is analytical. This means, that the simple algebraic
feature (5.26) is equivalent to a much deeper requirement of analyticity of
functions representing the effects of uncertainty on data. Such a require-
ment is acceptable from the mathematical standpoint because it reduces
the class of possible models to well-known and well-behaved functions. We
shall see, that even such “simple” models are sufficient to yield rich and
far-reaching results from the gnostic theory.

8.3 Summary

Double numbers are a natural and straight-forward extension of the alge-
bra and analysis of complex numbers and variables. Each point on the
Minkowskian plane can be interpreted as a double number and vice versa.
To combine operations with both complex and double numbers, a more
general notion of pair numbers is introduced. Both structures of double
and complex numbers are unique in the sense, that they satisfy a certain
set of conditions. The structure of double numbers (the 2-algebra) is iso-
morphic with the structure of matrix models of the quantification process,
therefore the structure of double numbers can also be used as a mathemat-
ical model of quantification.

An important feature of double functions of double variables is their an-
alyticity. The sufficient and necessary conditions for analyticity of a double
function are an analogue of the Cauchy-Riemann conditions of analyticity
of complex functions. It is therefore reasonable to introduce a generalized
version of Cauchy-Riemann conditions valid for pair functions of a pair
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variable. An interesting connection exists between the double symmetry
of matrix models of uncertain data and the analyticity of the pair function
modeling data uncertainty.
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Chapter 9

Estimation/Quantification Duality

9.1 Quantification and Estimation Characteristics

It was shown in previous chapters, that the real quantification process
(quantification disturbed by an uncertain component) can be theoretically
modeled as a bi-dimensional mapping which is isomorphic; hence, an in-
verse to quantification always exists theoretically. However, in practice,
the datum is observed as a one-dimensional object, which is not sufficient
to precisely determine the ideal quantity imbedded in the datum. Since
a precise inverse to quantification is not possible from a practical point of
view, one must look for the best possible estimation process. The notion
of the “best” is obviously connected with the problem of “how to esti-
mate.” To find a useful solution, an estimation theory is needed. The
highly developed statistical theory of estimation is based on the random
conception of uncertainty. Gnostics has its own, entirely different notion of
uncertainty, therefore another estimation theory independent of statistical
concepts must be developed. By the introduction of the concept of pair
numbers and pair functions, a suitable technique for a joint consideration
of both quantification and estimation theory has already been prepared.

It was shown in Chapter 6, that real quantification is modeled in gnostics
as the rotation (in the sense of Minkowskian geometry) of the vector, which
represents the uncertain datum. The role of the matrix rotation operator
is played by the matrix (6.29). This matrix operator is an analogue to
the Euclidean matrix (6.28). In Chapter 8, it was demonstrated, that the
algebra of double numbers enables quantification to be modeled using the
Minkowskian rotation operator, which has the form of the special double
number exp (j Φ) ( (8.28), (8.29) and (8.30) ) (where Φ is the numerical
image of uncertainty). This operator also has its Euclidean counterpart

95
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written as the complex number exp (i φ) (see (8.35) ). Using pair numbers
and denoting

Ωj := Φ Ωi := φ (9.1)

and recalling (8.29) and the identities cos (φ) ≡ cosh (i φ) and i sin (φ) ≡
sinh (i φ), both rotation operators can be written as a single expression
which in the case of a rotation by 2Ωc have the following form:

exp (2cΩc) = cosh (2cΩc) + sinh (2cΩc). (9.2)

Both components of this rotation operator are very important in gnostics.

Definition 5:
Let Uc be the 2-algebra of pair numbers (c ∈ {i, j} | i2 = −1, j2 = 1)
representing gnostic events.

Let
√
x2 − c2 y2 exp (c Ωc) be the exponential form of the pair num-

ber x + c y, which has particular forms
√
x2 − j2 y2 exp (j Φ) (8.31) and√

x2 − i2 y2 exp (i φ) (8.35).

Let χ : Uc → R1 be a function of the argument Ωc. Then

1. the function χ(Ωc) will be called the gnostic G-characteristic of the
gnostic event x+ c y,

2. the function χ(Φ) will be called the quantification characteristic or
shortly Q-characteristic,

3. the function χ(φ) will be called the estimation characteristic or shortly
E-characteristic,

4. the gnostic characteristic obtained as the first component of the rota-
tion operator (9.2) will be called the G-weight:

fc := cosh (2cΩc) (9.3)

and the second one the G-irrelevance:

hc := sinh (2cΩc). (9.4)

The G-weight and G-irrelevance are the basic gnostic characteristics of
the uncertainty of the datum observed as the output of the quantification
process Z = x+ c y (5.11).
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9.2 Data Weight and Irrelevance

9.2.1 Formulae

In accordance with Definition 5, the angle Ωc is also a gnostic characteristic.
The particular form of the function χ in this most basic case is χ(Ωc) ≡ Ωc.
The Q-angle is Φ and the E-angle is φ. We have already seen, that the
angle 2Φ is a function of the ratio y/x (8.34), and that relation (8.36)
combines both versions of the angle Ωc (the Minkowskian and Euclidean
versions). Not only Ωc, but all gnostic characteristics, are thus functions of
the ratio y/x, which is equal to both tanh (Φ) and tan (φ). Using the general
definitions of the weight and irrelevance and the formulae of trigonometric
and hyperbolic functions, one arrives at following formulae for weights and
irrelevances:

G-weight: fc =
1 + c2(y/x)2

1− c2(y/x)2
(9.5)

and

G-irrelevance: hc =
2(y/x)

1− c2(y/x)2
. (9.6)

Substituting c = j into this formulae, one obtains the Q-weight and Q-
irrelevance and by c = i the E-weight and E-irrelevance. However, it is
important to proceed one step further and to develop formulae which can
be used in algorithms. We now take leave of the simplified formula (5.14)
(which assumes S = 1) and shift to the general case (5.12). In order to
simplify computations, an auxiliary variable

q = (Z/Z0)
2/S (9.7)

is introduced. Recall that Z is the (known) multiplicative form of the
observed datum (5.11), Z0 is the (unknown) “ideal” or “true” value (5.13)
of the quantity, which is to be estimated, and S is the (unknown) scale
parameter. Now,—by (5.12) and (9.7)—

q = exp (2Φ). (9.8)

The expression (8.33) can be rewritten:

y/x =
q − 1/q

q + 1/q
. (9.9)



98 CHAPTER 9. ESTIMATION/QUANTIFICATION DUALITY

The G-weight is now presented in a simplified form

fc =

q + q−1

2

c2 (9.10)

and the G-irrelevance is

hc =
2(q − q−1)

(q + q−1)(1− c2) + 2(1 + c2)
. (9.11)

9.2.2 Geometric Interpretation

The first geometric idea of G-weights and G-irrelevances follows from the
role of the pair number exp (2cΩc) as the rotation operator. Recall that
the Q-angle Φ (equal to Ωj) is the numerical value of the data uncertainty,
the error measured in the most popular (additive) way

Φ =
A− A0

S
(9.12)

given by 5.10. There is another “scale” to measure this same error which
results from the identity (8.36); the Euclidean angle φ is used this time. A
question might be asked as to why twice the value of the angles is taken
as the argument of the characteristic being considered. The answer merits
attention.

Denote argc (u) the angular parameter of a pair number u, which rep-
resents a gnostic event using the polar coordinates |u|c and Φ:

u := |u|c exp c Ωc. (9.13)

This relation unifies (8.31) and (8.35). One may thus write argc (u) = Ωc.
This quantity is the G-angle of the rotation, which is necessary to go from
the original, ideal value expressed as u(0) = Z0 + c 0, to the ‘final’ value u.
The difference, argc (u)− argc (u(0)) ≡ Ωc, could be viewed as a universal
characteristic of uncertainty, but this is not a good idea, because what is
needed, is not only the ‘error’ of u, but an evaluation of its relationship to
another gnostic event, say u′. Compare two possibilities: argc (u)−argc (u′)
and argc (u)+argc (u′) and consider the case u = u′. The former expression
would evaluate the relation between the events as zero, meaning that it
is independent of the uncertainty, while the latter returns 2Ωc, which
preserves the information on uncertainty. A more generally applicable
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representation of the uncertainty existing “between” u and u′ should be
used: the G-angle argc (u)−argc (ū′), where ū′ is the conjugate of u′ defined
by (8.11). The relation of ū′ to u can be interpreted in the following way:
imagine a mirror placed on the horizontal (“real”) axis of the plane, where
the pair numbers are plotted. Then the ū′ is the image of the u′ seen in
the mirror from point u′. The expression argc (u) − argc (ū′) is thus the
angular measure of the circular path from the mirror image of u′ to u. In
the special case of u = u′ this measure is 2Ωc.

The reason for preserving the value of each datum’s uncertainty when
evaluating mutual uncertainty between two data results from the need to
give to each datum its individual weight dependent on its own respective
uncertainty.

This manner of evaluation for both “own” and “mutual” uncertainty is
general enough to even cover the case of gnostic (weighed) covariances.

There are other reasons for accepting the doubled angular arguments
for these gnostic characteristics. They have a fundamental importance,
because they are connected to the notions of entropy, information and the
probability of individual data, which will be examined in the next several
chapters.

The second geometric interpretation of the G-weights and G-irrelevances
requires recalling the basic notions of Riemannian geometry. Consider a
special (one-dimensional) case of the Riemannian metric form (6.13). The
single coordinate will be α and the role of the metric matrix will be played
by a positive scalar g2(α). The metric form reduces to

dL = g(α)dα. (9.14)

Let us compare this expression with two particular cases:

d(sinh (2Φ)) = cosh (2Φ)d(2Φ) d(sin (2φ)) = cos (2φ)d(2φ). (9.15)

This shows that the G-weights play the role of the one-dimensional metric
matrix. They really perform the function corresponding to their names:
they weigh all the individual segments of the angular path with respect
to their position within the whole path. The G-irrelevances quantify ‘dis-
tances’ (understand: uncertainties) measured using special Riemannian
geometries, they measure the errors.

It is interesting to rewrite (9.15) to obtain the differential dΦ of the
additive value of uncertainty (which equals to dA/S—see (9.12) ). The
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relation between differentials dΦ and dφ follows from (8.36) by differenti-
ation. Substitution of the result into (9.15) yields

d(sin (2φ)) = cos (2φ)
(1 + cos (2φ))2

4
d(2Φ), (9.16)

which shows an even more intensive suppression of large errors than char-
acterized by Φ alone in (9.15).

We shall return to the formulae of G-weights and G-irrelevances re-
peatedly, when designing appropriate algorithms. The unique features of
gnostic methods are derived from the special nature of these characteris-
tics: among others, an inherent, natural robustness with respect to out-
liers/inliers and peripheral/internal data clusters (depending on the choice
of c = i versus c = j) and optimality. It is therefore worth visualizing these
characteristics by graphing the formulae presented in foregoing paragraph.

9.2.3 Behavior of Data Weights

Data weights fc are given by 9.10. Note that

fj =
(q + q(−1))

2
≡ cosh (2Φ), (9.17)

fi =
2

(q + q(−1))
≡ cos (2φ) (9.18)

so that

cos 2φ =
1

cosh (2Φ)
. (9.19)

The red family of curves in the upper part of Fig. 9.1 shows the depen-
dence of the Q-weights (fj) on the ratio Z/Z0 for different values of the
scale parameter S. The green family (the lower parts of Fig. 9.1) belongs
to the E-weights. The blue vertical/horizontal axis represents the limiting
case of curves for S → 0 and for S →∞, respectively.

The horizontal blue line demonstrates, that for a very large value of the
scale parameter, the weight of an individual datum does not depend on the
value of the Z/Z0 (on the quantification error, ie on the “distance” of the
observed datum from the “true” value); all observed data (both “good”
and “bad”) are taken and treated equally with weight 1. This is equivalent
to using the ordinary (non-weighted) arithmetic mean as an estimate of
the location parameter of a data sample.
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In contrast, gnostic weights give different “preferences” to different in-
dividual data depending on their quality. The weighing provided by Q-
weights is qualitatively different from that of the E-weights: Q-weights
increase as the Z/Z0 ratio declines from 1 while the E-weights decrease
over the same range.

Starting with E-weights, consider some data spread about a central
point (Z0). The closer a datum (Z) to the central point, the larger its
E-weight. The maximum weight (1) is given only to a datum positioned
exactly at the central point (Z = Z0). The ‘central’ data are thus pre-
ferred, while the ‘peripheral’ data are ‘penalized’. The central data are
thus considered as ‘good’, the peripheral ones are ‘bad’. The ‘bad’ data
are not cut-off completely (as if given a zero weight). It will be seen later
that all data contribute to information, but the ‘good’ ones provide more,
while the ‘bad’ ones give less. It will be proved, that the estimation trans-
formation ensures, that the maximum possible information contained in
each datum is retained.
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The variability of the E-weight (called robustness with respect to out-
liers) is an important outcome, which can be demonstrated by considera-
tion of the arithmetic mean of the E-weights of a collection of data spread
about a central point. The mean data weight will be determined mainly
by the central data while the peripheral (distant) data will be taken into
account to a lesser extent, the further they lie from the central point. Such
a data sample can be seen as resulting from good measurements (cen-
tral data) disturbed by some strong unknown factors, which result in the
larger uncertainty of the outliers. Example: To evaluate the mean weight
of the ROA (Return on Assets) of a sample of firms and to compare it
with another sample in the same or different industry, we are interested in
the ‘central’ value of the group, while the ‘peripheral’ (extreme, atypical)
values disturb our observation. We therefore welcome robustness, which
suppresses the contribution of the outliers.

The case of Q-weights is quite different because these weights rise with
increasing distance of the observed data value (Z) from the ‘central’ point
Z0. In this case, the ‘peripheral’ data of a data sample are preferred, being
assigned larger weights; they are ‘good’, while the ‘central’ data are ‘bad’.
However, this result is not unnatural, it simply leads to a robustness which
is opposite to the previous (E-) case, robustness with respect to inliers.
Again an example: we observe a series of a volatile share price oscillat-
ing about a practically constant ‘central’ value. The ‘normal’ volatility
is ‘noise’ in our observations. The objective is to signal, when the share
price leaves the stationary path, and volatility exceeds the ‘noise.’ The
disturbances in this case are the central data, which correspond to ’cen-
tral’ volatility (inliers), while the objects of interest (the ‘good’ external
data) are the outliers. Therefore the definition of ‘good’ or ‘bad’ depends
on the objective of the analysis, and the analytical technique used must be
faithful to either type of application.

The curves in Fig. 9.1 are also useful in demonstrating the impact of the
scale parameter S. When examining some data samples, this parameter
will be used as a quantitative characteristic for the spread of data. The
larger the data spread—the larger the S. The more precise the data—the
smaller the S. It can be seen, that the curves in Fig. 9.1 are ‘more tolerant’
to deviations of the ratio Z/Z0 from 1 in cases, when S is larger. In the
case of precise data (small S), in contrast, deviations are unusual, therefore
the stronger reaction of the curves to deviations.

Both kinds of G-weights assigned to an individual datum assess the
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importance of the datum in a data treatment process. They measure the
quality of the datum.

9.2.4 Behavior of Irrelevances

The red family of curves in Fig. 9.2 depicts the Q-irrelevances corresponding
to the red family of Q-weights in Fig. 9.1, while the green family of E-
irrelevances in Fig. 9.3 corresponds to E-weights in Fig. 9.1. Irrelevances
measure data uncertainty (errors) using certain Riemannian geometries.

Both Q– and E–irrelevances are zero for an exact datum (Z = Z0), they
are positive for Z > Z0 and negative for Z < Z0. They thus evaluate the
“distance” between Z and Z0 (error) respecting its sign (the direction of the
path). The slope of the Q-irrelevances rises with the increasing deviations
of the ratio Z/Z0 from the ‘central’ value 1. The most interesting feature
of the E-irrelevances (Fig.9.3) is, that—unlike the case of Q-irrelevances—
the slope decreases to zero for large data errors. The E-irrelevances are
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thus limited, bounded by the limiting values −1 and +1. The maximum
sensitivity of the E-irrelevance with respect to data error appears about
the ideal value Z0 and the larger the error, the less sensitivity to it.

These characteristics are simple to explain, because they correspond to
instinctive human behavior:

• If one were to ask a group of people randomly chosen on the street
to estimate the population of the Republic of Indonesia and the re-
sponses were 140, 210, 200, 190, 20, 250, 190, 210, 1000, 190 millions
respectively (given a true value of 197.6 million), one would probably
not treat these values linearly. It would generally be felt, that the
extremes of 20 and 1000 are well off the mark, differing from the ‘cen-
ter of gravity’ of the other (and larger number) of estimates leading
to their deletion by giving them a very small weight. The perception
is, that a response of 2000 would not be greatly different than that
of 1000, nor 5 from 10, so that the asymptotic convergence of the
E-irrelevance to ±1 corresponds to a natural interpretation.
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By the way, this is the technique used by judges to evaluate partic-
ipants in different sport competitions (gymnastic, skating, dancing,
etc.): the best and the worst marks are deleted and the rest are evalu-
ated by the arithmetic mean. Treating the results of the above “pool,”
the ‘central’ value would be 197.5—very close to the true value—while
the arithmetic mean of all 10 guesses would be 260 which demonstrates
the non-robustness of the ordinary arithmetic mean. The adjective
‘ordinary’ is used in this context to distinguish this estimate from the
trimmed mean, which is the name of the robust statistical method,
according to which a part of the peripheral data is cut off before the
arithmetic mean is evaluated.
• Nor is the increasing sensitivity of the Q-irrelevances with respect to

increasing distance from the central data point unnatural. In monitor-
ing the time series of share prices, the more the actual value exceeds
the usually expected fluctuation, the greater the importance, that is
placed on the observation, and the surer one can be, that something
unusual is happening. The monitored share price has departed from
its quasi-stationary state.

The behavior of irrelevances is thus acceptable.

9.2.5 Consistency with Statistics

The convergence of both G-weights to 1 with Z approaching Z0 as well as
the convergence of both G-irrelevances to zero in the same case have certain
important consequences. Let ξ be a real number, N an integer and O(ξN)
be the so-called Landau’s symbol characterizing the order of magnitude.
This symbol is equivalent to the statement, that for ξ converging to zero,
the variable O(ξN) converges to zero as ξN . Expanding the formula φ(Φ)
resulting from (8.36) into the Taylor series, one can easily verify the relation

φ = Φ +O(Φ3). (9.20)

Taking the same approach to (9.3) and (9.4) one obtains

fc = 1 + c2 (2Φ)2

2
+O(Φ4) and hc = 2Φ +O(Φ3). (9.21)

Using the term a sufficiently precise datum to imply a datum, for which
the (additive) error Φ (9.12) permits the terms O(Φ3) and O(Φ4) in 9.20
and 9.21 to be neglected. Then these relations prove, that the following
statements are valid for sufficiently precise data:
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1. The difference between the Euclidean and Minkowskian angles φ and
Φ, which evaluate the data errors, tends to zero.

2. The gnostic evaluation of hc (irrelevance) of the data error tends to
the additive error 2Φ.

3. The gnostic weight fc tends to a simple quadratic function of the
additive error.

4. The sum of G-irrelevances of several data tends to zero simultaneously
with the sum of the additive errors of data.

5. The sum of G-weights of several data is minimized simultaneously
with the sum of squared additive errors.

It is obvious from the above general relations, that these statements hold,
if and only if data are sufficiently precise.

The additive error Φ is a linear function of the (unknown) ideal value A0

(9.12). The estimate of this quantity can be obtained easily by minimizing
the sum of squares of additive data errors. This is the well-known OLS
statistical estimating methodology (ordinary least squares) in which an
estimate is unbiased (the sum of estimating errors equals zero). It is
obvious from the foregoing statements, that the gnostic characteristic,
which have been considered, approach this most popular and frequently
used statistical technique (additive errors and their squares), if the data
are sufficiently precise. Gnostics is thus consistent with statistics in the
following sense:

Gnostics is consistent with statistics in the sense, that for sufficiently
precise data (and only for such data), the basic gnostic characteristics
of data uncertainty (G-weights and G-irrelevances) converge respectively
to a quadratic and to a linear function of the additively measured data
error.

9.3 Virtual and Real Movements

The notion of estimation was introduced rather formally, making use of the
duality of plane geometries (Minkowskian/Euclidean) and of the duality
of pair (double/complex) numbers. It will be shown in what follows, that
the estimation process derived from this duality is “the best” in a very
acceptable sense. Before doing this, it must be demonstrated, that there
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is a third duality which is related to the previous ones.

Theorem 9:
Let u = x + c y be a gnostic event, c ∈ {j, i}. Let u′(u) = x′(x + c y) +
c y′(x + c y) be a pair function of the pair variable u. Let Jc(u) be the
matrix (8.41) composed of partial derivatives of the function u. Let K
be the value of the determinant of the matrix Jc(u). Let K be a constant
defined in the following way:

(∃K ∈ R1)(∀(x+ c y) ∈ Uc | 0 < |y|/x < 1)(Det(Jc(u) = K). (9.22)

Then the following statements, A and B, are equivalent:

Statement A:
1. The matrix Jc(u) exists,
2. K > 0,
3. u(0 + c 0) = 0 + c 0 (the condition for homogeneity).

Statement B: The function u has the form

x′ + c y′ = (a+ c b)(x+ c y)K1/2, (9.23)

where (a+ c b) is the rotation operator, for which

a2 − c2b2 = 1 (9.24)

holds and where K is a positive constant.

The validity of this statement is not obvious, therefore a complete proof
is shown:

Proof of Theorem 9:
Let A hold. Then the function u is analytical and (8.42) holds by Theorem
8. Substituting the generalized Cauchy-Riemann conditions of analyticity
(8.39) into (9.22) one comes to a pair of partial differential equations:

(
∂x′

∂x
)2 − (

∂x′

∂y
)2c2 = K (

∂y′

∂y
)2 − (

∂y′

∂x
)2c−2 = K. (9.25)

There exist exactly two solutions for each of these equations, a quadratic
and a linear one. A quadratic solution does not satisfy (8.39), while a
linear one does. Its constant term should be zero to satisfy the condition
of homogeneity. The solutions have thus the homogeneous linear form

x′ = (Ax+By)K1/2 y′ = (ay + bx)K1/2, (9.26)
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where A, B, a and b are real numbers. It results from (8.39), that A = a
and B = c2b. Using these relations together with (9.26) one obtains
(9.23). Substituting the solutions (9.26) into equations (9.25), one comes
to (9.24). Thus it holds A ⇒ B.

Let B hold. It then follows from (9.23), that

x′ = (ax+ c2by)K1/2 y′ = (bx+ ay)K1/2. (9.27)

The function x′+ c y′ is thus homogeneous (no constant term), analytical
(conditions (8.39) satisfied) and the determinant of the matrix Jc is a
constant equaling K (condition (9.22) satisfied). Implication B ⇒ A
thus also holds.

The third duality of quantification and estimation models is in the spe-
cial form of 9.23. It is known from Theorem 8, that both quantification and
estimating transformations are analytical. It is also known, that condition
9.24 defines the pair number a + c b as a rotation operator. According to
Theorem 9 both of these transformations have a quite special form:

1. They are linear.
2. They include two possible phases:

(a) Rotation by the operator a + c b while the modulus remains un-
changed.

(b) The adjustment of the modulus by K1/2.

The quantification rotation is already known, it was interpreted as a virtual
movement of the point representing the evolution of an uncertain datum
from its ideal value to the model of the observed value along an arc of
a Minkowskian circle. The estimating rotation is another virtual move-
ment formally dual to the quantification ones—the same point follows a
Euclidean circle.

The adjective ‘virtual’ deserves a comment. It serves as a contrast to
the adjective ‘real’, which would define changes in the path of an observed
datum taking place in real time, if it were to actually follow the circular
path. Something slightly weaker, however, has been derived from Axiom 1
for quantification: all outcomes from observing a fixed quantity under the
influence of different uncertainties are to be modeled as points of a fixed
circle in the Minkowskian plane. The observations are real, but the points
of the circular path and the path itself are virtual, mathematical notions.

The uncertainty of quantification can be interpreted as a “draw” of
Nature playing a game with the observer. Nature’s objective is not to
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disclose its secrets too readily. Nature’s draw maximizes (within some
rules) the potential harm, which could result from the uncertainty imposed.
The observer’s response follows a strategy to minimize this impact, and it
will be shown, that both the virtual movements do indeed realize their
goals.

Both of these circular movements correspond to changing the ‘quantity’
of uncertainty (by changing angles Φ (Minkowskian) and φ (Euclidean)),
while leaving the radius (modulus of the representative pair number, mul-
tiplier K1/2 in (9.23) ) fixed. A third special kind of a movement can also
occur with (9.23): the adjustment of the modulus K1/2, while the uncer-
tainty is left unchanged. Such a movement is real (when the modulus
increases), because it can be interpreted as an actual change in the ideal
value Z0; this is possible, because this number is a numerical image of a real
quantity. Such a movement can be viewed as a contraction or expansion in
dependence on the decreasing or increasing value of the modulus.

9.4 Summary

The idea of pair numbers can be used to introduce a gnostic notion of
estimation, which is dual to quantification. The role, which estimation is
expected to play, is to serve as a reverse transformation leading to more
precise quantification by minimizing the uncertainty, with which a datum
is contaminated. The formal difference between estimation and quantifica-
tion lies in the use of complex numbers and variables in estimation instead
of the double numbers used for quantification. A more material difference
results from the duality of the Euclidean and Minkowskian geometries.
Because of this difference, the basic quantification (Q-) and estimation
(E-) characteristics of uncertainty (data weights and irrelevances) mani-
fest fundamentally different features. Data weights quantify data qual-
ity, irrelevances measure data errors using certain Riemannian non-linear
geometries. This non-linearity leads E-characteristics to robustness with
respect to outliers, and Q-characteristics to robustness with respect to in-
liers. Depending on the application, either of these types of robustness will
be useful.

The basic gnostic (G-) characteristics converge to the basic statistical
ones (additive error and its square) in the case of sufficiently precise data.
This means, that there is consistency between gnostics and statistics, when
treating ‘good’ data. For insufficiently precise data the outcomes of both
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theories may be significantly different because of the non-linearity of the
G-characteristics.

Both quantification and estimation operations can be thought of virtual
processes represented by two special transformations—geometric rotation.
The real changes of the data are modeled as contraction/expansion. This
allows not only virtual but also real movements of the object of quantifi-
cation and estimation to be considered.



Chapter 10

Entropy, Information, Probability

10.1 Strangeness of the Chapter

In the preface, readers were given notice, that the uniqueness of the ap-
proach to uncertainty being pursued would require an open mind, the abil-
ity to embrace new concepts, as well as the need to cast off personal biases,
which could have been formed from traditional exposure to the ideas being
discussed.

As the preceding chapters have demonstrated, gnostics develops its mod-
els of data uncertainty from new assumptions, distinct from those, on which
other approaches to this subject are based. The need for such a radical de-
parture is necessitated by the fundamentally different goal of gnostics: to
be a complete mathematical theory, not of mass uncertain events, but of the
uncertainty of individual data and of small data samples. To further this
objective, it has been necessary to question a number of concepts, which
have heretofore been accepted as given. It was shown, that a response to
the question, “Which geometry is to be used to measure data errors,” is not
self-evident. The unexpected answer was found as a result of strict mathe-
matical reasoning originating from more elemental assumptions. To derive
and interpret models of uncertain data within the framework of gnostics, it
became increasingly evident, that other concepts, most of which have had
no application in other theories of uncertainty, needed to be employed.
Notions such as path, real and virtual movement, and Lorentz invariance
remind one more of mechanics than statistics. Other well known concepts,
such as entropy, probability and information, which are used in this chap-
ter, are derived in an entirely different way, and new formulae are given
applicable to real data, the character of which is unknown.

The above may sound a bit bizarre to those, who are familiar with
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other theories, which deal with uncertainty. However, the list of significant
differences between gnostics and traditional approaches also includes the
following points related to entropy and information:

Reasons for inclusion: Despite the fact, that this book is intended to
serve as an introductory text, it uses entropy and information as
indispensable tools. These subjects are rarely touched in the basic
statistical literature, nor is entropy and information treated in most
statistical or econometric textbooks in use today. This is not meant
to infer, that statistical theorists do not develop methods based on
information theory; there is a large number of such contributions, but
their practical impact has been small. Even one of the most recent
and complete statistical software packages (S-PLUS [103]), which con-
tains an enormous number of procedures, has only one program, which
uses the notion of entropy, and none, which would use and treat data
information.

Applicability to a single datum: Common definitions of data entropy
and data information assume, that the probabilistic model is given a
priori, before data is even gathered, and that it is related to random
(collective) events. The application of these definitions to a specific
single event is not defined. In contrast, gnostics is grounded in a
highly developed theory of individual data.

Sequence of development: In gnostics, the notions of entropy → infor-
mation→ probability are developed in that order, while the paradigm
of current statistics and information theory starts with the probabilis-
tic model of collective events and only then introduces entropy and
information. Gnostics begins with the entropy of individual uncer-
tain events, derives information formulae from the entropy and then
probability from the information.

Origin of notions: Standard approaches to uncertainty introduce proba-
bility through a series of axioms as the starting point of the theory. In
gnostics, probability is one of products of the theory, which is derived
from more elemental axioms.

Duality of notions: Gnostic concepts have a dual character: quantifi-
cation/estimation, double/complex numbers, Minkowskian/Euclidean
geometries, Q/E circles and paths, Q/E weights and irrelevances.
These in themselves also generate other unexpected dualities: Q/E
entropies, Q/E information, probability/improbability, Q/E robust-
ness.
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The above sets the stage for the text which follows, and serves notice,
that the ensuing discussion will be neither commonplace nor simple, but
perhaps of a nature to break new ground and so, exciting.

10.2 Gnostic Virtual Movements

10.2.1 Five Kinds of Double Numbers

Both diagonals of the Minkowskian plane have a special character. The
radius vector x + j y of an arbitrary point on a diagonal has modulus
(
√
x2 − y2) which equals zero, because the relation |x| = |y| holds on the

diagonal. In other words: the distance between two arbitrary points on a
diagonal is zero. It is therefore reasonable to consider the Minkowskian
plane as a union of five sets of points:

Definition 6:

Let α and β be arbitrary real numbers and α + j β the radius vector of
the corresponding point in the Minkowskian plane.
Let kUj (for k = 0, 1, ..., 4) be following sets:

0Uj := {α + j β | |α| = |β|}, (10.1)

1Uj := {α + j β | α > |β|}, (10.2)

2Uj := {α + j β | |α| < β}, (10.3)

3Uj := {α + j β | − α > |β|}, (10.4)

4Uj := {α + j β | |α| < −β}. (10.5)

The double number modeling the point u ∈ kUj will be called the double
number of the k-th kind.

The Minkowskian plane is thus split by the diagonals into four open
cones 1Uj, 2Uj, 3Uj and 4Uj as illustrated in Fig. 10.1.

A double number x+jy may be viewed as a point or as the radius vector
of this point showing the direction from the point 0 + j 0 to x + j y and
having as its modulus the distance between the two points. It is a special
feature of the Minkowskian plane that a continuous line consisting of finite
points cannot cross a diagonal: therefore each finite continuous line lies
in a single cone, and radius vectors of all points of such a line are of the



114 CHAPTER 10. ENTROPY, INFORMATION, PROBABILITY

�������������	
�����������	����	���
�

��������

�	
���������

�
���������

�	
�
�����

�
�	
�����

�����

����

��������������

����

����

����

���������

�����

�����

�����
�	
��

�	
��

�	
�� �	
��

�
���
��

�
�� �
��

�

��

��
�����

�����

�����

��

��

��

�����

�����

�����

same kind. However, there are invertible transformations mUj ↔ nUj for
all 0 < m ≤ 4, 0 < n ≤ 4, m 6= n. The first of these transformations
was defined by (8.12) as the transposition Tp(∗) of double numbers. Using
notation introduced by Definition 6, one can rewrite (8.12) in the form

(k = 1, 2, 3, 4)(α + j β ∈ kUj)(Tp(α + j β) := β + j α). (10.6)

This operation is complemented by the conjugation introduced by (8.11)
which now has the form

(k = 1, 2, 3, 4)(α + j β ∈ kUj)(Co(α + j β) := α− j β). (10.7)

There is an imaginative interpretation of both operations: mirror reflection
(previously mentioned in section 9.2.2). Take a double number u. Then
the relation of Tp(u) to u is the same as the mirror image of u observed in
a mirror placed along the South–West/North–East diagonal. The relation
of Co(u) to u is identical to the mirror image of u seen in the mirror placed
along the horizontal axis.
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It is clear from Fig. 10.1, that using pairs of operations Tp(∗) and
Co(∗), one can produce double numbers, which belong to all four cones
from an arbitrary double number, which is not on a diagonal.

There is a difference between both transformations, which have been
considered. A transposition always maps one cone into another (1Uj ↔ 2Uj
and 3Uj ↔ 4Uj), while a conjugation maps two cones into themselves
(1Uj ↔ 1Uj and 3Uj ↔ 3Uj), or two cones each into another (2Uj ↔ 4Uj).

It was proved by Theorem 8 that the condition for the analyticity of
a pair function of a pair variable is equivalent to the simple algebraic
condition (5.26) of commutativity with respect to transposition.

Using the idea of mirror reflection, one can come to another interesting
geometric interpretation of the analyticity of a double function of a double
variable: such a function is analytical if and only if its transposed graph
coincides with the graph’s image observed in a mirror placed along the
South–West/North–East diagonal. The small Alice would be disappointed
by this analytical Wonderland: life behind the mirror would be the same as
in front of it, only inverted left-to-right—no wonder at all! However, more
interesting is, that the simple analytical functions—orthogonal rotations—
lead to paths, which have wonderful features.

10.2.2 Paths of Gnostic Virtual Movements

The concept of gnostic virtual movement consists of the following:
the observed datum modeled by (10.8) is distorted by the uncertainty
Φ, which is—at the moment of observation—an unknown constant. We
imagine, that this final value resulted not from a discrete “jump” but from
a continuous change in uncertainty starting at Φ = 0 and ending at Φ = Φk.

The statements proved in Theorem 9 motivate the following definitions
for three paths of gnostic virtual movement:
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Definition 7A:

Let the observed datum be modeled by a fixed double number

uk := Z0 exp (j S ∗ Φk) (10.8)

where Z0, S ∈ R+, Φk ∈ R1 are given constants. Let

φk := arctan (tanh (SΦk))/S. (10.9)

Let PQ, PiE and PjE be the following sets called quantification, i-
estimation and j-estimation paths (shortly Q- and E-paths), correspond-
ingly:

PQ := u|u = Z0 exp (j SΦ), Φ ∈ [0,Φk], (10.10)

PiE := u|u = Zk exp (i Sφ), φ ∈ [φk,−φk], (10.11)

PjE := u|u = Z0 exp (j SΦ), Φ ∈ [−Φk, 0], (10.12)

The union of all three paths

IGC := PQ ∪ PiE ∪ PjE (10.13)

is defined as the ideal gnostic cycle (IGC).

The definitions show, that the ideal gnostic cycle consists of three
branches, quantification and two sections of estimation paths. For the case
of Φk > 0, the virtual motion increases the angle from zero to Φk, while
the “mirror image” −Φ decreases from zero to −Φk. An analogous duality
occurs in the case of the estimation path; the correspondence is established
by the relation (10.9). Recall, that the important gnostic characteristics of
uncertainty—data weights and irrelevances—introduced in Chapter 9 are
functions of the angular distance between points on the paths and their
conjugates (mirror images). These angular distances are Φ − (−Φ) = 2Φ
and φ− (−φ) = 2φ.

These notions are illustrated in Fig. 10.2 for the case of Φ > 0.

The ideal value Z0 plays here a role only in the graph’s scale; hence,
it is assumed that Z0 = 1.1 The image of the ideal value is thus 1 + j 0
(point U0 in Fig. 10.2). An increasing uncertainty moves the point x+ j y
(modeling the datum) from the ideal value along the Minkowskian circle

1This simplification holds only for graphs. The formulae are written for the general case of an arbitrary
positive S.
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(the red curve, Q-path) to the point U1. The equation of the Q-path is

x2 − y2 = 1, (10.14)

because during quantification relations x = cosh (SΦ) and y = sinh (SΦ)
hold. The quantification (Minkowskian) circle has the form of a hyperbola
in Fig. 10.2, because the graph is drawn using Euclidean geometry. The
end point of the Q-path (U1) is determined by the argument of the ob-
served datum SΦk. The radius vector of this point has the same length
as all the points on the Q-path, for which the Minkowskian formula 10.14
holds. A different length is obtained, when the vector’s length is measured
using Euclidean geometry. Assuming, that at the point U1 relations 10.8
and Z0 = 1 hold, then the Euclidean length of the radius vector is ob-

tained as
√

cosh2 (SΦk) + sinh2 (SΦk) =
√

cosh (2Φk). The Euclidean angle
of this vector is φk determined by 10.9. These relations result from the
characterization of the same point U1 using both geometries (see 8.36).

The E-path consists of estimating part PiE and quantifying part PjE.
The former part is represented in Fig. 10.2 by the green arc leading from
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the point U1 to Co(U1). Its (Euclidean) radius is constant (
√

cosh (2Φk))
while the moving radius vector changes its (Euclidean) angle from Sφk to
-Sφk. Thus for all points of this path, equation

x2 + y2 = cosh (2Φk) = Z2
k (10.15)

holds and the PiE-path is an arc of the Euclidean circle. The green PjE-
path closing the Ideal Gnostic Cycle leads from the point Co(U1) to the
ideal value U0.

It was proved by Theorem 9 that the virtual movement along the Q-path
(Q-rotation) is analytical in the sense of the analysis of double functions of
double variables, while the virtual movement along the E-path (E-rotation)
is analytical in the sense of complex analysis. All three branches of the
ideal gnostic cycle are thus analytical and the transposition of all their
points must coincide with the reflection observed in a mirror held along
the diagonal. All points of the IGC shown in Fig. 10.2 are in the same
cone, shown as 1Uj in Fig. 10.1—the corresponding double numbers are all
of the first kind (see Definition 6). However, this IGC has its “phantom”
(reflected by the diagonal mirror) in the cone 2Uj composed of double
numbers of the second kind. Fig. 10.2 shows the IGC for Φk > 0. In the
case of a negative Φk the IGC and its conjugate exchange their positions.

10.2.3 Velocity Vectors of Virtual Movements

Interesting relations between events in 1Uj and in 2Uj can be shown by
considering the kinetics of the virtual movement. The velocity2 of a point
uj = x+ j y on the Q-path may be evaluated as

V (x+ j y) :=
duj
dΦ

= S ∗ (y + j x) = S ∗ Tp(x+ j y), (10.16)

because relation uj = Z0 ∗ (cosh (SΦ) + j sinh (SΦ)) holds for all points
of the Q-path. The double number x + j y may be interpreted both as a
point on the Minkowskian plane and as the radius vector R(x+ j y) of this
point. One can see in Fig. 10.3, that the velocity vector V (x + j y) of the
quantification movement in the point x + j y is collinear with the radius
vector of this point’s mirror image.

2Recall that in mechanics the velocity vector of a moving point is the first time derivative of the radius
vector. In gnostics, the role of time is played by the uncertainty, Φ, as the “driving force”; therefore the
velocity of the virtual movement is given by the first derivative of the double number by its angle.
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The dual collinearity exists between the velocity vector V (y + j x) of
the movement along the mirrored Q-path and the radius vector R(x+ j y).
These relations are shown in Fig. 10.3 for the case Z0 = 1 and S = 1.

Just as in mechanics, the velocity vectors of a point take the direction
of the tangential line of the curve at this point. It would be customary
to see the velocity vector of circular movement orthogonal to the radius
vector of the tangential point. This, the Euclidean notion of orthogonality,
is derived from the “right” angle (90◦) between the direction of the
vectors, which means, that to reach the orthogonality of one vector with
a collinear one, one should rotate it by this angle. However this notion of
orthogonality is not suitable in Minkowskian geometry. The Minkowskian
angle between the radius vector of an arbitrary point on the Q-path and
the direction of a diagonal is infinite: one cannot reach a point in 2Uj
by moving it along the circular Q-path (by rotating its radius vector).
However, a more generally applicable notion of orthogonality of a pair of
vectors may be introduced:



120 CHAPTER 10. ENTROPY, INFORMATION, PROBABILITY

Definition 7B:
Let uj ∈ kUj and vj ∈ mUj be vectors, for which k,m = 1, ..., 4.
Let relation

[uj, vj]2,j = 0 (10.17)

hold.
Then the vectors will be called orthogonal.

Note that a zero value of the scalar product is also equivalent to the
condition of orthogonality of a pair of vectors in Euclidean geometry. Re-
turning to Fig. 10.3, we find, that the velocity vectors of all points along
the Q-path are orthogonal to radius vectors of these points in the sense of
(10.17). This results from the obvious orthogonality of all double numbers
with their transpositions. Velocity vectors of a quantification movement
are thus orthogonal at all points of the Q-path with radius vectors of these
points as in Newtonian/Euclidean kinetics.

The kinetics of estimation shown in Fig. 10.4 is closer to the common
view.

Let us consider the end point of the Q-path (U1 in Fig. 10.2) interpreted
this time as a complex number, ie as ui,k = Zk ∗

√
x2 + y2 ∗ (cos (Sφk) +

i sin (Sφk))). The estimation movement starts at this point. Its velocity
vector is

V (xk + i yk) :=

(
dui
dφ

)
k

= S ∗ (−yk + j xk). (10.18)

This velocity vector is orthogonal to the radius vector R(xk + i yk) of the
tangential point in the Euclidean sense. Analogous relations take place
at all points along the Q-path, from which the estimation starts. It is
therefore sufficient to show the case Z0 = 1 and S = 1 and a general point
x+ i y in Fig. 10.4.

10.3 Energy and Entropy of a Datum

10.3.1 Energy of an Individual Datum

The outcomes of a “pure” mathematical theory are hidden in its axioms and
its definitions. Whether a theory will bear fruit depends on its assumptions.
The assumptions, that define the bounds of the theory, can be chosen in
several ways. Most talented researchers need no particular method, they
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feel their way by intuition using their “sixth sense”. Some having learned
by experience gained in previous efforts proceed step by step making small
adjustments to axiomatic systems, that have already been successful, while
others use a “Monte Carlo” approach, randomly varying assumptions along
the way, however this seldom provides very productive results.

When a theory is intended to be used in practical applications for the
solution of real as well as theoretical problems, its development is more
complicated. Mathematics does not have tools to determine the realism of
any a particular statement. It is then necessary to cross the boundaries
of mathematics and look for assistance in the natural sciences: a realistic
statement must respect the Laws of Nature. A methodology using the
Gedanken-experiment, already noted in Chapter 4, has acquitted itself very
well in the history of science as a source of assumptions for new theories,
and we are now going to make use of it to logically interconnect the idea of
a very general kind of data (such as eg from economics) to such seemingly
foreign notions as energy, temperature, heat flow and entropy.
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An initial example to discover the link between a datum and energy
is to consider modeling and computing technology, where data values are
represented by physical variables. Imagine an analog computer, within
which a data value x is represented by a voltage V . A condenser with
capacity C could be charged by the voltage V to accumulate energy CV 2/2
showing, that the physical mapping x ↔ V implies the mapping x2 ↔
CV 2/2, which results in a practical mapping of data↔ energy.

Another illustration is to imagine the screen of a monitor graphically
displaying either a Minkowskian or a Euclidean plane. Applying Cartesian
coordinates 〈x, y〉, the energy at the coordinates (necessary to deflect the
impact point of streams of electrons of cathode rays) would be proportional
to x2 and y2 (with the same coefficient of proportionality); and the energy
of a datum represented by a pair number x + c y would be proportional
either to x2 − y2 (for c = j) or to x2 + y2 (if c = i).

10.3.2 Entropy of an Individual Datum

Energy can be converted into temperature, eg by discharging the condenser
into a resistance placed in a calorimeter, the inner temperature of which will
increase. The amount of heat, created by the amount of discharged electri-
cal energy, can be measured and the corresponding absolute temperature
corresponding to the energy can be calculated. Our Gedanken-experiment
thus shows, that we can think of three proportional mappings:

squared datum ↔ energy,
squared datum ↔ heat flow,

squared datum ↔ absolute temperature.

The next step is to recall the conditions, under which the famous Clau-
sius3 inequality for non-statistical entropy holds

∮ dQ

T
≤ 0 (10.19)

where Q is heat, T is absolute temperature and the integral is taken over
either a complete thermodynamic cycle. This relation leads to one of the
possible formulations of the Second Law of Thermodynamics: in a closed
thermodynamic cycle the entropy increases. The adjective ‘non-statistical’
is emphasized to prevent a misunderstanding, which could result from the
frequent habit (in both information theory and statistics) to define entropy

3Rudolf Clausius (1812-1888).
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for a thermodynamic system, which can exist in N states with probabilities
p1, ..., pN , in the statistical form introduced by Boltzmann4. Boltzmann’s
entropy is

SB =
N∑
n=1

pn ln (pn). (10.20)

The most popular definition of information (Shannon’s5) is −SB, according
to which information differs from (Boltzmann’s) entropy only by its sign.
It is for this reason, that it was emphasized at the beginning of the chapter,
that in order to employ these notions (Boltzmann’s entropy or Shannon’s
information), one must already have a priori knowledge of the probabilistic
model. Even so, Boltzmann’s point, that entropy is disorder, is of universal
importance for it suggests that ’Nature prefers disorder’.

Returning to the screen of our monitor, it is seen, that at the point,
that models the virtual movement of the datum within quantification, the
energy of the double number is constant along the Q-path, proportional to
x2 − y2, while the energy of the complex number (x2 + y2) increases. The
difference between these energies equals 2y2. This energy difference can be
converted into a heat flow which may be positive or negative depending on
the sign of c2. Hence, the heat change relation

dQc = Kqd(2c2y2) (10.21)

with a proportionality coefficient Kq holds. Converting the energy x2−c2y2

into absolute temperature leads to

Tc = Kt(x
2 − c2y2) (10.22)

where Kt is a constant. When describing the Q-path of the process
(c2 = 1), the energy is constant, proportional to the squared radius of
the Minkowskian circle; and the case of the E-path (c2 = −1) is analogous,
the energy is proportional to the squared radius of the Euclidean circle. In
both situations, the temperature is constant and equal respectively to the
radius of the Euclidean or the Minkowskian circles. Now, it will be shown,
that the change in entropy between the “same” point on either circle is
a simple function of the gnostic weight, fc: the entropy change from the
state Q1 to Q2 is

E
′

c =
∫ Q2

Q1

dQc

Tc
, (10.23)

4Ludwig E. Boltzmann (1844-1906).
5Claude Shannon, an engineer at Bell Labs, first published these ideas in the Bell Technical Journal

in 1948.
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where the temperature Tc is constant for both values c = j and c = i,
because the two cases are evaluated separately, either for the Q-path or for
the E-path.

Relation (10.23) may be thus rewritten as

E
′

c = T−1
c

∫ Q2

Q1

dQc =
(Q2 −Q1)

Tc
, (10.24)

from which formula

E
′

c =
Kq

Kt

2c2y2

x2 − c2y2
(10.25)

results. Adjusting the scale for measuring the entropy change, Ec, by
choosing Kq

Kt
= 1 and substituting the G-weight fc from (9.5), one arrives

at
Ec = fc − 1. (10.26)

All the foregoing was necessary to support the statement, that the follow-
ing definition is reasonable:

Definition 8:
Let fc(x+ c y) be the G-weight (9.5) at the point x+ c y ∈ 1Uj, c ∈ {j, i}.
Then the quantity Ec evaluated by (10.26) is the change of entropy of
quantification (when c=j) or correspondingly of estimation (for c=i).

It was shown in Chapter 9 that G-weights play a significant geomet-
ric role as (one-dimensional) metric matrices in the determination of the
specific Riemannian geometry to be employed (9.15). The Gedanken-
experiment which led to definition 8 has demonstrated an unexpected con-
nection between the choice of a metric for a geometric space and “some-
thing physical”—entropy. As Riemann had stated over a century ago (see
Chapter 3), “Metrics are given objectively by laws of Nature.” It can be
concluded that the metric of the space of an uncertain datum is determined
by entropy changes, which themselves are determined by the value of the
observed datum.

It therefore holds:

The metric for measuring an individual data’s uncertainty is
determined by the uncertainty of the datum being considered.

We can now investigate the consequences of this interesting finding.
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10.4 The Entropy Field

10.4.1 Data Entropy as a Scalar Field

Expression (10.26) defines a specific scalar field of entropy change over the
Minkowskian/Gaussian plane. This allows an evaluation of the change in
entropy caused by uncertainty for all points x+cy for which x > |y| (ie for
the open cone 1Uj of the Minkowskian plane as well as for the corresponding
cone of the complex plane).

Entropy is one of the important gnostic characteristics of uncertainty
and—as such—it depends only on the ratio y/x. Figure 10.5 illustrates
isoentropic lines (points within the entropy definition’s range for which
the entropy values are constant), which are straight lines passing through
the origin (0 + c 0).
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Four Q-paths are shown for ideal values (Z0 = 0.5, 1.0, 1.5, 2) along
with isoentropic lines for Ej = 0.01, 0.04, 0.10, 0.25, 0.50. The figure
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demonstrates how entropy rises as the point representing an observed da-
tum driven by uncertainty moves along a Q-path. The case of estimation
is treated by Fig. 10.6.
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Only one Q-path is shown (for Z0 = 1), but there are several end-points
for the Q-path (P0, ..., P5), which correspond to different observed values
for the same datum. All entropy changes are negative in Fig. 10.6, they
quantify the fall of entropy resulting from the virtual movement of the
representative point along the E-path from the end point of the Q-path
to the horizontal axis. Note that the entropy increase (which corresponds
to an increase in disorder) along the Q-path for a given observed datum
cannot be completely compensated by the corresponding fall in entropy
during estimation. This observation, which is of fundamental importance,
will be considered in more detail in the following section.

Illustrating with a Q-path for Z0 = 1, and taking figures 10.5 and 10.6
together, the former shows that the isoentropic line representing Q-entropy
of 0.2 is reached at a jy value of about .65 while the same Q-path plotted on
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figure 10.6 results in an entropy fall of 0.2 only if i y = 1.12 (corresponding
to P5). The conclusion is, that for any level of uncertainty, the Q-entropy
increase is larger than the E-entropy’s fall. Hence, the increase in informa-
tion resulting from data treatment cannot fully compensate for the increase
in entropy resulting from the uncertainty inherent in the system. The IGC
is not reversible, which is consistent with the Laws of Nature.

10.4.2 Entropy Field Gradients

It is useful to examine the gradients of the entropy field, ie vectors which
delineate the direction of the steepest descents or ascents of the field.
These quantities will be indexed by c, because they have different forms
for each of the two geometries considered. Let α be a differentiable scalar
function of a pair variable x + c y (c ∈ {j, i}) interpreted as a scalar field
over the Minkowskian/Euclidean plane. For these geometries, there are two
kinds of gradients [45]: the covariant gradient (∇c,1) defined for a scalar
field α by

∇c,1(α) :=
∂α

∂x
+ c

∂α

∂y
(10.27)

and the contra-variant gradient (∇c,2)

∇c,2(α) :=
∂α

∂x
− c3 ∂α

∂y
. (10.28)

Using these formulae and (10.26), one obtains:

∇c,1(Ec) =
2c2hc

x2 − c2y2
∗ (−y + c x) (10.29)

∇c,2(Ec) =
2c2hc

x2 − c2y2
∗ (−y − c3 x). (10.30)

Examining the more ordinary case of the gradient of E-entropy, it is obvious
that ∇i,1 ≡ ∇i,2, because i = −i3 for the imaginary unit i: there is only one
gradient in this case. It is shown at the point x+ iy in Fig. 10.7 orthogonal
to the radius vector at that point and therefore tangent to the E-path.

Using expression (10.26), Ei = fi − 1, and the fact, that the gradient
of a constant (1) is zero, it is seen, that the gradient (denoted Ge in
Fig. 10.7) points in the direction of the steepest increase in the estimation
weight fi, which is equal to cos (2Sφ). The E-entropy change is negative
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for a non-zero uncertainty, because cos (2Sφ) < 1 for φ 6= 0. The E-
gradient thus points in the direction of the steepest decrease of the entropy
Ei for all points along the Q-path. We have arrived at an important result:

The local path from each point of the Q-path leading to mini-
mization of the increase of the entropy coincides with the local
E-path.

This is why the E-path is the first candidate offered as the best mode
of estimation.

Unexpected results are obtained for the quantification case: The first—
and from the point of view of Euclidean geometry, unusual,—feature is,
that there is not only one gradient, but there are two. The second feature
concerns the direction of the two gradients at the point U1. The covariant
gradient (Gq1) is collinear to the gradient of the E-entropy but its direction
is opposite. This can be explained by referring to Fig. 10.5: All isoentropic
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lines intersect at the origin. To go from a point on one of these straight
lines to a point that corresponds to a slightly higher level of entropy, one
should move in a direction orthogonal to the former line, ie in the direction
tangential to the E-path (opposite to the gradient Ge). This means, that
the covariant gradient Gq1 points in the direction of the steepest increase
in entropy Ej.

The contra-variant gradient (Gq2) is collinear with the velocity vector
V (x + j y) of the virtual movement along the Q-path and points in the
direction opposite to the virtual movement. But the virtual movement
from the point U0 in Fig. 10.7 to the point U1 increases the entropy. The
direction of the contra-variant gradient Gq2 is thus the second best can-
didate as a mode of estimation. There are then two directions, which can
be used as alternate paths to return to the point U0 representing the real
and unknown ideal value:

1. Along the E-path opposite to the direction ofGQ1 to the point Co(U1)
followed by the movement along the Q-path (estimation path).

2. Returning from U1 back along the Q-path following the direction of
Gq2 (anti-quantification).

We will now examine the choice between these alternatives in more detail.

10.4.3 Which Estimation Path?

A choice between anti-quantification and the IGC-path can be based on
a preliminary consideration of the errors which would result. The errors
result from the fact that one can never know the actual value of uncertainty.
The observed datum is given in the form of (5.12). To compare the effect
of the choice of paths, the simplifying assumption S = 1, can be made
(for this section), because the scale will be the same for either path. Let
us consider the angular distance D0 between the points U1 and its mirror
image Co(U1) in (Fig. 10.2). Relation

DE = 2Φ (10.31)

may seem to be “natural”, but only till its more general form

D0 = |
∫ 2Φ

0
C0 dψ| = 0 (10.32)

with C0 = 0 is presented demonstrating that D0 has been obtained using
the Galilean geometry to evaluate the path integral of angels’ differentials
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along the vertical straight line connecting the points Co(U1) and U1 in
the two-dimensional plane endowed with the Galilean metric. (This line
segment is a Galilean “circle”). However, there are two alternative circular
paths in this plane, the Minkowskian (quantifying) and Gaussian (estimat-
ing)ones, also connecting these points, for which path integrals

Dj = |
∫ 2Φ

0
coshψdψ| (10.33)

and

Di = |
∫ 0

2Φ
cosψdψ| (10.34)

result by substitution of relations 9.15 attached to the quantification and
estimation paths, correspondingly. These relations enable an important
statement to be formulated:

Theorem 10:
Let Φ be the true numerical value of uncertainty of an observed datum
5.12. Then relation

Dj ≥ −Di (10.35)

holds. The equality occurs, if and only if Φ = 0.
Moreover:
The path integral Dj represents the maximum value among all integrals
taken along the alternative paths connecting the points Co(U1) and U1
obtained by limited variations of the quantifying circular path.
The path integral |Di| represents the minimum value among all integrals
taken along the alternative paths connecting the points Co(U1) and U1
obtained by arbitrary variations of the estimated circular path.

Theorem 10 says not only why the estimation path is to be chosen and
its uniqueness, but also clarifies the extreme features of the Ideal Gnostic
Cycle. It is a special case of a theorem considered in detail and proved
in [61], paragraph 3.7.1, Theorem 8. It compares angles (interpreted as
relative lengths, i.e. lengths divided by the circles’ radiuses) of segments of
two circular paths over the two-dimensional planes endowed with different
Riemannian metrics. The extremity of the Q-path is an objective fact
recognized by the analysis. Unlike this, the choice of estimating path is a
matter of an analyst’s subjective decision. As shown below in Chapter 12,
choosing the unique (the shortest) circular E-path ensures the optimality
of estimation.

An evaluation of the Theorem 10 requires the problem of robustness
to be taken in account. Relation 10.33 results from quantification version



10.4. THE ENTROPY FIELD 131

of 9.15 increasing the weights of large errors contrary to the estimating
version which prefers the weak errors. The estimating versions of formulae
will thus provide results robust with respect to outliers opposite to quan-
tification formulae preferring the large errors. Both concepts of robustness
have applications in dependence on tasks to be solved. Suppression of out-
liers protects the results from bad observations while preference of extreme
“errors” enables unusual events (eg a bad product, a rare signal) among
many “normal” ones to be reliably recognized.

A natural question is,“How to go about optimal algorithmic applications
of these extremities?” This is not a problem for the theory of individual
data. A complete explanation of gnostic procedures, and answers to this
and other questions will be given after the gnostic theory of data samples
is provided.

10.4.4 Sources of the Entropy Field

The sources of a field determine its character, its spatial distribution and
explain its origin. For an electrostatic field, the role of the source is played
by an electric charge, for electromagnetic fields it is electric current and
for a gravitational field, gravitation masses. Some field sources may be
negative as well as positive (outflows or inflows). Sources may create fields
and/or let fields vanish. It is for this reason, that sources of entropy fields
have to be investigated.

Mathematical analysis has derived formulae for the calculation of a point
source of a scalar field (eg α) for different geometries. In our case the
formula has the following form ([45]):

∇2(α) =
∂2α

∂x2
− c2∂

2α

∂y2
, (10.36)

where ∇2 is the Laplace’s operator. Denoting

r2
c := x2 − c2y2 (10.37)

the squared radius of a circular path, and twice differentiating the entropy,
one gets

∇2(Ec) = −4r−2
c fc. (10.38)

Let us introduce the complementary indeterminate ĉ such that î ≡ j and
ĵ ≡ i. The complementary radius of a circle may be thus written as

r2
ĉ := x2 + c2y2. (10.39)
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The relation

r2
ĉ∇2(Ec) =

∂2Ec

∂(x/rĉ)2
− c2 ∂2Ec

∂(y/rĉ)2
(10.40)

can be interpreted as

1. the source of Q-entropy (eg of Ej) at a point on the E-path, which
has a radius equal to 1 (when c = j),

2. the source of E-entropy (eg of Ei) at a point on the Q-path, which has
a radius equal to 1 (when c = i).

Division of both coordinates x and y by rĉ leads thus to the unification of
all circular paths corresponding to different Z0’s—all have been mapped
onto a single value with Z0 = 1.

Multiplying (10.38) by r2
ĉ and taking into account that r2

ĉ/r
2
c ≡ fc, one

comes to

r2
ĉ∇2(Ec) = −4

1

(1− 4c2x2y2/(x2 + c2y2)2)
. (10.41)

To prevent a misunderstanding, it is useful to analyze three interpretations
of this equivalence:

Definition 9:

Let hj and hi be the Q- and E-irrelevance, correspondingly, expressed
as in (9.6). Let |y| < x. Then

p := (1− hi)/2 pj = (1− j hi)/2 pi := (1− i hj)/2. (10.42)

The first of these variables is a real number p ∈ (0, 1)) while the second
and third are double numbers. There are thus three versions of 10.41:

1. As follows for the scalar case from (10.41),

r2
i∇2(Ej) = − 1

p ∗ (1− p)
. (10.43)

2. In the case c = j ,

r2
i∇2(Ej) = − 1

pj ∗ (1− pj)
(10.44)

results.
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3. Equivalently, in the case c = i,

r2
j∇2(Ei) = − 1

pi ∗ (1− pi)
(10.45)

is obtained.

To show the equivalence of double interpretation of the source of quanti-
fying field, following relations are to be taken in account:

p ∗ (1− p) ≡ (1− h2
i )/4 (10.46)

and

pj ∗ (1− pj) ≡ pj ∗ pj ≡ |p|2j ≡ (1− h2
i )/4 ≡ cos2 2φ/4 (10.47)

There also is a dual relation of this type for the estimation field:

pi ∗ (1− pi) ≡ pi ∗ pi ≡ |p|2i ≡ (1 + h2
j)/4 ≡ cosh2 2Φ/4. (10.48)

The expression pc ∗ pc is a square of the pair number’s pc modul because
pc is its conjugate. Expressions 10.43 and 10.44 are interchangeable due to
double interpretability of the variable (1− j hi)/2 as a real number and/or
as a double number resulting from the equivalence

exp (Φ) ≡ cosh (Φ) + sinh (Φ) ≡ cosh (Φ) + j sinh (Φ) (10.49)

The interpretation of the equations 10.44 and 10.45 is important: there
are two fields, the sources of which balance the quantifying and estimating
sources of entropy.

Let us investigate these interesting fields.

10.5 Four Integrals of Gnostic Movements

10.5.1 The Birth of E-Information and Probability

This subsection deals only with changes of entropy Ej, i.e with Q-entropy.
This entropy has been defined over the cone 1Uj, as a function of two
coordinates x and y. It is now reasonable to restrict the definition of
the range of this entropy to points of the circular E-path, which have
the unitary radius (ri = 1). This restriction enables the left hand side
of (10.43) to be interpreted as an evaluation of the strength of the Q-
entropy sources applicable to all the data, independent of the value of
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their Z0, which implies, that the normalized Q-entropy will be a function
of a single variable, eg of y/x or of SΦ. In other words, Q-entropy is a
gnostic characteristic of the uncertainty of an individual datum. The right
hand side of (10.43) is also a real function of the single real variable (p).
Introducing an auxiliary function

(0 < p < 1)(H(p) := −p ∗ ln (p)− (1− p) ∗ ln (1− p)) (10.50)

one can easily verify the relation

− 1

p ∗ (1− p)
=
d2(H(1/2)−H(p))

dp2
. (10.51)

We thus know a scalar field and its source (second derivative) which
balances the source of Q-entropy. It only remains to give suitable names
to this function and to its argument, and to interpret their characteristics.

Definition 10:
Let Z = Z0 exp (SΦ) be the model (5.12) of a given observed datum.

Let p be the gnostic characteristic of this datum defined by (10.42) and
(9.4).

Then p will be called the gnostic probability of an individual datum,
shortly probability.
The function

(0 < p < 1)(Ij := H(1/2)−H(p)) (10.52)

will be called the estimation change of information (shortly E-
information) of the given individual datum.

The interchangeability of the variables p and pj enabled the scalar form
of H’s argument to be preferred to keep the tradition of measuring the
probability by a real number. On the other hand, its double form maintains
the duality of quantification and estimation processes.

The adjective “estimation” stresses the fact that the information Ij has
been obtained by (double) integration of the sources of entropy Ej along
the E-path. The integration constants in (10.52) are chosen so as to satisfy
the natural requirement, that the information change of a precise datum
(Φ = 0, hi = 0) is zero. The character and features of probability and
information are analyzed below.

It is interesting to present the information Ij (10.52) as a function of the
uncertainty Φ. The E-irrelevance hi is defined by (9.4) for a non-unitary
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S and Ωi = Sφ as sin (2Sφ). It can be therefore rewritten as 2 tan (Sφ)√
1+tan2 (Sφ)

.

The basic relation (8.36) (binding the Q- and E-angles) enables the sub-
stitution of tanh (SΦ) for tan (Sφ) so, as to arrive at the equivalence

sin (2Sφ) = tanh (2SΦ). (10.53)

Taking into account that |hi| < 1 and applying the usual formula of hy-
perbolic functions one obtains

2SΦ = ln


√√√√1 + hi

1− hi

 (10.54)

and

Ij = 2SΦ ∗ sinh (2SΦ)− ln (cosh (2SΦ)). (10.55)

This function together with the E-entropy (10.26) and with a quadratic
approximation are depicted in Fig. 10.8.
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(The “additive error” is 2SΦ.) All three functions can be used to mea-
sure the amount of uncertainty. The forms of both gnostic functions sub-
stantially differ from the quadratic function: they both are bounded for
gross errors. This feature is again one of the vital characteristics of gnos-
tics, because it leads to robustness with respect to outliers.

10.5.2 The Birth of Q-information and Improbability

Equivalence (10.41) is valid for both c = j and c = i. In the latter case,
(10.45) holds. For the case of c = j, a formal analogy to (10.50) is intro-
duced:

(pi := (1− i hj)/2)(hj ∈ R1)(Hi(pi) := −pi ∗ ln (pi)− (1− pi) ∗ ln (1− pi)).
(10.56)

One can then verify the relations

− 1

pi ∗ (1− pi)
=
d2Ii
dp2

i

. (10.57)

Ii := Hi(1/2)−Hi(pi). (10.58)

Functions pi and Ii also deserve names which characterize their substance.

Definition 11:
Let Z = Z0 exp (SΦ) be the model (5.12) of a given observed datum. Let
pi be the function of the E-irrelevance defined for this datum by (10.42)
and (9.4).
Then pi will be called the gnostic improbability of the given individual
datum, shortly improbability.
The function Ii defined by (10.58) will be called the quantification change
of information (shortly Q-information) of the individual datum being con-
sidered.

Analogously, the adjective “quantification” expresses the origin of the
information Ii as the result of (double) integration of the sources of entropy
Ei along the Q-path. And in the same manner as above, one arrives at the
explicit dependence of (10.58) on uncertainty:

Ii = −2SΦ ∗ sinh (2SΦ) + ln (cosh (2SΦ)). (10.59)

Fig. 10.9 shows, that both this function and the Q-entropy Ej increase
faster than the quadratic approximation.
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10.5.3 Probability and Improbability

Features in common:

Domain: Just as the irrelevances, hj and hi are both defined over the
open infinite interval (−∞,+∞), so are the values of uncertainty SΦ
as functions p(SΦ) and pi(SΦ).

One common value: They have the same value (1/2) for zero uncer-
tainty.

Monotonicity: They both rise monotonically as uncertainty Φ ranges
from −∞ to +∞. (For pi, this relates to the imaginary part of the
improbability).

There also are substantial differences between probability p and improba-
bility pi (10.42):

Range of values: Probability p is a real function which has values in the
closed interval [0, 1]. Improbability, on the other hand, is a complex
function which takes on arbitrary values represented by points on the
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unbounded vertical straight line x + i y = 1/2 − i hj/2 where hj can
have an arbitrary (finite) real value.

Slopes: For |Φ| → ∞ the values of the slope of the function p converge to
zero, while for pi, the values of the slopes of the pi diverge under the
same conditions.

The problem of the range of the probability forced a departure from the lan-
guage of pair numbers, when proceeding from the pair equivalence (10.41)
to a separate analysis of the quantification and estimation cases. This was
not absolutely necessary, because the expression (1 − j2h2

i )/4 can be de-
composed not only as p ∗ (1 − p) (as was done with p := (1 − hi)/2) but
also as pj ∗ (1− pj), where

pj := (1− j hi)/2. (10.60)

When the latter decomposition is chosen, one can continue writing both
versions jointly using the indeterminate c. However, there are good reasons
to prefer the scalar version:

1. The function p (probability) is used as an estimate of an element of
probability; that is, as a measure of the expectation of the occurrence
of some events. It is customary to express such expectations with real
numbers and not by using a double number.

2. To derive the relationship between entropy sources and information
using the variable pj, one would need to use differential and integral
calculus of double variables, which might give rise to additional ques-
tions. By using p, it was possible to apply the “ordinary” calculus
instead.

Nevertheless, the possibility of introducing probability, expressed as a dou-
ble number is useful to maintain the theoretical uniformity and duality of
quantification and estimation analysis.

There are also common features as well as substantial differences be-
tween information Ij (10.52) and information Ii (10.58):

Domain: Both can be represented as functions of the uncertainty Φ.
Zero value: Both are zero for zero uncertainty.
Convergence: If uncertainty is sufficiently weak, both converge to a

quadratic function of the uncertainty Φ.
Divergence: Unlike E-information converging to a constant for |Φ| → ∞,

Q-information diverges under this condition.

In the case of a strong uncertainty, the different behavior of the four func-
tions, which were considered, leads to greater robustness/sensitivity to
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outliers/inliers. These issues will be dealt with in the theory of data sam-
ples.

10.5.4 Conversion of Entropy to Information

Integrals of real movements (energies) play an important role in mathe-
matical physics. Together with their first derivatives (moments), they are
objects of the most powerful Laws of Nature—Conservation Laws. Apply-
ing variation principles to integrals of movement, one can derive differential
equations which model the movements. Typical examples of integrals of
movement include kinetic and potential energy (with respect to the New-
tonian differential formulation of the laws of classical mechanics derived
from movement integrals by differentiation), and the energy of electric and
magnetic fields (with relation to Maxwell’s partial differential equations).
Typical features of different integrals of movement are, that through the
process of movement, they are mutually converted from one to the other.
A practical example from mechanics is a swinging pendulum periodically
converting its potential energy into kinetic and vice versa. An oscilla-
tor consisting of a condenser and an inductance converts electric energy
charged in the condenser into the magnetic energy of the coil and vice
versa.

This is why we are interested in integrals of gnostic movement—of
changes of Φ caused by uncertainty.

Relation (??) was derived by twice differentiating the entropy Ej. It
follows, that one can obtain this entropy by twice integrating its sources.
It can be easily shown that (10.41) is equivalent to the relation

r2
ĉ∇2(Ec) = −4f 2

c , (10.61)

which says, that the (normalized) sources of the entropy field are com-
pletely determined by the data uncertainty SΦ, because fj = cosh (SΦ)
and fi = cos (Sφ), where Sφ is also dependent only on SΦ. This uncer-
tainty arises through the virtual quantification movement. One can there-
fore take the entropies Ej and Ei as a pair of integrals of gnostic virtual
movements.

E-information Ij (10.52) was derived as a field, the sources of which (ob-
tained by twice differentiating) balance normalized entropy sources. The
E-information is determined by p (10.52), which measures the gnostic vir-
tual movement. This means, that information Ij is also an integral of this



140 CHAPTER 10. ENTROPY, INFORMATION, PROBABILITY

movement. Q-information, obtained by analogous operations, is also an
integral of this movement.

In summary, it can be stated, that there are two pairs of integrals of
gnostic virtual movement: 〈Ej, Ij〉 and 〈Ei, Ii〉, that are bound each to the
other by equation (10.41), which can be now reformulated in the following
way:

Normalized source of entropy Ej + source of information Ij = 0.

Normalized source of entropy Ei + source of information Ii = 0.

Both these equations can be unified using the probability interpreted as
the double number 10.60. The equivalence 10.41 thus obtained forms

r2
ĉ∇2(Ec) +

d2Ic
dp2

c

= 0. (10.62)

This equation may be interpreted as the formula for the mutual conver-
sion of entropy to information and vice versa.

A number of scientists have investigated the relationship between en-
tropy and information. Even Maxwell had some thoughts on the subject
in the late nineteenth century. A review of the development of these efforts
published in 1956 ([7]) included contributions by L. Szilard (1929, [108]),
N. Wiener (1949, [117]), R. C. Raymond (1950, [90] and 1951, [91]), L.
Brillouin (1951, [12]) and D. A. Bell (1952, [6]). Such typical ideas were
illustrated in [7] by two Gedanken-experiments:

1. The first example is based on Maxwell’s idea of a demon controlling a
door (with no mass) between two identical boxes filled with gas. He
would permit fast molecules to pass in one direction and only slow
ones in the other (to keep the number of molecules on each side con-
stant). Temperature would rise on the ‘fast’ side without the addition
of energy thus violating the second law of thermodynamics. Wiener
[117] pointed out, that the demon would need information to dis-
tinguish between fast and slow molecules; he would consequently be
converting information to entropy.

2. If a large number of trained monkeys were to sit at typewriters for a
sufficiently long time, their output could even include Shakespeare’s
Hamlet. Such a result would correspond to a much lower entropy than
the more probable chaotic expected outcome. On the other hand, were
the letters corresponding to the text scrambled, all the information
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would be lost and entropy would increase. The conclusion is, that the
more information, the lower the entropy and vice versa.

These examples illustrate the traditional paradigm of entropy ↔ infor-
mation conversion: (1) collective random events and their probabilistic
model as primary notions, (2) entropy/information as secondary notions
introduced to measure the degree of randomness and (3) entropy ↔ infor-
mation conversion as an exchange of these (integral) measures. History of
the ideas related to the Maxwell’s demon were summarized in [13].

In contrast to these concepts, equation (10.62) establishes the entropy
↔ information conversion not on the integral level but on the more basic
level of sources of fields (second derivatives). Furthermore, it is applied
not for collective (data sets) but for an individual (datum’s) uncertainty.

What follows is an interpretation of the “mechanism” of the “informa-
tion machine” using the Ideal Gnostic Cycle based on an observed datum
Zk = Z0 exp (SΦk):

Quantification: Due to the contribution of uncertainty Φ, which increases
from 0 to Φk, entropy Ej rises from 0 to cosh (SΦk)−1. Simultaneously
with Φ, the E-angle φ increases to φk ((10.9) causing the Q-information
to fall from its initial value (0) to Ii(SΦk) (10.59). These changes set
the stage for future, potential changes of information Ij (by (??) )
and entropy Ei (by (??) ). The Q-modulus of the radius vector stays
constant (Z0), but the E-modulus increases from Z0 to Zk (10.8).

Estimation: The E-modulus is constant (Zk), the Q-modulus increases
from Z0 to Zk. The change in the E-angle φ from φk to zero realizes
the potential change in information Ij and entropy Ei.

Contraction: Both Q- and E-angles are zero, the modulus of the radius
vector of the representative point decreases from Zk to Z0.

Because neither the overall (residual) changes of entropy within the closed
IGC, nor the overall changes of information are zero, the IGC is irre-
versible.

10.5.5 Residuals of Entropy and Information

The overall change of entropy, which results from passing through the full
Ideal Gnostic Cycle (the residual of entropy denoted %E,IGC), can also be
calculated. Because both quantification and estimation changes of entropy
are already known (10.26), relation

%E,IGC = cosh (2SΦ) + 1/ cosh (2SΦ)− 2 > 0 (10.63)
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holds for all Φ 6= 0. The conclusion drawn from this formula is significant:
it is impossible to return a datum which contains a non-zero uncertainty
back to its original state (with uncertainty removed): its residual entropy
will always be larger, than that in the “clean” state. This fact is proved
for estimation by (10.63) using the Ideal Gnostic Cycle. However, it will
be shown in what follows, that all other closed estimation cycles would
lead to even worse results. One can thus conclude, that a part of the
damage caused by uncertainty can never be removed: the gnostic cycle is
irreversible.

A look at the formulae (10.55) and (10.59) shows that they both include
the same term, ln (cosh (2SΦ)), but with opposite signs; these terms there-
fore balance each other—they represent the reversible part of the informa-
tion. However, since there are also irreversible parts to both information
changes, the residual of information change resulting from passing through
the closed IGC is

%I,IGC = 2SΦ∗ tanh (2SΦ)−arctan (sinh (2SΦ))∗ sinh (2SΦ) < 0 (10.64)

for all Φ 6= 0. Since it is impossible to recover all the information lost due
to a datum’s uncertainty, even by using the (best) estimation process, ie
by following the ideal gnostic cycle, the closed cycle of information changes
is also irreversible.

Residuals of entropy together with residuals of information along with
the quadratic error are depicted in Fig. 10.10 as functions of the additive
error 2SΦ.

It is obvious from the graph Fig. 10.8, that the quadratic function (which
is frequently used in statistics as the criterion function) may be interpreted
as a rough approximation of entropy and/or information, but only for weak
data uncertainty. However, this does not hold for the residuals. Indeed,
using Taylor’s expansion and Landau’s symbol, O(∗), one obtains from
(10.26), (9.3), (10.55), (10.59), (10.63) and (10.64) the following approxi-
mations valid for sufficiently small errors S|Φ|:

Ej = 2 ∗ (SΦ)2 +O((SΦ)4) Ei = −2 ∗ (SΦ)2 +O((SΦ)4), (10.65)

Ij = 2 ∗ (SΦ)2 +O((SΦ)4) Ii = −2 ∗ (SΦ)2 +O((SΦ)4), (10.66)

%E,IGC = 4 ∗ (SΦ)4 +O((SΦ)6) %I,IGC = −16/3 ∗ (SΦ)4 +O((SΦ)6).
(10.67)

All these approximations are also shown in Figs. 10.8–10.10.
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The non-zero values of entropy and information residuals (10.67)
(interpreted as the irreversibility of the Ideal Gnostic Cycle) prove a
statement which has a fundamental importance comparable with that of
the Second Law of Thermodynamics:

It is impossible to create a machine to treat uncertain data so, that the
output yields a greater amount of information, than that, which was
contained in input data.

In other words: it is impossible to create an informational perpetual
motion machine.

10.6 Summary

Gnostic virtual movement is a mathematical model of uncertainty’s effect
on data. In this movement, the role of time is taken over by the additive
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measure of uncertainty, the quantification angle Φ. This allows both ki-
netics (paths and velocities) and dynamics (behavior of integrals) of the
virtual movement to be considered. A triple of special paths depicts the
virtual movement, which is called the Ideal Gnostic Cycle.

Using the method of the Gedanken-experiment, each datum is endowed
with a portion of energy, some of which is converted into heat flow and tem-
perature. An analysis of the behavior of these energy-like characteristics
of the datum over its virtual movement along the Ideal Gnostic Cycle per-
mits the Q- and E-entropy changes caused by uncertainty to be evaluated.
Analysis of the gradients of the entropies’ fields confirms the favorable fea-
tures of the circular E-path. Performing the estimation by following this
path leads to an integral estimation error which is smaller, than that of
the trivial “antiquantification” path.

An analysis of the sources of the entropies’ fields reveals, that there are
two scalar fields, the sources of which balance the entropies’ sources. The
formal appearance of these fields is reminiscent of probabilistic measures of
information, although only an individual datum is being considered here.
The use of these functions for Q- and E-information changes motivates
the acceptance of their parameters for the determination of a measure of
probability/improbability for an individual datum.

Q- and E-entropies together with Q- and E-information changes mani-
fest interesting features, which are remindful of the integrals of movement
of physics: equations of entropy ↔ information conversion for the second
derivatives of these integrals describe the virtual movement of uncertainty.
Using the integrals, one can prove, that the Ideal Gnostic Cycle is irre-
versible, ie that the damage caused to a datum by uncertainty cannot be
completely eliminated, even by using estimation procedures based on this
cycle. The interpretation of this irreversibility is, that the output can never
provide more information, than was contained in the initial message.



Chapter 11

More on the New Notions

The Gedanken-experiment performed in the foregoing chapter used the log-
ical link datum → energy and/or temperature → entropy. Assume at
this point, that this reasoning provides sufficient justification for the idea
of entropy Ec and its formula, 10.26. In contrast, the representations of
gnostic probability, improbability, E-information and Q-information were
derived from the entropy through mathematical manipulation. The pro-
cess used to develop these latter ideas may have appeared complex; the
objective of this chapter is therefore to show, that these newly introduced
concepts are meaningful. In order to solidify the gnostic approach, it will
be helpful to review several ideas from statistics and information theory.

11.1 Parzen’s Estimators and Gnostic Kernels

In [81], Emmanuel Parzen, at Stanford University, expanded the ideas and
results of [11], [95] and [115] by developing a series of theorems, which lead
to a solution of the non-parametric estimation of a probability density
function and mode:

Given a sequence of independent identically distributed random
variables X1, X2, . . . , XN with common probability density func-
tion g(x), how can g(x) be estimated?

To solve the problem, a Borelian function K(a) : R1 → R1, which satisfies
the following conditions is introduced:

sup
−∞<a<∞

|K(a)| <∞, (11.1)

∫ ∞
−∞
|K(a)|da <∞, (11.2)

145
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lim
a→∞ |aK(a)| = 0, (11.3)∫ ∞
−∞

K(a)da = 1, (11.4)

(∀a ∈ R1)(K(a) = K(−a)). (11.5)

Let S > 0. Then the required estimate may be constructed as

gN(x) =
1

NS

N∑
m=1

K(
x−Xm

S
). (11.6)

The weighting function K(a) has come to be called the kernel and the
estimate (11.6) is the kernel estimate of the density function. The condi-
tions required for unbiasedness, consistency and asymptotic normality of
this estimate and for the density’s mode (location of its maximum) can
be found in [81]. Seven specific examples of kernels are given there, but
it is obvious, that there are an infinite number of functions, which satisfy
conditions 11.1–11.5. However, all possible kernels will not generate nicely
smooth estimates of a density from a small data sample, although these
estimates will still be acceptable from the asymptotic point of view.

The main idea behind the kernel estimation of distribution functions is
simple: Suppose, that the task is to measure Xm. Any measurement taken
will be imprecise. But if instead of accepting Xm as the real value, an (a
priori assumed) “local” distribution K((x−Xm)/S) of each possible mea-
surement is used, the kernel K(∗) becomes an estimate of the probability
density of the particular datum Xm. From 11.3 and 11.4, the integral of this
kernel is the probability distribution function of the individual datum Xm,
which can be written as Pr{Xm ≤ x}. This distribution is conditional on
the fact, that what was observed “really was Xm.” The normalized additive
aggregation of the density distributions of individual data (11.6) is then
an estimate of the probability density of the data sample X1, X2, . . . , XN .
Its integral can be used as the kernel estimate of the common distribution
function of the data sample.

Returning to gnostic theory, the substitution of 9.11 for c2 = −1 into
10.42 and using 9.8 with 9.12, the gnostic probability can be recast in the
form

p =

1 + exp

4(A− A0)

S

−1

, (11.7)

from which an important statement immediately results:
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Theorem 11:
Let p be as defined in expression 11.7.
Then the (E-kernel)

dp

dA0
=

4

S
((exp (2(A− A0)/S) + exp (−2(A− A0)/S))−2 (11.8)

satisfies all the conditions of 11.1–11.5.

This easily verifiable theorem leads to an interesting interpretation: ex-
pression 11.8 is a kernel estimate of the probability density distribution of
the unknown ideal value A0 conditioned by the quantifying result A. Call-
ing p in 11.7 the “gnostic probability” is justified, because it is a kernel
estimate of the probability distribution of the unknown A0, which has been
quantified by observation of the individual datum A.

Using the definition of the G-weight, 9.10, one may rewrite 11.8 as

dp(A0, A, S) = ((fi)
2) ∗ d(A− A0)/S, (11.9)

ie as a metric formula of a certain Riemannian geometry applicable for
measuring the distance between points A0 and A, normalized by the scale
parameter S (by integration). Formulae of this type have already been
seen (the general one, 9.14, with a pair of its special cases, 9.15, valid for
measuring errors in the Q- or E- irrelevance). The point is, that the choice
of a kernel for the kernel estimation of a probability distribution/density
can be understood as being the choice of a suitable Riemannian geometry.
The statistical (say: Parzen’s) approach is to require the observer to select
and use one from an infinite set of possible kernels (geometries), which
forces the choice of the geometry to be necessarily subjective. In contrast,
the gnostic kernel 11.8 is unique for a given datum A and scale parameter
S. The form of the kernel is obtained theoretically by strict mathematical
reasoning from very elemental assumptions, ie in a way, which is more
objective. Data are given objectively and the scale parameter (as will be
shown later) will be determined from the data. It can be concluded, that
the use of the gnostic kernel for the estimation of probability distributions
is more objective, than that of the ordinary Parzen’s approach.

Experience gained from application of this methodology has also shown,
that the gnostic kernel generates surprisingly smooth estimates of proba-
bility densities even in the case of small data samples. Theorem 11 taken
together with Parzen’s theory legitimizes the application of the gnostic ker-
nel even from the statistical point of view. The use of gnostic kernels for
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probability estimation is therefore justified on both theoretical and practi-
cal grounds.

The role of p in expression 10.42 is further support for the interpreta-
tion of 10.50 as probability. If one recognizes equation 10.50 as—at least
formally—coinciding with Boltzmann’s statistical entropy of a binary prob-
abilistic system (or as Shannon’s measure of the information of a binary
message appearing on the output of an information channel with the prob-
ability p), the quantity p is confirmed as playing the role of probability.

11.1.1 A Gnostic Version of Parzen’s Kernel?

As just seen, expression 11.8 can be interpreted as one of the particular
versions of Parzen’s kernels, suitable for kernel estimation of probability
distribution functions and their densities. There are several features of
this expression common to all kernels of Parzen’s type: they all satisfy
a set of conditions (11.1 through 11.5). These conditions are necessary
from the statistical point of view—their fulfillment warrants the desirable
asymptotic behavior of kernel estimates as the quantity of the sample’s data
increases without limit. There is no significant advantage to using a gnostic
approach to treat all data samples regardless of the sample’s size and its
uncertainty. The power of gnostics is demonstrated by the application of
the theory to cases, where data are scarce or their number and quality are
limited due to the very nature of the data’s source. The satisfaction of
conditions resulting in “good statistical asymptotic behavior” is therefore
not of vital importance for gnostic kernels. To show, that gnostic kernels
may be viewed as estimators of Parzen’s type at least in some special cases,
is important mainly from a fundamental point of view. It has been already
demonstrated, that the new theory has an important interface with the
well-known results of statistics: the gnostic characteristics of uncertainty
converge to the statistical ones, when there are weak uncertainties in the
data. The estimation of distribution functions directly from data without
appealing to an a priori data model is very important in practice. It is
therefore a comfortable feeling, that the gnostic instruments applied to
these tasks are supported not only by the gnostic, but also by statistical
theory under circumstances, when statistical methodology can be properly
applied.

There are some differences in the application of gnostic kernels 11.8 from
the statistical ones, which include:

1. Aggregation of kernels, which result in the two kinds of robustness of
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the estimated distribution functions (Chapter 15),
2. applicability to bounded data supports (see 11.1.2 and 15.2.2),
3. estimation of bounds of data support (15.2.2),
4. new methods of scale parameter estimation (16.2),
5. modifications, which allow censored data to be used (Chapter 19).

On Forms of E-Kernels

There are an infinite number of statistically valid kernels satisfying Parzen’s
conditions, but the ultimate choice is left to the users’ subjective judgment;
however the quality of the resulting estimate—especially of the probability
density—critically depends on the form of kernel chosen.

In contrast, the gnostic kernel is not chosen in an arbitrary manner, but
it is a product of the theory. Indeed, the kernel 11.8 (called E-kernel) was
obtained by differentiating the distribution function 11.7 of an individual
datum. This elemental distribution appeared as a parameter 10.42 of the
field’s source 10.43 of information. In its primary form (defined over infinite
data support), this distribution is uniquely determined for each of the pairs
of its parametersA (the observed datum) and S (the scale parameter). This
distribution may be interpreted as conditional: P{A0 ≤ A|A, S}1. The
datum is given and the scale parameter may be estimated from data using
several methods, which will be discussed in the following sections. There
is therefore no subjective element in the preparation of the gnostic kernel
for the estimation of a sample’s distribution or density.

The role of the observed value A as a kernel’s parameter is obvious:
it locates the kernel on the A-axis; it is thus the location parameter of
the kernel. The scale parameter S determines the kernel’s “width:” the
greater S, the stronger the uncertainty, the more difficult to recognize the
true (ideal) value A0 hidden in the observed datum. A statistician would
say, that the scale parameter is determined by the variance. Using the
language of fuzzy set theory, one could say, that the scale parameter is a
measure of the datum’s fuzziness.

All Parzen’s kernels also have parameters, which play the role of location
and scale parameters. However, they also determine the analytical form of
the kernel. The special form of the gnostic kernel 11.8 is unique because
its origin is connected to the Ideal Gnostic Cycle. We have seen, that by

1This formulation reads: “the probability distribution of the ideal value A0 given the observed value
A and the scale parameter S”.
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following this cycle, one maximizes/minimizes the effects of uncertainty.
The gnostic kernels thus promise informational optimality.

Measuring Scale Invariance and Equivariance

One of important features of (scientific) information is, that it is indepen-
dent of the physical nature and other features of the carrier. Indeed, a
message written (in a known language) on a piece of paper bears the same
information as a message transmitted by a (noise-free and non-distorting)
radio channel. The information content of speech is invariant with respect
to strictly linear amplification. It is obvious, that information resulting
from measurement does not depend on the choice of using centimeters or
inches as a measurement unit. It is for reasons such as these, that notions
such as the probability of events and the corresponding information must
be independent of the scale of measurement, which is applied.

Examining the scale invariance of the probability distribution kernel
11.7, which equals the integral of the gnostic density kernel (11.8), it is
seen, that with an increase in the data scale unit of eg k-times, all values
A, A0 and S change in proportion to 1/k and the value of the probability
(11.7) remains unchanged. This invariance can also be observed directly
in the definition of the irrelevance (9.6), which leads to the definition of
probability (10.42). In the same manner, the other most important gnostic
characteristic—the data weight (9.5)—is also seen to be scale invariant.

The notions of invariance and equivariance originated in statistical es-
timation theory. A typical example is the behavior of an estimate of the
location and scale parameters in the case of a change of origin of the data
scale (“the data shift”). Under such a change, the scale estimate found by
the least squares method would be invariant, while the location parameter
estimate would be equivariant (“changing in the same way as the origin”).
The same scale parameter estimate would be equivariant with respect to
the measuring scale. For the gnostic kernel of probability density 11.8,
it is seen, that its relative form is “data location invariant” (because the
difference A−A0 is not dependent on the location of the origin of the data
axis), but equivariant under changes of the measurement scale (because of
the division of the invariant square of the data weight in 11.9 by the scale
parameter S, which is equivariant with respect to the measurement scale).
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Infinite Data Support

The set of possible data values can also be called the data support. This role
was played by the set R1 of real numbers (in the case of data forming the
additive group) or by the set R+ of the positive reals (in the case of data as
elements of the multiplicative group) (see Chapter 1). These sets thus have
the property of infinite data support. Both probability distribution (11.7) of
the gnostic kernel and its density (11.8) are defined over the domain R1, ie
over infinite data support, which feature is not unusual for Parzen’s kernels.
So, eg, the Gaussian curve (the density of the normal distribution function)
may also be used as one member of the family of Parzen’s kernels. However,
it should not escape the reader’s attention, that the gnostic kernels vanish
significantly faster than the Gaussian ones as the distance of the observed
value A from the location parameter A0 increases. If they have the same
scale parameter (S), the Gaussian increases or decreases with increasing
((A− A0)/S)2 proportionally to 1/ exp (((A− A0)/S)2), while the gnostic
kernel (11.8) approaches zero as 4/ exp (((A− A0)/S)4). This higher rate
provides a favorable flexibility for the gnostic kernels.

The dependence of the kernel’s form on the scale parameter is demon-
strated in Fig. 11.1 for the case of the infinite data support R1. The data
are thus considered to behave in accordance with the additive property.
The observed value is zero (A = 0) for all three curves, while the scale
parameters (S) take on different values (1, 2 and 5). The vertical axis is
denoted “Probability Density.” In using this term, we must remember, that
the word “probability” in gnostics means something quite different than
in its statistical definition. Here it is “our expectation based on observed
data” and not a parameter from an a priori assumed statistical model.

The curves in Fig. 11.1 depict the dependence of the probability density
on the (unknown) ideal value (A0) for given values of A and S. They answer
the question: “The observed datum was zero: to what extent could one
expect, that the (unknown) ideal value was close to the number A0, if the
(known or estimated) scale parameter equaled S?” In the case of a small
scale parameter (eg S = 1), the expected values of A0 are concentrated
closely around the observed data’s value (zero). Increasing S decreases the
maximum density and flattens the density curve. (The areas under the
curves are the same in all three cases because the overall density’s integral
equals 1). Using mathematical language, one denotes these probability

densities as dP (A0,S)
dA0

, where P is the probability P{A0 ≤ A|A, S}. Note,

that (in this simple case) the location of the densities’ maxima coincide
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with the location of the observed value A. The probability distributions
corresponding to these densities (their integrals) are shown in Fig. 11.2.

It is important to read these graphs properly. So in the case of A =
0, S = 5 (green lines) one reads: “the probability of A0 not exceeding
the value −1 is 0.3” or—equivalently—“the probability of exceeding the
value −1 is 1 minus 0.3, ie 0.7.” The distribution function thus attaches
the probability value 0.3 (and its complementary value 0.7) to the ideal
data value A0 = −1. This relationship along with its inverse is shown in
Fig. 11.2 by the green arrows.

Varying the observed value A, while maintaining the scale parameter
unchanged, merely shifts the kernel along the horizontal axis. This is seen
in Fig. 11.3 for the case of S = 1 and three observed values A (−3, 0 and
3). The kernel’s relative form in this case is invariant. The location of
the kernels is equivariant with changes in the origin of the horizontal axis.
However, such a simple picture is only valid for infinite data support and
additive data.
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It was shown in Chapter 1, that there exist both additive and multi-
plicative data. The typical feature of multiplicative data results from the
character of the structural operation, which creates from a pair of data a
third datum—the multiplicative value. While the additive data tend to lin-
ear behavior, the “natural” behavior of multiplicative data is exponential.
In other words, the multiplicative data, as a rule, cover a broad interval.
One frequently sees samples of multiplicative data, within which data dif-
fer by many orders of magnitude. (Example: the total assets of companies
in a given industry may span an interval ranging from several millions of
US$ through many billions. Another example can be taken from the envi-
ronmental control, where concentrations of pollutants in rivers can differ
by orders of magnitude.) To work efficiently with such data, logarithms
are used instead of the data themselves. (The focus of this discussion is
not on accountancy, which uses the linear scale, but on data analysis.)
A data distribution graph realized as a probability distribution function
of logarithmic data also has its density. However, to maintain the com-
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patibility of graphic representations of probability distributions and their
densities, when a logarithmic datum is employed, the probability density
is represented as

dP

dZ0
=

dP

dA0

dA0

dZ0
. (11.10)

Substituting 11.9, 9.5, 5.12 and 5.15 into this relation one obtains

dP

dZ0
=

1

(S ∗ Z0)

4

((Z/Z0)2/S + (Z0/Z)2/S)2
. (11.11)

The division by Z0 in this formula has the immediate consequence of shift-
ing the density maximum with respect to the observed datum and changing
the maximal density. This result is obvious as seen in Fig. 11.4, where the
same scale parameter (S = 1) is used for all five curves, which depict
different observed values of Z (1, 1.4, 2, 3 and 5) for an unknown and un-
observable Z0 of 1.0. Now in the case of multiplicative data, the densities’
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maxima and the corresponding values of the observed datum are no longer
coincident.
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It is worth noting, that in all the cases considered above, the density
curves were such, that the probability distribution functions had the S-
form. As has been noted, they differ from the most popular normal
(Gauss’) distribution function (which also are of the S-form) by their much
faster decay. There are many other similar distributions in statistics, how-
ever, probability distributions, which have an “anti-S form” also exist both
in nature and science. They are seen primarily in cases of finite data sup-
port and inner positive feed-back of the object under consideration. The
typical density curve of an anti-S distribution is of the U-form. To es-
timate such distributions and densities, one cannot limit oneself to the
kernels, which have a fixed form. To demonstrate the suitability of gnos-
tic kernels to tasks of this type, it is useful to consider examples of their
behavior over finite data support.
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11.1.2 Finite Data Support

The gnostic model of quantification/estimation was developed for infinite
data support, because this was the immediate consequence of the simple
nature of the basic data structures, which were considered: the additive
or multiplicative groups. However, real data more often exist as structures
defined over finite data supports.

An example may be the structure of the depreciation of the assets of a
group of enterprizes. Depreciation (expressed in percent) is a non-negative
real number not exceeding 100. It is thus defined only over the range of
[0, 100]. Another example is the set of market prices for a good. Intu-
itively, one feels, that a price should not exceed a certain value, but it also
would not be expected, that the price would fall below some minimum.
The maximum value is limited primarily by competitive forces, while the
minimum is determined mainly by costs. To survive in such an industry,
all comparable enterprizes must keep their economic parameters bounded
within limits, which are typical for the given industry. Estimating these
bounds from data may be one of the most interesting goals of the analysis.
It is therefore useful to have analytical instruments, which can take into
account these finite bounds for data supports.

A further example is concerned with the existence of a positive feed-
back within the object under consideration, say, an industrial enterprize.
Consider a prosperous company, which suffers through a very bad or even
catastrophic period. The probability of failure for such an institution had
been practically zero until the moment of the event but rises rapidly after-
wards because of the “positive” feed-back: information about the threat
of failure, which may cause the loss of credits, the fall of share prices, the
loss of clients, all of this could accelerate the firm’s downfall. (A feed-back
amplifying the input changes of an object is “positive” only from the point
of view of cybernetics.) If the initial impulse was sufficiently strong and if
an “economic miracle” does not take place, the enterprize’s failure is only
a question of time. In other words, the probability of failure was zero until
a certain moment, but it could increase to nearly 1 beyond some maximal
survival time. The probability distribution may have the anti-S form in
this and other similar cases.

In principle, the generalization of the theory to finite support is not
difficult. Consider a strictly positive unbounded real number Z∞ ∈ R+.
Let 0 < L < U < ∞ and inequalities L < Z0 < U and L < Z < U hold.
Both the ideal datum Z0 and its observed value Z are thus bounded. To
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prevent a misunderstanding, the bounded values will be denoted Z0,fin and
Zfin. Let a transformation T : (L,U) ↔ R+ be of the form

Z∞ =
Zfin − L

1− Zfin/U
. (11.12)

This transformation is regular because its inverse

Zfin =
Z∞ + L

1 + Z∞/U
(11.13)

exists. Moreover, let us consider a pair Z1,fin, Z2,fin ∈ (L,U) of bounded
data such that Z1,fin = T −1(Z1,∞) and Z2,fin = T −1(Z2,∞), where both
Z1,∞ and Z2,∞ are unbounded multiplicative data. Let the structure oper-
ation (the “multiplication” ⊗) be defined as

Z1,fin ⊗ Z2,fin :=
Z1,∞ Z2,∞ + L

1 + Z1,∞ Z2,∞/U
. (11.14)

It can be easily verified, that the isomorphism between the additive group
〈R1, +〉 and the structure 〈SZf , ⊗〉 exists, where SZf is the set of data
defined over the finite data support. The latter structure is thus also the
multiplicative group. This justifies the application of “transformed” results
of the theory of individual unbounded data to transformed bounded data.
Before proceeding to the consequences of the transformation, let us note
several of its aspects.

1. The chosen transformation is not unique, others could be used. The
advantage of making this choice is primarily its analytical simplicity.

2. The rate of convergence of Z∞ to zero (for Zfin → L) and to infinity
(for Zfin → U) is sufficient for applications.

3. Formula 11.12 has a natural motivation: Zfin−L is the Euclidean dis-
tance of the observed value from the lower bound of the data support,
while U −Zfin measures the datum’s distance from the upper bound.
The ratio of these distances thus evaluates the “unbalance” caused
by deviation of the Zfin from the center of the finite data support.
The ratio is computed by dividing 11.12 by U . This modification does
not change anything in the case of a finite U , because the variable
Z∞ always appears in gnostic formulae divided by Z0,∞ (which is the
ideal value transformed to infinite support in the same way). There
are two advantages to this modification:
(a) Formula 11.12 allows both limit cases L→ 0 and U →∞.
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(b) This form of the formula preserves the symmetrical behavior of
the density for both Z → L and Z → U :

dA∞
dZfin

=
1

S

d log (Z∞)

dZfin
=

1

S

 1

Zfin − L
+

1

U − Zfin

 . (11.15)

4. Going from the simple case of infinite data support to finite ones, one
is resigned to relying on Parzen’s theory, which gnostics only uses to
illustrate, that its approach is neither unnatural nor unexpected for a
statistician, at least for a special case. However, the theoretical line
of development of gnostics is independent of statistical ideas and is
applicable to the more general problem of small data samples.

The importance of finite data support can be demonstrated by considering
the gnostic kernels, that are generated by the transformation 11.12.

Four gnostic kernels shown in Fig. 11.5 are defined over the finite interval
of additive data (−2, 4) for the same observed datum A = 1 and for four
values of the scale parameter (S =1, 2.45, 4.11 and 10).

The kernels are symmetric with respect to the observed datum, which
is located at the center of the data support. The form of kernels is, at
first sight, unexpected: only two kernels (S =1 and 2.45) have the concave
forms, which are reminiscent of Parzen’s kernels. The kernel for S =4.11
is practically flat over the whole data support, while the kernel for S =10
has the U-form. This variability of form is easy to see through reference
to the formulae. The behavior of the kernels is determined by the product
of two derivatives in the expression

dP

dA0,fin
=

dP

dA0,inf

dA0,inf

dA0,fin
, (11.16)

where the first term of the product is 11.8 and the second 11.15. BothA and
A0 in the first derivative should now be interpreted as A∞ and A0,∞ because
they are transformed onto the infinite support by the formula 11.12) and
A∞ = log (Z∞). For Z0,fin → U the transformed value A0,∞ approaches
infinity and the derivative 11.16 approaches 4

S exp (4A0,∞/S) ∗
1

U−Zfin . This

is an expression of the type “zero∗infinity”, the value of which may be
zero as well as infinity—depending on the scale parameter S. The case of
Z0,fin → L is symmetric as has already been mentioned. The rate of change
of the density is thus determined not only by the difference Afin − A0,fin,
but also by the scale parameter S, which can even change the character of
the function from the concave form (small S) to the U-form (large S).
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It is important to note, how the differences in the kernel’s form are
reflected by the forms of their integrals, the distributions of probability
(Fig. 11.6): the S-form (eg with S = 1) can become a linear function
(S = 4.11) or even an anti-S form with eg S = 10.

The previous examples were symmetrical, because the observed da-
tum was at the central location, the point A0,fin = 1. The influence of
the observed datum on the kernel’s form is illustrated in Fig. 11.7, where
A0,fin = −1.

The peak of the density is close to the observed datum only in the case
of a small value of the scale parameter (S = .5 in the graph). Increasing
S flattens the peak and its maximum approaches the lower bound. Large
values of S change the form of the kernel entirely to a non-symmetric U-
form. The effect of changing the observed datum’s value, while keeping
the scale parameter constant (S = 3), is shown in Fig. 11.8.

The gnostic kernels are parameterized in the general case by four pa-
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rameters (Z, S, L and U) or by their transforms. The observed datum Z
(or A) is given. It can be shown, that the parameters S, L and U are easily
estimated from the data. This is the real sense of the gnostic motto “Let
data speak for themselves”. We have seen, that the choice of these parame-
ters provides an extraordinarily rich palette of forms for the gnostic kernel.
All this results in the expectation, that gnostic kernels will be useful to
estimate distribution functions and densities of many forms, and that the
process of finding the necessary parameters will be not only objective, but
also suitable to a high degree of automation.

11.1.3 What About Q-kernels?

The foregoing analysis of gnostic kernels only developed the concept of
the gnostic probability as defined in 10.42 as p = (1 − hi)/2, where hi is
the estimating irrelevance 9.6. However, as is always the case in gnostics,
there is a dual variable to the probability p, pi = (1 − i hj)/2 in 10.42.
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This duality becomes obvious, when the alternative interpretation of the
probability, pj 10.60 is used. Consequently, it could be asked, whether
there exists a Q-kernel (a kernel based on the quantifying irrelevance hj
in a manner analogous to dpj

dA ). The problem is, that the improbability
pi is a complex number, the modulus of which is between 1 and infinity
and we are accustomed to measure expectations with numbers lying in the
interval [0, 1]. A transformation of the improbability to the interval [0, 1]
is straightforward, making use of formulae 9.17 and 9.18, from which the
E-kernel 11.8 obtains the forms of

dp

dA0
= cos2 (2φ)/S (11.17)

dp

dA0
= cosh−2 (2Φ)/S) (11.18)

because of the equivalence cos (2φ) ≡ 1/ cosh (2Φ). This permits the
consideration of the probability p 11.7 as the function p(hj) of the
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quantifying irrelevance hj and of its derivative as a Q-kernel 11.18. Such
a transformation appears on the surface to bring nothing new, because
this Q-kernel will be equal to the E-kernel considered above. However,
this is true only for the single kernel produced by an individual datum.
Significant differences will appear in the more general case of distributions
obtained by the aggregation of several kernels. These differences are
caused by the aggregation law, which gives different results, when it is
applied to quantifying irrelevances rather than to estimating irrelevances.
The final effect is, that the distribution functions obtained by E-kernels
will manifest a different robustness than those produced by Q-kernels.
This topic will be considered in more detail later on.

The results obtained, when considering Q-kernels, are thus of a sophis-
ticated nature: although the kernels can be introduced in a manner, which
identifies them with their E-kernel counterpart, (from the point of view of
a single datum), they may also provide different (and useful) results, when
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they are applied to data samples. However, the implementation of gnostic
kernels to data samples is not trivial:

1. The form of the kernels depends on the bounds of the data support as
shown e.g. in Fig.11.8. To get rid of this, it is necessary to transform
the finite support onto infinite one.

2. The weight of a data item applied within aggregating may depend on
the location of this item.

3. The kernels’ scale parameters may be location-dependent as well.

All this is to be reflected in estimating algorithms.

11.2 Albert Perez’s Notion of Information

To show, that expression 10.50 can be used as a gnostic measure of the in-
formation brought by an individual datum, it is useful to recall, what the
word “information” means. In general usage it is interpreted as “knowl-
edge or facts” ([80]) or “knowledge acquired in any manner; data; facts;
news; tidings” ([112]). It is the latter interpretations, that are preferred
here, because they are more closely related to the scientific meaning of in-
formation. An example will serve to demonstrate the point. In the simple
sequence, “You have a daughter,” the knowledge, which is imparted, has
a vastly different meaning (value) for a man anxiously waiting on a ma-
ternity ward, than for parents registering a girl for her first day at school.
The message represents knowledge in both cases, but only in the former
case does it impart new knowledge, which decreases the uncertainty of the
person receiving the news.

When dealing with information imbedded in data, a narrower, more
exact notion is needed. What is required is not merely a mathematical
definition, but one, which also includes as many aspects of the idea to be
defined as possible. The following points summarize this approach and are
taken from [84]:2

(1) Information theory is a scientific discipline, the objective of which is
to characterize the abstract notion of a message, without taking into
consideration the various forms, that the message (the signal) may
take, while attempting to remove as many degrading factors (noise)
from the message as possible.

(2) The notion of a message assumes

2Any errors in translation are our responsibility.
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1. the existence of a pair of systems, eg one system representing the
object to be observed and a second one representing the observer
and/or his apparatus3

2. an interaction between the two systems.
(3) This interaction manifests itself

1. by mutual exchange of energy,
2. by changes in the states of the systems.

(4) Changes in the state of these systems can be explained by changes
in their energy, more specifically by the balance between changes in
entropy and its “counterbalance”, information.

(5) A basic characteristic of the notion of a message is the fidelity of the
image, which is reflected or registered by the receiving system from
the emitting system.

(6) The entropy of the whole system (of both the observed and observ-
ing sides)—in general—increases during transmission, however, the
received information may be reused in partial compensation for this
entropy increase.

(7) The random nature of the disturbance factors prevents the precise
characterization of the interaction between the two systems as a fixed,
unique transformation. The suitable tool is the probability of a real
input value conditioned on the observed value.

(8) To measure any quantity of information, a function satisfying the fol-
lowing conditions is necessary:

1. The function is non-negative.
2. When the value of the function increases

(a) the easier it is to recognize the message,
(b) a more refined (a more detailed) description of the observed

system’s states is available.
3. The function reaches its minimum value, when all of the observed

system’s states are equally probable.
4. The function is zero if and only if the received signal is entirely

independent of the emitted signal.
5. The function’s value cannot be increased by any measurable trans-

formation.
6. The function is additive.

(9) In order to serve a useful purpose in cybernetics, information theory
must demonstrate in a practical fashion, that:

3The “object” is what we call “the ideal quantity”. It plays the role of the input of the information
channel. “Data” are the output of this channel, which add the noise (disturbances and uncertainty) to
the input’s clean (certain) value.
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1. by efficiently suppressing the disturbance factors, it provides a
maximum of information, on which to base a decision,

2. it provides a permanent (adaptive) improvement to the control
mechanism by analyzing the messages, that are received, using
the characteristic features of both the observed system as well as
the disturbances.

This paper ([84]) is an example of the work, to which its author devoted
his professional life in an endeavor to implement a notion of information
theory based on classical statistical principles. It is remarkable, that his
formulations are so comprehensive, that they embrace not only the ideas
stemming from the classical approach, but also are applicable to the gnostic
notions, which are being developed here. A brief comparison of the princi-
pal points set out above with respect to information theory (IT) with the
requirements of gnostic theory (GT) follow:

(1): In GT, the IT’s “message” is a datum, the “signal” is the datum’s
ideal value and the “noise,” the numerical image of the uncertainty.
These notions take no account of the physical and/or technical nature
of the vehicle, which carries the message. This is demonstrated among
others by equation 11.8, which shows, that the gnostic probability p
depends only on the ratio (A − A0)/S. The scale parameter has the
same physical dimension as A and A0. The vehicle, which carries the
message (the data values) may have different physical dimensions (eg
US$, Volt, ton, year), but they cancel out, when the ratio is evaluated.
Information change Ij (10.52 depends only on the probability p. It is
thus independent of the nature of the carrier of the message.
The gnostic concept is an abstract idea, which results from Axiom
1 (using abstract algebra), and the information formula (10.52) is
developed from this axiom by pure mathematical reasoning.
The goal of GT is identical to that of IT: to minimize the effect of the
uncertainty, which degrades the message (data).

(2): The basic structure of GT is analogous to that of IT: The observed
system (“emitter” of the message) is the commutative group of real
quantities, the observing system (“receiver”) is given by the commuta-
tive group of observed data. The interaction between the two systems
(“information channel”) is mathematically modeled as the quantifica-
tion process.

(3): The receiver/emitter interactions in the GT’s systems (described in
the previous chapter) cause changes in energy and in (thermodynamic)
entropy, that are evaluated for the different states, that occur. GT’s
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realization of the Perez’s third point is preferred over the IT approach,
because the entropy in GT is a measure of the quality of the signal’s
(the data’s) energy, while in the IT methodology, Shannon’s infor-
mation and Boltzmann’s negative statistical entropy have no direct
relation to the signal’s energy changes.

(4): In GT, the complete balance of (thermodynamic) entropy and infor-
mation results from the analysis of the sources of the entropy field,
which leads to formula 10.62, the mutual conversion of entropy to
information.

(5): The fidelity of the “reflection” (to be understood as the quantification
and/or estimation transformation) of the true (ideal) value is measur-
able using the G-weight (9.3) and/or G-irrelevance (9.4). These G-
characteristics are closely interrelated: they can be interpreted respec-
tively as the derivative and the integral of the latter and vice versa,
because they can be expressed as trigonometric or hyperbolic func-
tions (see 9.15). These characteristics really play a basic and crucial
role in gnostics: they are components of the rotation operator (9.2),
which represents the uncertainty, and they are closely connected with
the metric used for measuring uncertainty (9.15). These features also
determine the amount of thermodynamic entropy (10.26), the proba-
bility distribution (10.42) and density (11.8) of an individual datum,
the sources of its entropy field (10.61), the sources of the datum’s in-
formation field (10.62) and the information change (10.58) caused by
uncertainty.

(6): An entropy increase over the quantifying process, due to observing
interactions (stemming from the uncertainty) of the two systems, is
obvious from 10.26 with fi (by 9.10) and q (by 9.8). The fact, that
the entropy increase can never be fully compensated by the results of
observation (by using and treating the observed data), is demonstrated
by the positive value of the entropy residua at the termination of the
Ideal Gnostic Cycle, as computed by equation 10.63.

(7): Although there is no notion of randomness in GT, the emitting to
receiving systems’ interactions (the three stages of the Ideal Gnostic
Cycle) are not described by a deterministic mathematical model be-
cause it is not possible to find the two unknown quantities (Z0 and Φ)
from the single observed quantity (Z). It is for this reason, that the
conditional probability distribution 11.7 and its density function 11.8
must be used instead of a one-to-one mapping Z0 ↔ Z.

(8): The function H(p) 10.50, which is used to evaluate changes of in-
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formation due to estimation in GT, satisfies the requirements listed
above in items 8.1 through 8.6. This is a direct result of (Shannon’s)
information theory since the formulae used in GT are (formally) the
same functions as in IT. Moreover, information theory shows, that this
function is the unique real continuous function of a set of probabilities
(eg P1, P2, . . . , PM), which satisfies the condition of invariance of its
form, when the probability model is refined by increasing M , ie when
the model is made more detailed, by describing more states.

(9): It will be shown through examples in succeeding sections, that the
gnostic notions of information have practical application in a number
of areas including decision and control as well as adaptive systems.

While Perez’s vision of an ideal information theory (as we interpret it)
as described in the foregoing summary was addressed to statisticians and
to information theorists developing Shannon’s ideas based on statistical
notions of probability, it is also completely replicable by the application
of the gnostic principles, which have been presented. However, the gnos-
tic methods have additional features, which deserve attention, and which
represent useful tools, that are not available in the standard information
theory approach:

• All of the important notions of IT are represented in GT by math-
ematical formulae, which were obtained by mathematical reasoning,
and which immediately connect them to the data.
• The notion of Boltzmann’s statistical entropy as well as of Shannon’s

information formula are based on an a priori given probabilistic model
(on a given system of probabilities P1, P2, . . . , PM), which describe the
possible states of the system. However, the problem of estimating
these probabilities from the data is external to IT, and has no con-
nection to the data entropy or data information. In contrast, gnostics
presents a joint mathematical model of data uncertainty, data entropy,
data information, data probability and of the Ideal Gnostic Cycle as
an instrument capable of estimating all these characteristics of data
uncertainty.
• Both Boltzmann’s and Shannon’s approaches to uncertainty are based

on the standard statistical concept of collective (mass) random events.
Here again, the gnostic characteristics of uncertainty including prob-
ability, entropy and information have been derived to treat an indi-
vidual event (neither a random nor a deterministic occurrence), but
an uncertain one (due to a lack of knowledge about the event’s char-
acteristics).
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• Boltzmann’s formula for a system’s statistical entropy is introduced
by a direct definition of the statistical mean of the logarithmic proba-
bilities of the system’s states. The gnostic notion of entropy, however,
has been derived (using a Gedanken-experiment) beginning with the
more elemental notion of thermodynamic entropy of the Clausius’s
type, which is not based on any probabilistic concept.
• Shannon’s information formula appeared heuristic as the negative of

Boltzmann’s probabilistic entropy. This step was motivated by the
simple idea, that information is something directly opposite to en-
tropy. Once again, in contrast, the gnostic notion of information is
derived by consistent mathematical reasoning beginning with the ele-
mental Axiom 1 all the way to the entropy ↔ information conversion
equation 10.62. The process has shown, that the relation between
information and (thermodynamic) entropy is much more complex. A
conversion law of this nature is not available within the framework of
standard information theory.
• Probability in gnostics was determined as a by-product of the deriva-

tion of information and not as an a priori known notion. This deriva-
tion shows, that probability and information as used in GT are insep-
arably interdependent. This statement is also supported by another
result of GT: Consider product p ∗ (1− p), which is used in IT as an
alternative measure of information entropy ([111]). In GT it has the
following form:

p ∗ (1− p) =
f 2
i

4
, (11.19)

which results from 10.42, 9.4 and 9.3. There is a direct link between
this product and information in GT—formula 10.51, the reciprocal
of the product 11.19 is the source of the field of information (10.50).
This is another useful linkage, which does not exist in IT.
• Improbability (pj, 10.56) and Q-information (Ii, 10.58) have come

about as by-products of this derivation and these notions extend the
set of usable G-characteristics of uncertainty. All these gnostic charac-
teristics are inherently robust, which permits them to suppress various
kinds of data disturbances with a different intensity4.
• The next chapter will demonstrate how the four gnostic integrals of

virtual movement (Q- and E-entropy, Q- and E- information) are sub-
jected to variation theorems, from which the optimality of the Ideal

4The uncertainty of a datum (from whatever sources), which would be different for each datum, results
in the assignment of a specific weight to the datum.
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Gnostic Cycle is derived. This manner of justifying an estimate’s
optimality, although widely used in physics, is seldom employed in
theoretical statistics.

The unusual notion of improbability deserves a further comment. Unlike
probability, it is a complex variable. A complex characteristic of the un-
certainty of events is known from quantum mechanics—the wave function
of a particle. This quantity is not directly measurable, but its modulus
can be determined experimentally to characterize the expected spatial dis-
tribution of the particle (the spread of its location). This means, that the
exclusion of a complex characteristic of uncertainty from consideration can-
not be based on arguments of a merely formal nature. On the other hand,
Q-information is a real function, which can be useful due to its special kind
of robustness.

It can thus be concluded, that both the notions of gnostic probability
and gnostic information changes are well justified.

11.3 Why the Least Squares Method (Sometimes)
Works

The notion of “the best estimate” of an unknown quantity from observed
data is closely connected to a definition of “the best”. In mathematics,
“the best” is ordinarily identified with the solution of an extremity prob-
lem. A criterion function evaluates the quality of the desired unknown
quantity’s estimate, and the estimate, that minimizes or maximizes the
function, is accepted as the best estimate. The most popular criterion
function is doubtless the second statistical moment of the estimate or the
mean of the sum of quadratic estimating errors. This relates not only to
one-dimensional estimation but also to multidimensional problems (eg to
regression modeling).

There are several important reasons for the least squares method’s pop-
ularity:

1. It can be well justified theoretically in statistics for a number of sta-
tistical data models:
(a) The least squares estimate may be shown to be a special case of

the broadly accepted estimation method of maximum likelihood.
(b) The method may yield sufficient estimates, ie estimates, which

make use of all knowledge about the estimated parameter avail-
able in the given data sample.
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(c) The estimate may be efficient, ie its variance may reach the lower
bound of variance among all possible estimates of the given class.

(d) The method yields an unbiased estimate.
2. It is simple and easily understood.
3. It is a familiar concept because it is taught in basic statistical courses

and explained in statistical textbooks.
4. Its numerical solution is frequently simple because of linearity with

respect to data.
5. Its numerical procedures are available not only in statistical software

packages, but also in spreadsheet programs and even on pocket calcu-
lators.

6. Its results (when they consist of the solution of a system of linear
equations) are unique. No interpretation problems arise in such cases.

As always in mathematics, if the theoretical assumptions of the method are
warranted, then the method “works” in the sense, that its results have the
theoretically predicted qualities. Conversely, if the assumptions cannot be
justified, then not very much can be said about the quality of the results.

Interestingly enough, many practicing statisticians can confirm, that
the least squares estimating method sometimes “works” in a practical
manner not only for the “proper” uses, but also for unknown data models.
Moreover, it sometimes works, even when applied to data, which evidently
do not satisfy the theoretical assumptions. This outcome can be explained
theoretically in the framework of gnostics by reference to the results of
Chapter 10.

Indeed, when the absolute value of an (additive) data observation error
SΦ is sufficiently small with respect to the first terms to neglect the second
terms of 10.65 and 10.66, then all the characteristics Ej, Ei, Ij and Ii
approach quadratic errors. This means, that—in such special cases of
relatively precise data—minimization of quadratic errors also minimizes
both entropy and information changes caused by data uncertainties.

The term “sometimes” used in the heading of this section in connection
with a proper outcome of the least squares method can be now made more
specific; the method can be expected to give good results if at least one of
following assumptions is true:

Statistical: The data model satisfies all the requirements of statistical
theory, under which the applicability of the method is warranted.

Gnostic: Data errors are sufficiently small to neglect the deviation of en-
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tropy and information changes from the quadratic functions in 10.65
and 10.66.

Another interesting conclusion can be drawn from 10.65 and 10.66 and
is also reflected by 10.67: if the absolute data error is relatively small,
then the Ideal Gnostic Cycle (approximately, up to the fourth power of the
data error) is reversible. The real meaning of this conclusion is, that “ideal”
estimators can exist, which completely remove the entropy increase and the
decrease in information caused by data uncertainty. For other situations,
gnostics is more realistic, showing that a process working in accordance
to the Ideal Gnostic Cycle cannot completely recover the damage done to
data by uncertainty.

From this point of view, the least squares method can be considered an
approximation to the special case of gnostic estimating procedures, justified
only in cases of sufficiently precise data.

The theoretical importance of this section is in that a theory (GT),
valid generally even for gross data errors, has been shown under some spe-
cial constraints (small data errors) to provide not only the same results
as a broadly accepted (statistical) theory, but also to explain and quan-
tify the limits of suitability of the particular statistical method. In other
words, an important non-empty intersection of the two theories based on
substantially different paradigms has been set out.

11.4 The Estimating Characteristics of Uncertainty

It will be useful to summarize the results of the previous sections, at least
for the estimating phase of the Ideal Gnostic Cycle, in a vivid form. The
practical importance of the estimating characteristics of data uncertainty
is in their robustness with respect to outliers. It is this kind of robustness,
that is needed more frequently in applications. This does not mean, that
the opposite kind of robustness—with respect to inliers—is unimportant.
Such robustness (achievable by using quantifying characteristics) is espe-
cially useful for problems, where values of rare large signals are observed
over the noise created by many “false” impulses, which have smaller am-
plitudes. This robustness of quantifying characteristics results from the
analytic form of quantifying weight and irrelevance (9.10 and 9.11 with
c2 = 1) as was explained in Chapter 9.

We limit ourselves at this juncture to the estimating characteristics
because they give a clear insight into the nature of robustness in estimation.
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A study, which includes both kinds of robustness will be examined later
on.

To classify uncertainty by its size, it is useful to introduce the relative
estimating error

δk =
A0 − Ak

S
, (11.20)

where A0 is again the ideal and Ak the observed value of the k-th datum,
and where S is the same scale parameter as before. Four classes of data
errors by size are defined in Tab. 11.1:

Error’s size Symbol of the class Approx. bounds

Very small errors VS |δi| ≤ 0.005
Small errors SE 0.005 ≤ |δi| ≤ 0.015
General case GC |δi| <∞

Extreme EX |δi| → ∞

Tab. 11.1 Four classes of data errors

Tab. 11.2 clarifies the behavior of estimating characteristics with respect
to the size of data error. The bounds were estimated by numerical methods.

Estimation Class of the error
characteristics VS SE GC EX

Data error 2 ∗ δi 2 ∗ δi hi (9.4) −1+ or +1−
Data weight 1 1− 2 ∗ δ2

i fi (9.3) 0+

Entropy fall 0 −2 ∗ δ2
i fi − 1 (10.26) −1+

Probability 1/2 1/2− δi p (10.42) 0+ or 1−
E-information 0 2 ∗ δ2

i Ij (10.52) log(2)

Tab. 11.2 Estimation characteristics of data uncertainty for different
classes of data errors

This small table is worth a careful examination, as it summarizes the
results of the foregoing section. The fourth column (the general case) iden-
tifies each variable with the applicable general formula, which is valid for
an error of any arbitrary size. The other columns contain approximations
obtained for the special cases of data size, which were defined in Table
11.1:
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Very small data errors (VS): The estimating error evaluated by the
irrelevance approaches the value of the relative error, which is one of
the traditional evaluations of the error. (The constant factor 2 does
not play a significant role.) Data weight is a constant, independent of
the error value. All data have the full weight of 1. Probability equals
0.5: all we can get from the datum’s value is, that the unknown ideal
value may be either less or more than the observed data value. This
conclusion does not depend on the data error. Entropy’s changes as
well as information changes are completely ignored.

Small errors (SE): Error evaluation is the same as for very small errors,
but the data weight decreases with increasing squared error—worse
data are getting a smaller weight than the better ones. The proba-
bility of the ideal value is a linear function of the relative error. This
permits a rough characterization of the probability’s dependence to
the error for data values close to the ideal value. The entropy and
information changes are evaluated by the same formula, but with op-
posite signs. Entropy changes are thus completely balanced by the
information changes—the quantification/estimation cycle is (approxi-
mately) reversible in this special case. The quadratic character of both
functions of uncertainty supports use of the least squares method for
data contaminated with small errors.

Extreme errors (EX): The bounds for errors obtainable for gross data
errors and outliers are obtained as limits of the general case (GC) and
are shown in the last column of Tab. 11.2. The most important fact
is, that all estimating characteristics are bounded—an unlimitedly in-
creasing or decreasing data error (outlier) cannot force an estimating
characteristic beyond its finite range. This feature will be shown later
to be the source of robustness with respect to outliers, which charac-
terizes the gnostic estimating procedures.

11.5 Summary

The method of kernel estimation of probability density and distribution
plays an important role in statistics and it is supported by a well devel-
oped theory, that establishes the conditions, under which it is unbiased and
consistent. Its value is rooted in the broad range of distribution functions
and data, to which it is applicable. It has been shown, that the deriva-
tive of gnostic probability functions satisfies all the conditions for use as
a kernel estimate, and therefore the methodology can be used to estimate
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gnostic probability functions. It was also demonstrated, that the gnostic
kernel plays a geometric role and is suitable for use as a Riemannian metric
function for measuring distances (in probabilistic terms) between the ob-
served datum and its estimated value. The concept of gnostic kernels can
be generalized in a natural way far beyond the borders of the statistical
concept of kernel estimation. The great flexibility of the forms of gnostic
kernels extends their applicability to a very broad choice of distribution
functions and densities. All the foregoing justifies the acceptance of the
gnostic probability function.

A general concept of information theory as presented by Albert Perez
(which can be found in the literature) is sufficiently broad, that it can sup-
port not only concepts of information using the usual familiar statistical
probability theory, but it also can accommodate other approaches. When
gnostics is coupled with information theory, not only are the necessary re-
quirements fully satisfied, but a further advantage is gained by the addition
of several features, which are not available, when the usual classical form
is used.

The results of the gnostic theory explain, why the very popular least
squares sometimes works, not only when its application is justified by sta-
tistical theory, but also in more general situations. Gnostics shows, that
least squares methods are nearly optimal, if the relative data errors are suf-
ficiently small. This—both theoretically and practically—important result
is obtained by a detailed consideration of the behavior of gnostic character-
istics. This analysis also documents the robustness of gnostic estimating
characteristics of data uncertainty with respect to outliers or inliers.



Chapter 12

Optimality of Gnostic
Characteristics

12.1 Pragmatism and Theory

A conflicting definition of the notion “pragmatic” is given in [80]:

Pragmatic ... dealing with problems in a practical way rather
than by following theory or principles.

If we are to accept this premise, then all science would be nothing, but a
bare collection of ornaments, which embellish life as we know it. From this
point of view it would be difficult to understand, why the world’s most suc-
cessful industrial companies develop in their laboratories not only applied,
but also basic research on a level frequently honored by the Nobel prize.
Such activities are motivated by more than mere philanthropy. Nuclear
power stations, antibiotics, laser, electronics, communication satellites and
many other examples of recent technologies are all very practical, but they
would not exist without a highly developed scientific background. From
this standpoint, a more suitable interpretation of pragmatism can be found
in [112]:

Pragmatic ... testing the validity of all concepts by their practi-
cal results.

Now there is no contradiction in the notion of a “pragmatic theory”, which
can be defined as being a theory oriented to producing practical results
in the best possible way. This definition is in good agreement with the
popular statement the most practical thing is a good theory.

Gnostics aspires to be such a practical theory; in this context:

Producing practical results is the outcome of data processing, which
serves the needs of praxis by applying the principles of the gnostic

175
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theory of uncertain data.
The best way is determined comparing the results obtained, when a par-

ticular process is examined using different analytical methodologies.
The goal of gnostic procedures is to minimize the uncertainty of the
outcome by optimizing a suitable gnostic characteristic of the data’s
uncertainty. The most important among these characteristics are in-
formation loss and entropy increase. However, depending on the re-
quirements of robustness, other gnostic characteristics, which are in-
herently connected with data information and entropy, can be used.

The notion of the best possible way for data treatment is based on the
theoretically justified limits for the residua of information and en-
tropy changes within the Ideal Gnostic Cycle. The information loss
or the entropy increase caused by uncertainty cannot be completely
eliminated (10.63 and 10.64); however, using the theory, one can only
endeavor to obtain results, which are close to the theoretical limits.

Several gnostic characteristics as well as the notions of the Ideal Gnostic
Cycle as a model of quantification and estimation have been developed.
The goal of this chapter is to show, that this theory can be employed as
the starting point for “producing practical results in the best possible way.”

12.2 Gnostic Paths as Extremals

An extremal is a path of integration (one of a set of paths connecting two
fixed points), for which the path integral’s value reaches an extreme value.
The popular belief, that the shortest path between two points is a straight
line connecting the points is based on the hidden assumption, that one
applies Euclidean geometry. However, the use of a different geometry may
lead to a different result.

Indeed, consider a movement between two points 〈x, y〉 and 〈x+dx, y+
dy〉 of the real plane R2 written as pair numbers x+cy and (x+dx)+c(y+
dy). Applying two simple geometries (the Euclidean and Minkowskian),
the differential of the distance between the points is

dΛc = |
√

(dx)2 − (cdy)2|. (12.1)

Introducing polar coordinates, combining 8.31, 8.32 and 8.35, assuming
a constant positive scale parameter, and using c ∈ {j, i}, assuming x >
0, x ≥ |y| expressions

x = %c(cSΩc) cosh (cSΩc) y = %c(cSΩc) sinh (cSΩc) (12.2)
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may be written. (To consider both gnostic paths and alternative paths,
the radius variable %c is taken as a function of the angular variable cSΩc.)
Differentiating 12.2, substituting into 12.1, and taking into account the
equivalences

(c ∈ {j, i})(d cosh (cSΩc) = c3S sinh (cSΩc)d(Ωc)) (12.3)

and
(c ∈ {j, i})(cosh2(cSΩc)− c2 sinh2(cSΩc) = 1), (12.4)

dΛc = |
√
d%2

c(cSΩc)− %2
cd(cSΩc)2|. (12.5)

is obtained. To calculate the length of a path P from a point ua = xa+cya
to a point ub, either the path integral

Λc(P) = |
∫ %c(ub)
%c(ua)

√√√√√1− %2
c

d(cSΩc)

d%c

2

d%c| (12.6)

or

Λc(P) = |
∫ Ωc(ub)

Ωc(ua)

√√√√√ d%c
d(cSΩc)

2

− %2
c d(cSΩc)| (12.7)

can be used, where %c(u) and SΩc(u) are respectively the radius and angle
of the pair number u. In a general case, the path’s length may be a real or
a complex number.

Due to the nature of the Minkowskian plane, two points can be con-
nected by a continuous line only if both of them are in the same cone of
the plane (1Uj, 2Uj, 3Uj or 4Uj, see Definition 6, Chapter 10). Hence, we
shall assume in what follows, that all points on any path being considered
are restricted to the same cone. The same arbitrary restriction will apply
in the case of the complex plane because of the one-to-one mapping of com-
plex numbers onto the double numbers introduced in gnostics to represent
the duality of quantification and estimation.

The goal is to show, that three special paths (quantification and es-
timation paths PQ and PE, introduced in Definition 7 of Chapter 10,
are extremals. For this purpose, alternative paths P∗, which satisfy the
following conditions are needed:

1. they are continuous and at least once differentiable,
2. they connect the same (initial and end) points ua and ub as the paths

are subjected to variations,
3. the length of the radius vector (%) is not necessarily constant,
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4. the radius vector’s angles cSΩc of the paths’ points are not necessarily
constant,

5. the inequality d%2
c − %2

cd(cSΩc)
2 > 0 holds for all points on the path.

Those paths, which satisfy conditions 1 through 4 will be called variated
paths, while those satisfying all five conditions will be boundedly variated
paths.

Applying 12.6 to the simple special case of straight lines connecting
points ua and ub, the angle cSΩc is constant for all points on the paths
including the end points, and the second term in 12.6 vanishes. The lengths
under the geometries considered are

Λc(PL) = |%c(ub)− %c(ua)|, (12.8)

where PL stands for the non-variated, straight-line connection of the two
points.

For variated paths and c = i the inequality

|%i(ub)− %i(ua)| = Λi(PL) ≤ Λi(P∗L) (12.9)

obviously holds, because the second term added in 12.6 is nonnegative and
the case of zero variation is not excluded. This relation becomes the well-
known Euclidean variational theorem for straight lines:

The straight line connecting two points on the Euclidean plane
is the shortest of all variated paths.

However, the Minkowskian case (c = j, c2 = 1) leads to more surprising
results. The positive second term in 12.6 is subtracted leading to

Λj(P∗L) ≤ Λi(PL) = |%j(ub)− %j(ua)|, (12.10)

where P∗L denotes an alternative boundedly variated path. The correspond-
ing Minkowskian variational theorem for straight lines thus states:

The straight line connecting two points on the Minkowskian plane
is the longest of all boundedly variated paths.
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It has been shown, that linear paths can model a real (eg inertial) move-
ment, while the circular gnostic paths (orthogonal to paths of real move-
ments) model the quantification or the estimation process, ie the virtual
movement under the action of uncertainty.

Let us now use the integral 12.7 to consider variation theorems for gnos-
tic circular paths. Both the Q- and E-paths are completely determined by
the theoretical model of an observed datum. Let a particular datum be
modeled by the double number um = Z0,m exp(SΦm). The radius of the
quantification circular path is equal to the ideal data value 8.32

%j,m = Z0,m, (12.11)

while the radius of the estimation path is (by 10.8)

%i,m = Z0,m

√
cosh(2SΦm). (12.12)

It is important to note, that Z0,m, S and Φm are constants for any given
datum, therefore both radii %c,m (c ∈ {j, i}) are constants also. The polar
coordinates of points on the circular paths will be denoted by %c and cSΩc.
Circular paths having different radii are geometrically similar. To analyze
a general case of Q- and E-paths, which have different radii, it is therefore
useful to introduce the relative length of these paths (and of paths obtained
by their variations); this is defined as

λc,m =
Λc,m

%c,m
, (12.13)

where Λc,m is integral 12.7 taken for cSΩc(ua) = 0 and cSΩc(ub) = cSΩc,m.
By substitution of 12.7 into 12.13

λc,m = |
∫ cSΩc,m

0

√√√√(
1

%c

d%c
d(cSΩc

))2 − 1d(cSΩc)| (12.14)

is obtained.

For a constant radius the first term vanishes and expression 12.14 re-
duces after trivial integration to

λc,m(Pc) =
√
−(c SΩc,m)2, (12.15)

where Pj refers to PQ and Pi refers to PE.

The relative length of the estimation path (c2 = −1) is thus real, while
that of the quantification path is purely imaginary. For a variated E-path
P∗E equation 12.14 leads to the relation

S|φm| = λi,m(PE) ≤ λi,m(P∗E), (12.16)
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because the first term in 12.14 is non-negative. In the case of the Q-path a
bounded variation of the path does not change the imaginary character of
the relative length. For the moduli of imaginary relative lengths of Q-paths
the relation

|λj,m(P∗Q)|i ≤ |λj,m(PQ)|i = S|Φm| (12.17)

results from 12.14.

This leads to the following variational theorems for gnostic Q- and E-
paths:

Theorem 12: Let Pc be a Q-path (c = j) or an E-path (c = i) of an Ideal
Gnostic Cycle defined in accordance with Definition 7 for an observed
datum, the dual model of which is um = Z0 exp(j SΦm).
Let P∗c be a variated (for c = i) or boundedly variated (for c = j) path
defined as above.
Let φm be the angular coordinate, for which relation tan (Sφm) =
tanh (SΦm) holds.
Then
A. The relative length of the circular E-path PE equal to S|φm| is the

shortest of all variated E-paths P∗E.
B. The modulus of the relative length of the Q-path PQ equal to S|Φm|

represents the longest of all boundedly variated paths P∗Q.

These variational theorems, which can be proved even using a more
strict and complete way (see [61] and [101]), have important consequences
related to the interpretation and optimality of the Ideal Gnostic Cycle.

12.3 Extremality of Entropy and Information

12.3.1 Extremality of a Path Integral

Calculus of variations as a method for solving problems of the extremal-
ity of path integrals was motivated by both scientific and practical needs,
especially in the development of physics. It became apparent, that im-
portant laws of physics could be formulated in extraordinarily economical
and elegant forms, which are called variational principles. So, eg the basic
(Newton’s) equations of mechanics (primarily accepted as axioms) can now
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be obtained by assuming the validity of Lagrange’s or Hamilton’s varia-
tional principles [67].

Variational techniques not only serve as an alternative mathematical
language to reformulate known regularities of Nature, but also as an inspi-
rational tool for discovering new relationships.

Variational principles are deeply interconnected with the conservation
laws (such as eg the Energy and Momentum Conservation Law) and with
a special category of path integrals called stationary 1. As stated above,
if the value of these integrals depends on the integration path, then the
path, for which the integral’s value reaches an extreme value is called the
extremal.

A simple example will illustrate these notions. An artificial satellite
above the Earth can maintain (by inertia, without activating its rocket
drives) an elliptical orbit. The parameters of this orbit are determined by
the initial conditions, which result from the launch process. The orbit is
the extremal, which satisfies the variational principle—the minimization
of the total (kinetic and potential) energy of the satellite (which may be
evaluated by a path integral). No additional energy and no additional
momentum is needed for it to sustain this periodic movement. A deviation
from the orbit (a variation of the path) is possible only by changing energy
and momentum, which results in a deviation from the original inertial orbit
(the previous extremal path).

There is a significant difference between the roles of path variation in
physics and in gnostics. Physics uses variational principles, which repre-
sent formal alternatives to Laws of Nature. These laws were discovered
and then generally accepted, because they did not conflict with experience
and no scientific evidence was proposed falsifying them. However, their
logical status are hypotheses, which have not yet been disproved; this
gives them the same status as basic axioms. In contrast, gnostics proves
such features as variational theorems, which result from much more ele-
mental and directly verifiable gnostic axioms. However, the mathematical
technique, that applies to the variation theorems of gnostics, is identical
to that, which is used in the case of variation principles of physics.

There are several approaches to the formulation and solution of varia-
tional problems. In Riemannian geometry, the extremal line is called the
geodesic. It can be calculated if the (Riemannian) metric of the space has

1A path integral is called stationary if its value does not change under small variations of the integration
path.
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been determined. Variational features of functionals may also be studied
by direct analysis of integrals and integration paths. This technique was
used in [61] and [101] to show the extremity of gnostic characteristics. The
advantage of this approach lies in the precise and complete characterization
of the neighborhood of the extremal, within which the variational theorem
holds.

It is sufficient for the purpose of this book to make use of only one
simple method based on a well-known classical lemma [67].

Lemma 1:
Let u(t) be a differentiable and initially unknown function R1 → R1.
Denote u̇ = du

dt .

Let F (u, u̇, t) be a given differentiable function R3 → R1 and t1 and t2
given fixed numbers.

Let I be the integral

I =
∫ t2
t1
F (u, u̇, t)dt. (12.18)

Then the integral I is stationary if and only if the following condition
is satisfied:

∂F

∂u
− d

dt

(
∂F

∂u̇

)
= 0. (12.19)

The proof of this lemma can be found in the appendix to this chapter.

If a path is extremal, then the path integral must be stationary, but the
opposite is not automatically true. The stationarity of a path integral does
not directly imply extremity of the path, because there exist path integrals,
which do not depend on the path at all. This is why a determination
of stationarity has to include a demonstration, that the integral really
depends on the path.

12.3.2 Variational Theorems for the Q- and E- Entropy Change

Lemma 1 can be used to show the extremity of the changes in entropy.
Substituting 9.3 into the formula of the entropy change 10.26,

Ec,m =
∫ 2c SΩc,m

0
sinh(2c SΩc)d(2c SΩc) (12.20)
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is obtained, where Ωc,m is a fixed pair number and Ωc a pair variable. This
relation can be rewritten as

Ec,m = 4
∫ c SΩc,m

0
cosh(c SΩc) sinh(c SΩc)d(c SΩc). (12.21)

Denoting t = c SΩc, u(t) = 2 sinh(c SΩc) and u̇(t) = 2 cosh(c SΩc) one has
F (t) = uu̇ and Ec =

∫ t
0 F (t)dt, whereby

∂F

∂u
= u̇ =

d

dt

∂F

∂u̇
. (12.22)

The integral Ec,m 12.21 is thus stationary. Consider the integral 12.20 for
a variated path P∗c :

E∗c,m =
∫ 2c SΩc,m

0
sinh(λc(P∗c ))d(λc(P∗c )), (12.23)

where P∗c is again P∗Q for c = j and P∗E for c = i. By applying Theorem 12
(inequalities 12.16 and 12.17) to integral 12.23 and assuming a non-zero
uncertainty (SΩc,m 6= 0), it can be seen, that for a non-zero boundedly
variated quantification path, the inequality

0 < E∗j,m < Ej,m (12.24)

holds, while for non-zero variations of the estimation path

Ei,m < E∗i,m < 0. (12.25)

We have thus arrived at the variation theorem for the entropy changes.

Theorem 13: Let Ec,m (c ∈ {j, i}) be the entropy change (10.26) taking
place within the quantification or estimation phase of the Ideal Gnostic
Cycle applied to an observed datum, the dual model of which is
um = Z0 exp(j SΦm).

Let E∗c,m be the entropy change corresponding to the variated (c = i) or
boundedly variated (c = j) path of the integral 12.23 for jΩj,m = Φm and
iΩi,m = φm.

Let SΩc,m 6= 0 and let the trivial case of variations identically equal to
zero be excluded.

Then
0 < E∗j,m < Ej,m (12.26)

and
Ei,m < E∗i,m < 0. (12.27)

The increase in entropy from quantification is thus maximized, when the
integration path PQ is followed. Conversely, if the estimation path is used,
PE, the entropy decrease is as large as possible.
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12.3.3 Variational Theorems for E- and Q-information

To show in a simple way how both Q- and E-information are subjected to
variational theorems, it is useful to recall equations 10.43 and 10.44, which
describe the relationship between sources of entropy and information fields.

Q-information is obtained by integrating the Q-entropy along the esti-
mation path with a radius of ri. If a variated path r

′

i is used for the same
entropy field, the absolute value of the variated sources of information
increases, because ri < r

′

i by 12.9. Hence, relation

− 1

(1− p)p
< − 1

(1− p′)p′
< 0 (12.28)

(where − 1
(1−p′)p′ is given for a variated source of information) follows from

10.43.

E-information is obtained by integrating the E-entropy along the quan-
tification path with a radius of rj. For this radius relation 12.10 holds.

Relation

0 <
1

(1− p′i)p
′
i

<
1

(1− pi)pi
(12.29)

based on 10.45 therefore exists between sources of E-information in the
case of the path PQ and of a boundedly variated path P ′Q. All the sources

preserve their signs for all values of their parameters (p, p
′
, pi, p

′

i). The
stronger the field’s source, the stronger the field. Relations, which are
valid for the information fields analogous to 12.28 and 12.29 also exist
and have been developed for a given (fixed) entropy field. However, due
to the extremality of the entropy fields as shown by Theorem 13, both
the Q-entropy increase and the E-entropy decline are maximal. These
features together with 12.28 and 12.29 justify the variational theorem for
information.

Theorem 14: Let Ic,m (c ∈ {j, i}) be the information change (12.26)
taking place within the Ideal Gnostic Cycle of an observed datum, the
dual model of which is um = Z0 exp(j SΦm).

Let I
′

c,m be the information change obtained for the variated (c = i) or
boundedly variated (c = j) integration path of information’s sources
10.43 or 10.45.

Let SΩc,m 6= 0 and let the trivial case of variations identically equal to
zero be excluded.
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Then
0 < I

′

j,m < Ij,m (12.30)

and
I
′

i,m < Ii,m < 0. (12.31)

Variational theorems for entropy and information of individual data
represent important results of gnostic theory. They were originally proved
using methods, which differ from those applied in this chapter (see [61] and
[101]). Unfortunately, the technical details of these methods may compli-
cate understanding of the main ideas, which were offered. The objective
of this chapter has been to provide an insight to these thoughts, which is
“as simple as possible, but not simpler.”

12.4 Optimality as a Game with Nature

To reach a desired destination from a given starting point an aircraft needs
a time interval and consumes an amount of fuel, which is dependent on the
chosen path. A detailed knowledge of physics is necessary for a theoretical
determination of the optimum path to be taken. The role of the aircraft’s
crew in trying to maintain the best possible path may be interpreted as that
of men playing a game with Nature. By using its own laws (eg gravitation,
air dynamics), Nature not only impedes the solution of the air transport
problem, but also makes it difficult to follow the optimum path by intro-
ducing pressure disturbances and air turbulence as it makes its moves in
a game played with the crew. A theorist computes the optimum path, a
navigator checks for deviations from this optimum path, and the pilot tries
to eliminate the deviations. Moves “against Nature” are more successful
with better knowledge of both Laws of Nature and the true position of the
aircraft.

A similar “game model” may be applied to data processing by repre-
senting Nature’s move as the introduction of disturbances into the quan-
tification process. A data analyst’s “counter-move” is the application of
an estimation method, which minimizes the “costs” imposed by the un-
certainty contaminating the data. Gnostics provides data analysts with
a detailed theoretical description of this game, the Ideal Gnostic Cycle.
Theorems 13 and 14 describe Nature’s “strategy”—to maximize data en-
tropy and to minimize data information by following the Q-path of the
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IGC. Nature’s game is thus crafty and refined, but it is always played ac-
cording to honest fixed rules. The same theorems show, that the entropy
increase and the consequent reduction in information can be minimized by
using the E-path. This is thus the best “counter-move.” We already know
from Chapter 10, that Nature always wins in its play with men: residua
of entropy and information changes within the Ideal Gnostic Cycle can-
not be completely eliminated. However, the amount of uncertainty can
be decreased by using better measuring techniques and by identification
and elimination of factors, which contribute to data uncertainty. There are
therefore two ways of improving the results of the information game with
Nature:

1. To maximize data quality by improving observation, identification and
measuring techniques.

2. To maximize information obtained from given data by improving data
processing techniques.

While the first task is self-evident, the second one is far from trivial. There
exist many data processing methods; and all of them are based on a model
of uncertainty. Statistical ideas have dominated this field for centuries,
but recent doubts about the universal applicability of statistics (eg as dis-
cussed by [22], [42], [44], [70], [72], [75] and [44]) have brought about the
present state of the art, which can be characterized as a highly structured
competition between models of uncertainty and methods based on these
models. The paradigm based on the gnostic theory of uncertain data is
also one of those competing ideas. It is not likely, that there will be a
clear winner; it is more probable, that suitable methods based on different
approaches will be found to solve specific tasks. But, among these, the
challenge represented by the gnostic model of uncertainty, which explains
the “mechanics” and “physics” of uncertainty and culminates in unique
variational theorems should not be left out.

12.5 Summary

Unlike physics, which uses variational principles to reformulate its axioms,
gnostics develops variational theorems from its much more elemental and,
in principle, experimentally verifiable axioms for the paths of gnostic vir-
tual movement and for entropy and information changes caused by data
uncertainty. Gnostic variation theorems relate to the phases of the Ideal
Gnostic Cycle and state, that

1. The quantification and estimation paths are extremals:
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(a) the relative length of the quantification path represents the max-
imum from all the boundedly variated paths,

(b) the relative length of the estimation path is the minimum of all
variated paths.

2. For a given individual datum
(a) the entropy increase caused by data uncertainty reaches its max-

imum, when the quantification process follows the extremal Q-
path,

(b) the datum’s entropy falls to a minimum, when the estimation
process follows the extremal E-path.

3. For a given individual datum
(a) data information is minimized under the effect of uncertainty,

when the quantification process follows the extremal Q-path, and
(b) data information rises to a maximum, when the estimation process

follows the extremal E-path.

The variational theorems have shown, that the Ideal Gnostic Cycle can be
used as the optimal path to be followed by the data processing algorithms
to minimize the effects of data uncertainty.
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12.6 Appendix to Chapter 12, Proof of Lemma 1

Since knowledge of calculus of variations is not in everyone’s tool-box,
a sketch of the proof is included here to facilitate understanding of the
principal steps and the results of the chapter, [67]:

Proof of Lemma 1:
Let I be the stationary value of integral 12.18 corresponding to the path P , and I

′
the

integral’s value obtained for a path P ′
modified by δ − variation, in the following way:

assume, that a point (t, u+δu) of the variated path P ′
is attached to each point (t, u) of

the path P . The variation is arbitrary, but sufficiently small and subjected to boundary
conditions

δu(t1) = δu(t2) = 0. (12.32)

This variation may be expressed as

δu = ϑδα, (12.33)

where α is a parameter defined over the path and ϑ is an arbitrary function of t, for
which

ϑ(t1) = ϑ(t2) = 0. (12.34)

The corresponding variation of the derivative u̇ has the form

ϑu̇ = ϑ̇δα, (12.35)

where ϑ̇ denotes the derivative dϑ
dt
. Since the variations are small, the integrand F (u, u̇, t)

can be expanded into a Taylor series using only the first terms to obtain the integral
I

′
= I + δI for the variated path as

I
′
=
∫ t2

t1
[F (u, u̇, t) +

∂F

∂u
ϑδα +

∂F

∂u̇
ϑ̇δα]dt. (12.36)

After integration by parts applying 12.34 one obtains∫ t2

t1

∂F

∂u̇
ϑ̇δαdt = −

∫ t2

t1

d

dt

∂F

∂u̇
ϑdt. (12.37)

The integral’s variation is thus

δI = δα
∫ t2

t1

(
∂F

∂u
− d

dt
(
∂F

∂u̇
)

)
ϑdt, (12.38)

which will be identically zero for an arbitrary function ϑ if and only if 12.19 holds.
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Chapter 13

Aggregation of Uncertain Data

To this point the (gnostic) answer to the question, “How should the uncer-
tainty inherent in the observed value of an individual datum be measured?”
has been derived and justified. It has been shown, that the task of mea-
suring uncertainty is far from a trivial effort, and that it is a long way
from what might be considered a common sense approach. Now with the
background of the gnostic theory of individual uncertain data, a second
significant question can be posed:

Data aggregation problem: Given a sample of data, which are the
results of (a real) quantification of a fixed (“ideal”) quantity: how should
be the individual uncertain data and/or their characteristics aggregated
to obtain those quantitative characteristics of the data sample, which
will be useful in estimating the ideal quantity?

This is another seemingly trivial question, which is likely to motivate a
non-trivial exploration of a range of issues.

13.1 Data Aggregation in Statistics

13.1.1 Linear and Nonlinear Weighing

It is useful to distinguish between classical and robust statistics: the latter
notion is used extensively to describe statistical methodologies, which do
not require the analyst to use a specific data model, but permit a broader
class of models to be employed instead. The results of robust methods are
therefore less sensitive to deviations of real data behavior than those, which
rely on classical models. The practical application of statistical methods is

191
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thus enhanced at the price of an acceptable loss of efficiency [33]. We will
use the notion of “classical” statistics to denote “pre-robust” methods.

A well known data aggregation problem in classical statistics concerns
estimates based on data taken from several samples, which have different
variances. It is an easy exercise to show, that eg an estimate of the mean
of all the data (obtained by a weighed data sum) has the smallest vari-
ance, when the weights are the reciprocal of the relative variances of the
respective data sources. The same weights must also be used to estimate
the weighed mean’s variance as an additive aggregation of the variances
of each of the individual data sources. These and similar procedures are
worth further comment:

1. There is no connection between the uncertainty of a particular datum
and its weight. The source of the weight, which is applied to the datum
is the variance, a “collective” characteristic of all the data from the
same source. The particular datum’s uncertainty has only an partial—
through its contribution to ’collective’ variance—and limited role in
the determination of its own weight.

2. The use of constant weights for the additive aggregation of data and
of the squared deviations from the arithmetic mean (used in the es-
timation of the ordinary mean and standard deviation) is a special
case, that is justified only when the variance of the data is assumed
to be the same for all subsamples of the treated sample.

3. The additive aggregation of data and of the data squares is based on
a Euclidean measure of data errors.

4. The data aggregation methods for robust statistics are derived in an-
other way. The data weights, which are applied, depend on the errors
of individual data, which in turn are dependent on the statistical mod-
els of the data, that are believed to apply. These are based on a priori
assumptions about the data, which differ from the assumptions of
classical statistics.

There is an alternative (geometric) interpretation of the nonlinear weighing
of errors used in robust statistics. Indeed: errors are distances. A distance
can be thought of as an interval additively aggregated of subintervals. The
sum of the lengths of each subinterval measured along a straight line using
Euclidean geometry is equal to the difference between the interval’s end
points, independent of the location of the subinterval within the interval.
The total length, that represents several Euclidean errors, is obtained by
the addition of the length of each individual error; they enter the sum with
the same (unitary) weight. The result of such a aggregation is therefore a
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linear function of the end points of each interval. In contrast, when using
Riemannian geometry, the lengths of the subintervals in an interval depend
on the location of the subinterval. This causes the aggregation law of errors
to be a nonlinear function of the end points of the individual intervals.

Therefore, the data-dependent weights typical in robust statistics can
be viewed as an application of a non-Euclidean geometry. A mathematical
purist could become concerned about the mathematical consistency of ro-
bust statistics, as a structure built over classical statistics. Both approaches
have been presented as being based on probability theory, however, prob-
ability is defined as an additive measure. It can be said, that statistics
evolved from Euclidean geometry. Is it then legitimate to ask, whether
it is (mathematically and philosophically) correct to apply non-Euclidean
concepts within the framework of a theory, which has been grown from
a Euclidean seed? This contradiction is fortunately not a problem with
gnostic theory, which has not hidden its close connection with Riemannian
geometry.

The data aggregation method used in classical statistics is also inter-
esting, but from another point of view. What might be the origin of the
additive aggregation of errors and their squares?

13.1.2 Newtonian Aggregation

Consider a group of N “small” material objects from the point of view of
classical (Newtonian) mechanics. The mass of the k-th object will be mk,
and the projection of its velocity on a coordinate axis is vk. The momentum
of this object is thus mkvk and its kinetic energy is mkv

2
k/2. Because of the

linearity of Newton’s equations, the moments may be added so that it may
be concluded, that if there are no forces acting on the objects, the sum
of the moments (as well as the sum of kinetic energies) of all the objects
is constant. Newton’s equations are thus equivalents of the (Newtonian)
Conservation Law. It is important, that the validity of this Law of Nature
(for sufficiently small velocities) had been supported by experience over
several centuries. If it is desired to find an object with a mass

me =
N∑
k=1

mk, (13.1)
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which is equivalent to the mass of a series of smaller objects in the sense
of classical mechanics, then the velocity of this equivalent is equal to

ve =
1

me

N∑
k=1

mkvk. (13.2)

and the kinetic energy of the equivalent object is given by

mev
2
e/2 =

N∑
k=1

mkv
2
k/2. (13.3)

The aggregation preserves the sum of masses 13.1, moments 13.2, and
kinetic energies 13.3.

Suppose, that a smooth curve, X(t), is to be fit to a series of obser-
vations, x(t1), ..., x(tN), which represent the movement of an object. The
observation errors, ek, evaluated in the Euclidean way are X(tk) − x(tk)
and their impact on the result is wk (the manner, in which the weights are
determined, is not important).

Inspired by the idea of Newtonian aggregation, the objective is to create
a single, aggregated error equivalent to the sum of all N errors. Therefore
the linear mappings

wk = K1mk (13.4)

and
ek = K2vk (13.5)

are introduced. Each weighed error wkek is thus attached to the momentum
mkvk and the weighed quadratic error wke

2
k to twice the value of the kinetic

energy mkv
2
k. It is then logical to attach the equivalent momentum

meve =
1

K1K2

N∑
k=1

wkek (13.6)

to the sum of weighed errors, and the equivalent energy

mev
2
e/2 =

1

2K1K2
2

N∑
k=1

wke
2
k (13.7)

to the sum of weighed error squares. For a scientist accustomed to see-
ing the world through Newtonian glasses, the best fit of the smooth curve
will minimize the equivalent energy of the fitting errors under the con-
straint, that the equivalent momentum of fitting errors is zero. In other
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words, the requirement is, that the sum of the weighed squared errors be
minimized, while keeping the sum of weighed errors equal to zero.

From the initial idea of the Conservation Laws of classical mechanics, we
have followed a path, that has lead to the family of unbiased least squares
estimates of classical statistics. This was not a particularly roundabout
trip, for before the specialization and compartmentalization of the various
scientific disciplines, researchers pursued interests in many branches: me-
chanics, astronomy, mathematics, etc., so that these ideas were not followed
by a single individual, but very likely by several working independently,
and over an extended period of time (Mayer, Euler, Laplace, Legendre,
Gauss and others). The point is, however, that the methodology was de-
veloped to explain natural phenomena, ie, some perceived Laws of Nature.
Among the objects of interest of these scientists an important role belongs
to fitting smooth parameterized curves (eg ellipsis) to observed astronomic
data. The idea of measuring the fitting errors by moments and energies
was thus under then existing conditions natural. And these scientist were
among founders of statistics . . . .

The thought behind this ‘mechanical’ explanation of statistical aggre-
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gation can be summarized using the commutative diagrams (Figs. 13.1 and
13.2). The simple mapping Mi in Fig. 13.1 defined by 13.4 and 13.5 de-
picts the mechanical momentum of an object onto the weighed error of an
individual datum. Mapping Me illustrates the mechanical equivalent of
the moments of all the objects—the sum of all moments—on the equiv-
alent of all the errors. To ensure the commutativity of the diagram (the
equivalence of the result of the transformation of individual momentum→
total momentum→ aggregated error with that of individual momentum→
individual error → aggregated error), one also has to choose the additive
aggregation law for data errors. It is obvious from 13.4 through 13.6, that
the mappings Me and Mi cannot be chosen independently of each other).

Fig. 13.2 is an analogous commutative diagram for energies and squared
errors. An important feature of the mapping of mechanics into statistics
is its invariance with respect to the group of linear transformations of the
coordinate system moving with a constant velocity.

Another possible inspiration of statistics from mechanics is covariance.
In statistics, it is the mean of the product of two centralized random vari-
ables. In mechanics, a similar expression exists, and it evaluates the in-
ertial moment of a rotating body. A popular aid for the visualization of
multivariate correlation—the correlation ellipsoid—also has as a possible
mechanical predecessor: the ellipsoid of inertia.

The link between classical mechanics and classical statistics demon-
strated above undoubtedly exists, although it does not exclude other moti-
vations for the additive data aggregation law, ie the aggregation of adding
data, linear data errors, and squared data errors. So, eg, mathematicians,
who might prefer the use of only a pure mathematical explanation can
recognize the source of the mapping in the linear and quadratic character
of the statistical and mechanical variables. The above discussion is not
meant to imply, that the pioneers of statistics simply copied the mechanics
of the time to create the basic notions of statistics. The only real connec-
tion is, that these similarities really exist and they provide solid support
for the additive aggregation of data, errors and squared errors; however
the common roots of this link lie with its geometry. This comes from not
only that the notion of linear errors is based on Euclidean geometry just
as the notions of classical mechanics, but also from the fact that Galileo
made an important contribution to both mechanics and also to Euclidean
geometry, which is not as well known as his other contributions to scien-
tific knowledge. The notion of time was not considered in geometry until
Galileo explicitly formulated the idea of “time-homogeneous” space, which
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is equivalent to the assumption of an unlimited speed of light ([118]). This
assumption, of course, existed before Euclid’s formulation of geometric ax-
ioms1, but it was hidden and accepted unaware of its origin. History has
shown, that some of the greatest scientific revolutions were preceded by
the explicit statement of assumptions, which had heretofore been implic-
itly accepted. Later developments in physics rejected the implicit idea of
the time-homogeneous space and lead to relativistic mechanics with aggre-
gation laws, which substantially differed from those of classical mechanics.
Given all of these parallels, it is not unnatural to expect, that the aggre-
gation of uncertain data also requires substantial parallel revision.

13.2 Aggregation Axiom of Gnostics

13.2.1 Motivations

The decisive impetus for a substantial revision of both the mechanics and
geometry of real space resulted from experiments, which proved the finite
speed of light. Instead of a time-homogeneous purely geometric space
it became necessary to consider space-time along with its non-Euclidean
geometry. Relativistic relations respecting the finite speed of light appeared
to be invariant with respect to the Lorentz’s group of transformations of
all inertial (moving with a constant velocity) coordinate systems. Thus
this single physical fact determined both the geometry to be used as well
as the class of transformations, which describe the underlying processes.

Gnostic theory, which models entirely different processes of quantifica-
tion began from yet another experience resulting from quantitative observa-
tion and the measurement of natural processes: real data form a structure
manifesting the features of a commutative group. In developing this idea,
we arrived at data uncertainty models, which are in a close (linear) relation-
ship (7.10, Theorem 5) with the energy-momentum tensor of relativistic
mechanics. Major features of this relation need to be emphasized:

1. it has been derived for individual free relativistic particles and indi-
vidual uncertain data,

2. it holds for all pairs joined by the mapping condition v/v∗ = tanh (Φ)
and it is therefore Lorentz-invariant,

3. it is linear.

The relativistic Conservation Law states, that the energy-momentum ten-

1About 300 B.C.
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sor of a group of free particles is equal to the sum of the tensors of the
individual particles; moments as well as energies are thus aggregated ad-
ditively. The invariance of the relation 7.10 with respect to Lorentz’s
transformations warrants its universality. Addition of the left-hand side
of this relation results in the addition of matrices M(0, 2Φ). These matri-
ces contain the weights and the irrelevances of individual data. The sum of
moments and energies of particles correspond to the sum of quantification
weights and irrelevances. Both the quantification weights and the quan-
tification irrelevances of individual data are thus aggregated additively. If
one accepts the Conservation Law of relativistic physics, then—so as not
to give rise to a mathematical contradiction—one have to accept the ad-
ditive aggregation law for both weights and irrelevances of uncertain data,
at least for quantification.

Commutative diagrams in Figs. 13.3 and 13.4 illustrate the idea in the
same manner as for classical mechanics and statistics (as was shown in
Figs. 13.1 and 13.2). By appealing to well known principles of physics,
there is no need to introduce the aggregation law for the quantification
phase of the Ideal Gnostic Cycle as an axiom. However, the gnostic the-
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ory of individual data has been developed as a mathematically consistent
theory from Axiom 1. Knowledge from other sciences (measurement the-
ory, thermodynamics, mechanics) was used only as motivations to support
the mathematical definitions. To maintain the mathematical autonomy of
gnostics, it is desirable to accept the relation 7.10 again as a motivation
and to introduce the aggregation law of uncertainty as another axiom. The
case of estimation also gives reason to proceed in this manner.

There is a one-to-one mapping between quantification and estimation
models of each uncertain datum induced by the relation of trigonometric
and hyperbolic tangents 8.36. However, this relation does not map the
group of Minkowskian rotations onto the group of Euclidean rotations. It
can be easily seen that the mapping of individual angles considered does
not result in the same mapping for their sum. The aggregation laws for
estimation irrelevances and weights do not result automatically from those
accepted for quantification. One must therefore look for other reasons to
choose the estimation version of the aggregation law. The simplest idea is:
to take over the additive aggregation law from quantification and to ap-
ply it to estimation. There are conditions, which support this idea: both
quantification and estimation weights were interpreted as linear functions
of thermodynamic entropy, which is an additive quantity. Both quan-
tification and estimation irrelevances are derivatives of the corresponding
weights. Hence, additive aggregation of weights results in the additive
aggregation of irrelevances.

Other factors, which support the idea of the same aggregation law for
quantification and estimation are of a formal mathematical nature. Both
types of data models form special structures, 2-algebras of double and
complex numbers. Addition is a defined operation within these algebras.
Moreover, the similarity between these structures allowed pair numbers
to be used and this lead to the formally identical appearance of both the
quantification and the estimation formulae. To preserve this advantage and
the formal unity, it is natural to accept the same—additive—aggregation
law for both kinds of weights and irrelevances.

In order to formulate the aggregation axiom, it is necessary to describe
precisely, what shall be understood to be a data sample.

13.2.2 Data Sample

In statistics, the notion of a sample is used together with the notions of
population, parameter and statistic ([110]):
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• A population is the complete and entire collection of elements (scores,
people, measurements, and so on) to be studied.
• A parameter is a numerical measurement describing some character-

istic of a population.
• A sample is a subset of a population.
• A statistic is a numerical measurement describing some characteristic

of a sample.

Because of the substantial difference between the mathematical models,
the role played by population in statistics can be only approximated by
the set of possible data in gnostics. As we have already seen, the gnostic
model of a set of possible data is the commutative group, while the most
frequently used model of a statistical population is a much more complex
structure, the sigma-algebra. Notions of samples are therefore also differ-
ent. Statisticians require, that a sample be more than an arbitrary subset
of a population; they assume, that the sample has been obtained from the
population by a purely random selection. There is no randomness in gnos-
tics and no random selection. Instead, a sample is a finite collection of
uncertain data obtained by the quantification processes. They all are as-
sumed to satisfy gnostic Axiom 1. Each of the data has a theoretical model
of the type shown in Chapter 5. A sample may include data obtained by
the quantification of several (say, L) ideal quantities. To characterize the
effect of uncertainty on all the data aggregated into the sample, the char-
acteristics of the sample’s uncertainty must be obtained. The treatment
of data samples will be the main task of the remainder of Part II of this
book. A detailed definition of the important notion of the data sample in
gnostics follows:

Definition 12: Given an integer number L (L ≥ 1) of N(l)-
tuples of multiplicative data Z1(l), ..., ZN(l)(l) having models Zk(l) =
Z0(l) exp (S(l)Φk(l)) (k = 1, ..., N(l), l = 1, ..., L), where Φk ∈ R1, and
where Z0(l) and S(l) are positive reals, constant for each fixed l.

Denote

Zl(N(l), Z0(l), S(l)) := 〈Z1(l), ..., ZN(l)(l)〉 (l = 1, ..., L). (13.8)

This N(l)-tuple is the sub-sample or cluster.

The L-tuple

Z(L) := 〈Z1(N(1), Z0(1), S(1)), ...,ZL(N(L), Z0(L), S(L))〉 (13.9)

is the data sample. A data sample with an unknown number L of sub-
samples will be denoted Z.
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A data sample will be called homogeneous iff L = 1. A data sample
with L > 1 is heterogeneous.

Let N =
∑N
l=1N(l). Let 〈Ξ1,Ξ2, ...〉 be such a sequence of mappings,

that for all integers N relation ΞN : RN
+ → R1 holds. Denote

qk(l) := (Zk(l)/Z0(l))
1/S(l) (k = 1, ..., N(l), l = 1, ..., L). (13.10)

The value of a function

ΞN(Z(L)) := ΞN(q1(1), ..., qN(1)(1), ..., q1(L), ..., qN(L)(L)) (13.11)

is the gnostic characteristic of the data sample Z(L). Such a character-
istic will be additive, if the relation

ΞN+1(Z(L)) := ΞN(Z(L)) + ς(qN(l)+1(l)) (13.12)

(where l is an integer from the sequence 1, ..., L) holds for a function
ς : R+ → R1.

Let fc,k and hc,k (c ∈ {j, i}, k = 1, ..., N) be the weights and irrelevances
of all N data forming a data sample Z(L). The gnostic characteristic
Fc(Z(L)) is the weight of the data sample Z(L), if it is a function of the
weights of the data in the sample. Similarly, the characteristic Hc(Z(L))
is the irrelevance of the data sample Z(L), if it is a function of the
irrelevances of data in the sample.

13.2.3 Axiom 2

We are thus prepared to accept following aggregation axiom:

Axiom 2 (axiom of the additive aggregation law): Let Z(L) be a
data sample 13.9 aggregated of N data weights and irrelevances fc,k and
hc,k (c ∈ {j, i}, k = 1, ..., N). Then the weight Fc(Z(L)) and irrelevance
Hc(Z(L)) of the data sample Z(L) are

Fc(Z(L)) =
1

N

N∑
k=1

fc,k Hc(Z(L)) =
1

N

N∑
k=1

hc,k. (13.13)

Both the weight and the irrelevance of a data sample are additive gnos-
tic characteristics of the data sample. In consonance with the motivations
discussed above, these characteristics have the same form for both quan-
tification and estimation.
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The definition of gnostic characteristics 13.11 is more general than that
of the weight and irrelevance set out by Axiom 2. While other characteris-
tics will be useful in the development of what follows, the aggregation law
13.13 is of fundamental importance in defining the gnostic theory of the
data sample.

It is emphasized, that the number of data N in a data sample is finite.

13.3 Summary

The additive aggregation law for data, errors, and squared errors commonly
used in classical statistics can be justified by the formal coincidence of the
basic statistical notions with those of classical mechanics. A weighed linear
error is analogous to the momentum of a freely moving mass particle, and
the square of this error corresponds to the particle’s kinetic energy. The
aggregation law for moments and energies is known, and it results from
the Energy and Moment Conservation Law of classical mechanics. To
complete the analogy and to show the strong support from mechanics to
statistics, the additive aggregation law for statistics also must be accepted.
The similarity of classical statistics to classical mechanics has deep roots,
which are derived from the fact, that both theories are based on the same—
Euclidean—geometry.

Just as it was seen in the gnostic theory of individual uncertain data,
there is also a close formal relationship between the weights of data and
their irrelevances on one hand and moments and energies of freely moving
relativistic particles on the other hand. These relationships have a univer-
sal validity in the sense of Lorentz’s invariance: they exist independently
in a broad class of coordinate transformations. To preserve the validity of
these relationships for data samples, one has to accept the additive aggre-
gation law for both the gnostic weights of data and the data irrelevances.
This choice provides support for a aggregation law of uncertainty from the
Conservation Law of relativistic physics. The additive aggregation law for
both the quantification and the estimation of data weights and irrelevances
is accepted as Axiom 2 of gnostic theory. The similarities between gnostics
and (special) relativistic mechanics comes from the fact, that both theories
have common origins in non-Euclidean, Minkowskian geometry.



Chapter 14

Gnostic Characteristics of a Sample

14.1 The Modulus of a Data Sample

The data composition axiom defined the weight and irrelevance of a data
sample. From these basic gnostic characteristics, a number of other impor-
tant features of a sample can be derived so as to describe its uncertainty.
Definition 12 introduced the notion of a data sample, which included
data with different scale parameters, so that the k-th datum’s uncertainty
was SkΩk,c. So as to preclude the necessity of specifying particular scale
parameters, unless it is otherwise noted, Ω

′

k,c := SkΩk,c will be used to
describe the uncertainty of individual data in this chapter.

Definition 13: Let c ∈ {j, i}. Let Z be a data sample, the weight and
irrelevance of which are Fc and Hc. Denote

ΩZ,c :=
1

2c
arg tanh(c Hc/Fc), (14.1)

where the symbol argtanh(∗) represents the inverse of the hyperbolic tan-
gent, so that c Hc/Fc = tanh(2c ΩZ,c).

The pair number
eZ,c := exp(2c ΩZ,c), (14.2)

the components of which are denoted by

fZ,c := cosh(2c ΩZ,c) and hZ,c := 1/c sinh(2c ΩZ,c), (14.3)

is the equivalent of the data sample Z.

Then the ratio
MZ,c := Fc/fZ,c (14.4)

will be called the modulus of the data sample Z.

203
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It is obvious, that both pair numbers

EZ,c := Fc + c Hc (14.5)

and eZ,c characterize the uncertainty of the data in the sample. They
each represent the overall uncertainty of the sample, but in a different
manner. Unlike the pair number EZ,c, the data sample’s equivalent is
normalized in the sense, that |eZ,c|c = 1. It is therefore an operator rotating
a vector by the angle ΩZ,c, which is composed of all angles Ω

′

c,k, and which
represents the data of the sample (k = 1, ..., N). The composition rule
for angles results from the composition axiom 13.13. The argument of the
pair number EZ,c 14.5 is the same as that of eZ,c, but the modulus |EZ,c|c
generally does not equal 1, because the arithmetic mean of sines (cosines)
is not necessarily a sine (cosine) function.

14.2 Some Forms of the Data Sample’s Modulus

The modulus of a data sample can be presented in several forms.

Theorem 15: Let c ∈ {j, i}.
Let Z be a data sample of data Zk (k = 1, ..., N).
Let the pair models of the data be

uk = |uk|c(cosh (c Ω
′

c,k) + c sinh (c Ω
′

c,k)), (14.6)

where
|uk|c = Z0,k (k = 1, ..., N), (14.7)

and where the parameters Sk in Ω
′

k,c := SkΩk,c are not necessarily the
same for all data.

Then the following statements hold:

a) The modulus of the data sample Z can be calculated using the relation

MZ,c =
√
F 2
c − c2H2

c . (14.8)

b) This can be rewritten as the modulus of the arithmetical mean of pair
operators, which rotate vectors by twice the value of the angles of the
sample’s data:

MZ,c = | 1
N

N∑
k=1

exp(2c Ω
′

c,k)|c, (14.9)
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c) which can also be expressed as the geometrical mean of two special
arithmetical means:

MZ,c =

√√√√√
 1

N

N∑
k=1

uk
Co(uk)

 1

N

N∑
k=1

Co(uk)

uk

, (14.10)

where Co(uk) denotes the conjugate 8.11 of the pair number uk.

d) An alternative form is

MZ,c =
1

N

√√√√√ N∑
k,l=1

cosh (2c(Ω
′
c,k − Ω

′
c,l)). (14.11)

e) If for all data in the sample Z relations Z0,k = Z0 and Sk = S hold
(k = 1, ..., N), then

MZ,c =

√√√√√1 +
c2

N 2

N∑
k>l

(fi,kfi,l)(1−c2)/2((Zk/Zl)1/S − (Zl/Zk)1/S), (14.12)

where i =
√
−1, and where fi,k = 2/((Zk/Z0)

2/S − (Z0/Zk)
2/S) is the

estimation weight of the k−th datum.

Proof of Theorem 15: The result from 14.1 and 14.3 is

hZ,c
fZ,c

=
Hc

Fc

. (14.13)

Therefore, by 14.4:
fZ,c = Fc/MZ,c hZ,c = Hc/MZ,c. (14.14)

Statement a) (above) results from 14.3, which states, that the modulus of the data
sample equals the modulus of the pair number EZ,c, which by 13.13 represents the
arithmetic mean of rotation operators fc,k + c hc,k, the exponential form of which is
exp (2cΩ

′
c,k) (9.2). Hence we come to b).

The same form can also be applied to restate 14.8 written as√
(Fc + c Hc)(Fc − c Hc)

in the form √√√√ 1

N

(
N∑
k=1

exp (2cΩ
′
c,k)

)(
N∑
k=1

exp (−2cΩ
′
c,k)

)
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, which is identical to c). Now using the well-known decomposition exp (∗) = cosh (∗) +
sinh (∗) and calculating the product of sums, we arrive at d).

The quantification version of e) (14.12) results from d) (14.11) by elementary substi-
tutions:

cosh (2(Φk − Φl)) =

((exp (Φk − Φl))
2 + (exp (Φl − Φk))2)/2 =

1 + (exp (Φk − Φl)− 1/ exp (Φk − Φl))
2 =

1 + ((Zk/Zl)
1/S − (Zl/Zk)1/S)2.

Recalling 10.53 and 9.5, relations

cos (2(φk − φl)) =

cos (2φk) cos (2φl)− sin (2φk) sin (2φl) =

fi,kfi,l(1 + sinh (2Φk) sinh (2Φl)) =

1 + fi,kfi,l(1− cosh (2(Φk − Φl)))

can be derived, from which the estimation version of the statement e) (14.12) results by
14.11 and by the foregoing formulae.

Formula 14.12 unifies both the quantification and the estimation cases.

It is seen from this proof, that the modulus of a data sample is one of the
gnostic characteristic of the data sample Z.

14.3 Some Important Features of Moduli

14.3.1 Ordering of Moduli

Theorem 15 permits the data samples’ moduli to be ordered.

Corollary 15.1: Let MZ,j and MZ,i be the quantification and estima-
tion version of the modulus 14.4 of the sample Z. Then following relation
holds:

0 < MZ,i ≤ 1 ≤MZ,j <∞, (14.15)

where the cases MZ,j = 1 and MZ,i = 1 take place simultaneously.

Proof: Let all data in the sample be precise. Then all arguments Ω
′

c,k

in 14.9 are zero and both versions of the modulus are equal to 1. If one
of either modulus is 1, then all arguments Ω

′

c,k in 14.9 must be zero. The

quantification and estimation angles Ω
′

c,k are bound by the equivalence of
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their tangents 8.36, they must therefore reach zero simultaneously. The
modulus MZ,i is positive, because the moduli of all non-zero complex
numbers must be so. The modulus MZ,j is bounded, because all the
uncertainties of the real data measured by the angles Ω

′

j,k are bounded.
The inequalities in 14.15 reflect the fact, that the hyperbolic cosines in
(14.11) are for non-zero arguments, and these are always greater than the
corresponding trigonometric cosines.

It can be seen from 14.11, that the values of the data sample’s modulus are
determined by the data spread, which increases as the absolute differences
between the data uncertainty and the data’s true value become larger.
Starting with values of 1 for the moduli of precise data, the quantification
modulus increases and the estimation modulus decreases as the uncertain-
ties increase. In order to use 14.11 to evaluate a modulus, the ideal value
Z0 must be estimated so as to obtain the angles Ωc,k. It is remarkable,
that this requirement does not involve the quantification modulus, which
is completely determined by the data values and by the scale parameter
(see 14.12).

14.3.2 The Case of Concatenated Samples

It is instructive to analyze relations between the moduli of concatenated
samples.

Corollary 15.2: Let Z ′ and Z ′′ denote two homogeneous data samples,
which have the same ideal value Z0 and the same scale parameter S. Let
N ′ and N ′′ be the number of data in the samples.

Let Z be the data sample created by concatenation of the samples Z ′
and Z ′′. Let c ∈ {j, i}. Let MZ,c, MZ ′,c and MZ ′′,c be the moduli of the
data samples Z, Z ′ and Z ′′. Then the equivalence

M 2
Z,c =

 N ′

N ′ +N ′′

2

M 2
Z ′,c +

 N ′′

N ′ +N ′′

2

M 2
Z ′′,c+

2

(N ′ +N ′′)2

N ′+N ′′∑
k=N ′+1

N ′∑
l=1

cosh (2c (Ω
′

c,k − Ω
′

c,l)) (14.16)

together with the inequalities

(N ′2M 2
Z ′,i +N ′′2M 2

Z ′′,i)
1/2 ≤
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(N ′ +N ′′)MZ,i ≤ (N ′MZ ′,i +N ′′MZ ′′,i) ≤ (N ′ +N ′′) ≤
(N ′MZ ′,j +N ′′MZ ′′,j) ≤ (N ′ +N ′′)MZ,j (14.17)

hold.

Proof: By substituting the concatenated data sample into 14.11 and by
application of the features of the functions cos(∗) and cosh(∗).

14.3.3 Gnostic Covariance

To simplify notation, the following symbol for the arithmetic mean of an
N−tuple of real numbers Q1, ..., Qk is introduced:

Q̄ :=
1

N

N∑
k=1

Qk. (14.18)

Definition 14: Let c ∈ {j, i}. Let Z be a data sample composed of data
Z1, ..., ZN . Let Ω

′

c,1, ...,Ω
′

c,N represent the same quantities as in Theorem
15. Then for all K = 1, ..., N − 1 define the gnostic autocovariance:

acovc :=
1

N −K
N−K∑
l=1

hc(2cΩ
′

c,l)hc(2cΩ
′

c,l+K). (14.19)

ZA and ZB are data samples composed of the same number N of data.
Let hc(2cΩ

′

c,n,A) and hc(2cΩ
′

c,n,B) be the irrelevances of these data for
n = 1, . . . , N .

Then the gnostic crosscovariance is

ccovc :=
1

N

N∑
n=1

hc(2cΩ
′

c,n,A)hc(2cΩ
′

c,n,B). (14.20)

When the context clearly identifies the choice between auto- and crossco-
variance, the composite label G-covariance can be used.

Gnostic autocovariances play a role, which can be clarified by means of
another form of the data sample’s modulus:

Corollary 15.3: Let MZ,c be the modulus of the data sample Z in
accordance with Definition 13. It can be written alternatively as

MZ,c =

√√√√√(fc)2 − c2

N
(h2

c + 2
N−1∑
k=1

(1− k/N) acovc(N, k)). (14.21)
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Proof: By expanding the square of the mean value of the irrelevances
(Hc) in 14.8, reordering and summing their products, by using definition
14.21, and notation 14.18.

Unlike the values of (fc)
2 and h2

c, which are always non-negative, the
covariance terms in 14.21 may be either negative or positive. Their sign
depends on the combination of the individual uncertainties. A general
impression is, that if there is no systematic interdependence between angles
Ω
′

c,k of individual data, the gnostic covariances might tend to zero in a
manner similar to ordinary (statistical) covariances. Such a conclusion
has support, as is shown below for the case of sufficiently precise data.
Equation 14.21 shows, that the influence of covariances on the sample’s
modulus can change its value only if there is a systematic pattern in the
data, which produces non-zero covariances. It can therefore be expected,
that gnostic covariances (as in classical statistics) can serve as one of the
tools for measuring the mutual dependence of data within a sample, but
in a robust manner.

14.3.4 Gnostic Median

In statistics, the notion of the median is related to two situations:

1. The median of a data sample is the middle value, when the data are
ordered.

2. The median of a distribution function is the fractile1 related to the
probability 0.5.

In statistics, the median may be (but is not necessarily) connected to an-
other important notion, that of the unbiasedness of an estimate (a zero
mean of the estimate’s error). This idea also has two interpretations de-
pending on the definition of “mean:”

1. The estimate of a data sample’s location (also called position) is un-
biased, if the arithmetic mean of its errors is zero.

2. In relation to a probability distribution function, an estimate is called
unbiased, if the integral of its values weighted by the distribution’s
density equals zero.

In gnostics, errors are measured by the (quantifying or estimating) irrele-
vances (9.4). In accordance with Axiom II, the irrelevances are composed
additively. The irrelevance Hc of a data sample Z is the arithmetic mean

1The fractile (also called quantile) is a number (point) xp, at which the distribution function equals
p(xp).
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(13.13) of irrelevances. It is therefore natural to define the sample’s G-
median as the number Zmed, for which

1

N

N∑
k=1

hc,k(Zmed) = 0 (14.22)

holds (where hc,k is the same expression for irrelevances as in 13.13). This
equation can be rewritten using 9.11 and 9.7 for the quantifying case as

N∑
k=1

q2
k − 1/q2

k

2
= 0 (14.23)

and for the estimating case as

N∑
k=1

q2
k − 1/q2

k

q2
k + 1/q2

k

= 0, (14.24)

where
qk = (Zk/Zmed)

1/S k = 1, . . . , N. (14.25)

These relations show, that
Z̃0 = Zmed, (14.26)

ie that the role of the estimate of the (unknown) true value Z0 is played by
the G-median, Zmed, in this case. The G-median is thus an estimate of the
sample’s location parameter. (Other estimates of Z0 and other location
parameters are discussed below.)

Corollary 15.4: Let ZQ,med and ZE,med be quantifying and estimating
medians, which satisfy equations 14.23 or 14.24, respectively.
Then

1. The quantile ZQ,med sets the Q-irrelevance hZ,j 14.3 of the quantifying
equivalent of the data sample Z to zero, and maximizes both its Q-
weight fZ,j and its modulus MZ,j 14.4.

2. The quantile ZE,med sets the irrelevance hZ,i 14.3 of the estimating
equivalent of the data sample Z to zero, and maximizes both its E-
weight fZ,i and its modulus MZ,i 14.4.

3. The sample’s Q-median ZQ,med is identical to the quantile of improb-
ability of 0.5.

4. The sample’s E-median ZE,med is identical to the quantile of probabil-
ity of 0.5.
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Proof: Both statements 1) and 2) of the Corollary directly result from
definitions 14.1 and 14.3.

Let p̄ and p̄i be the arithmetical means of probabilities and the im-
probabilities defined by 10.42. Writing equation 14.22 as hc(Zmed) = 0,
relations

p(Zmed) = 1− p(Zmed) pi(Zmed) = 1− pi(Zmed) (14.27)

are obtained, which prove statements 3) and 4).

Hence, the gnostic notion of the two medians is always closely connected
with the specific value (1/2) of probability or improbability.

14.3.5 Gnostic Variance

Variance is a measure of the volatility of data. Its estimate can be obtained
in statistics as the arithmetic mean of the squared deviations from the
mean. A similar role, in a way, is played in gnostics by the difference
1 − fc, where c ∈ i, j, and where fc is the G-weight (9.10). As shown
in 9.21, this difference is a function of the squared data error (Φ2). The
arithmetic mean of this difference is thus one candidate for measuring the
volatility or spread of the data. However, there are other functions of Φ2

available in gnostics, both Q- and E-information (10.66), and the square of
Q- and E-irrelevances (9.21). All these functions have their own important
special meanings in gnostics. The difference 1− fc evaluates by 10.26 the
change of entropy caused by the uncertainty, the Q- and E-information
evaluates the change of information caused by uncertainty, and squared
Q- and E-irrelevances determine the intensity of the normalized sources of
the entropy field (shown by substituting f 2

c = 1 + c2h2
c into 10.61). These

functions can therefore characterize the volatility of data in a precisely
defined way, each deserving of its proper interpretation. However, when
referring to the G-variance (Gvar) of a data sample below, it will be
understood to be the arithmetic mean of the squares of Q- or E-irrelevances.
There is a sound reason to prefer this version of the variance: it is a
special case of covariance, which enables the gnostic correlation (Gcor) of
two samples ZA and ZB to be defined in a way similar to correlation in
statistics:

varc(Z) := h2
c (c ∈ {j, i}) (14.28)

and
corc,A,B :=

ccovc,A,B√
varc(ZA)varc(ZB)

(14.29)
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Recalling 9.7 and 9.11, the dependence of the new characteristics on data
can be shown: for an n-th datum Zn, and ideal (true) value Z0, the irrele-
vances are

hj,n =
q2
n − 1/q2

n

2
hi,n =

q2
n − 1/q2

n

q2
n + 1/q2

n

, (14.30)

where

qn :=

(
Zn
Z0

)1/Sn

(n = 1, . . . , N). (14.31)

Then the crosscovariances Q−ccov and E−ccov are found by substituting
14.30 into 14.20 and the variances are obtained by using formulae

varj = h2
j vari = h2

i . (14.32)

Both variances and covariances are dependent on the unknown ideal value
Z0. There are two ways of overcoming this difficulty: to

1. choose the value to serve to a particular purpose, or to
2. substitute an estimate Z̃0 for Z0 instead of the true value.

The former is especially useful in exploring the behavior of the variance
(or covariance) as the value of Z0 changes; the latter allows a particular
value for some of these functions to be set. This is illustrated by corollary
15.5:

Corollary 15.5: Let hc,n(Z0) (c ∈ {j, i}) be the G-irrelevances (14.30)
and fc,n(Z0) the corresponding G-weights.

Let varc,Z(Z0) = hc,Z(Z0)2 (c ∈ {j, i}) be the G-variance of data sample
Z.

Let Z̃0,G (G ∈ {Q,E}) be estimates of Z0, such that

(hj,Zfj,n)Z0=Z̃0,Q
= 0 (14.33)

(hi,Zf 2
i,n)Z0=Z̃0,E

= 0. (14.34)

Then

1. the root Z̃0,Q of equation 14.33 minimizes the Q-variance of the sam-
ple,

2. the root Z̃0,E of equation 14.34 locally minimizes the E-variance of the
sample.
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Proof of Corollary 15.5: By differentiation relations

d(h2
j,Z)

dZ0
= −4fjhj

SZ0
(14.35)

and
d2(h2

j,Z)

d(Z0)2
=

8(f 2
j + h2

j)

(SZ0)2
(14.36)

hold. The first shows, that the necessary condition for extremization
is satisfied and the latter says, that the extremum reached under the
condition 14.33 is a minimum. The second derivative (14.36) is positive
for all Z warranting the uniqueness of the Q-variance’s minimum.

Analogously,
d(h2

i,Z)

dZ0
=

4f 2
i hj
SZ0

(14.37)

and
d2(h2

i,Z)

d(Z0)2
=

8(f 4
i − 2f 2

i h
2
i )

(SZ0)2
. (14.38)

The root Z̃0,E of equation 14.34 actually extremizes the E-variance. How-
ever, the sign of the second derivative of the (averaged) identity 14.38
depends on how the terms f 4

i and 2f 2
i h

2
i are related. The first term is

strictly positive, while the latter can change its sign. For a sufficiently
small Z0 all irrelevances hi(Z0) approach 1, and for a sufficiently large
Z0 they reach −1. In both extremal cases, the E-variance is bounded by
1. However, non-extreme values of Z0 decrease the variance’s addends.
There exists, therefore, at least one (local) minimum.

Additional location parameters of a data sample have thus been devel-
oped: estimates Z̃0,G, which minimize G-variance. These estimates can be
called G-centers (or centerc) of a data sample. The possible existence of
several E-centers of a data sample motivates an analysis of the inner struc-
ture of some samples by observing the behavior of the E-variance, while
the parameter Z0 varies.

14.3.6 Similarity and Correlations

The main goal of the gnostic theory is to provide mathematical models to
depict the uncertain quantitative images of reality. However, in order to
be useful, models must embody the important characteristics of the object
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or processes, which they are to represent. Using such similarities permits
objects or events to be categorized, classified and sometimes even evalu-
ated. An example of such an idea might be taken from financial statement
analysis and entail a judgement as to the financial health of a firm by
comparing its financial parameters with those of “similar” firms. Practical
importance of applications of this nature necessitates the development of
a more detailed insight into the notion of similarity. In this manner the
following important statements can be justified:

1. Similarity is inherently connected with geometry.
2. Covariance and correlation enables dissimilarity to be measured.
3. The classical (statistical) definitions of variance, covariance and cor-

relation are based on Euclidean geometry.
4. The gnostic generalization of these same measures is based on Rie-

mannian geometry. This enables the results to be robust.

Consider a set of points in a plane connected by straight lines to form
a figure. Strictly similar figures have the same relations (proportions) for
the lengths of corresponding lines. Lengths are distances measurable in
accordance with the ‘accepted’ geometry. This holds even in a more gen-
eral case, when the requirement ‘approximate’ (instead of strict) similarity
applies: an analysis of similarity/dissimilarity leads to the measurement of
lengths (sometimes angles), ie to apply geometry. Let X and Y be samples
of data Xm and Ym (where in both cases m = 1, ...,M). A strict similarity
between the samples could be defined by the linear relation

ym = C0 +Ky,x ∗ xm (m = 1, ...,M), (14.39)

the coefficients of which can be easily found. In the case of real data con-
taminated by uncertainties the relation will hold only approximately and
the determination of the coefficients requires, that the notion of approxi-
mation be defined explicitly. A ‘natural’ condition is the validity of 14.39
for the arithmetical mean values of the data (the unbiasedness), that leads
to the elimination of the constant C0,

ym − ȳ = Ky,x ∗ (xm − x̄) (m = 1, ...,M). (14.40)

These equations cannot hold exactly due to uncertainties. Another ‘natu-
ral’ requirement is minimization of the sum of the equations’ errors, from
which the ‘best’ estimate of

K̃y,x =
(ym − ȳ) ∗ (xm − x̄)

(xm − x̄)2
(14.41)
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or—using statistical notions—

K̃y,x =
covariance(y, x)

variance(x)
(14.42)

results.

However, it is easy to see, that both of these ‘natural’ conditions are
based on Euclidean geometry:

Take the m-th error of 14.41 in the form of the difference em = Lm −
Rm between the left hand equation’s side Lm and its right hand side Rm.
The absolute value |em| is the distance between two points in the uni-
dimensional (Euclidean) space 1D. Denote e+

m and e−m the positive and
negative error. The condition of unbiasedness then requires relation ẽ+

m +
ẽ−m = 0 to hold. In other words, the sum of the length of positive errors
should equal the sum of the length of the negative errors.

Now consider M -dimensional Euclidean space MD with a rectangular
coordinate system. Attach to each value em the point on the corresponding
(m-th) coordinate axis to create M mutually orthogonal vectors, the vector
sum of which is E. The second ‘natural’ condition defining the ‘best’
estimate K̃x,y requires, that the (Euclidean) length of the vector E be
minimized. Note, that the Euclidean scalar product as in 6.20 (Chapter 6)
is applied here.

The thusly obtained estimate is well-known as the coefficient of the
uni-variate regression, which ‘explains’ Y by X in the ‘best’ (unbiased
least-squares) way. A popular application is in Beta analysis using the
Capital Asset Pricing Model (CAPM, [83])2. This example can be used
to emphasize an important aspect, which in logic is called symmetry; the
relation measured by Beta is asymmetric: it cannot be expected, that
reaction of the market return to changes in the return of a stock would be
the same as that measured by Beta. On the other hand, similarity is a
typical example of a symmetric relation: if object A is similar to object B
then B is similar to A. Therefore, the coefficient K̃x,y of the regression taken

in the opposite direction should equal K̃y,x. However, this will occur only
in the exceptional case, eg when X ≡ Y (then “X is similar to itself”). A
suitable unique dissimilarity measure satisfying the condition of symmetry
can be obtained by taking

cor(x, y) = sign((ym − ȳ) ∗ (xm − x̄)) ∗
√
|Kx,y ∗Ky,x|, (14.43)

2The Beta of an investment measures the expected sensitivity of its return (y) to the return of the
market (x). The measure, normalized by the variance of the market, also has the form of 14.42.
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which coincides with the ordinary statistical definition of the correlation
coefficient 14.42.

Let us follow these same steps, but now using the Riemannian metric
form 6.13, that applied to measuring an element of the length of a path in
the uni-dimensional space of uncertain data. This measurement reduces to
9.15, which after substitution of 9.3 and 9.4 leads to

dhc = c−1fc(2cΩc)d(2cΩc) (c ∈ {j, i}), (14.44)

where c := j =
√

1 defines the quantifying and c := i =
√
−1 the estimating

metric. Recall the geometric interpretation of (9.12), which shows that
when, because of uncertainty, the value of the observed m-th data item is
Am instead of the true A0, then the quantifying version of the angle Ωc

denoted Φm is

Φm =
Am − A0

S
, (14.45)

where S is the scale parameter dependent on the spread of the sample’s
data. The error, which is caused by uncertainty is thus not directly mea-
sured by the difference Am − A0, but by its nonlinear function, the ir-
relevance hc, which has the form of 9.11. Equation 9.10 allows the role
of the metric weight Fc in this measurement to be evaluated: it de-
creases/increases in the estimating/quantifying case as Am moves away
from A0. This is the feature, which makes the measurement robust with
respect to the outliers/inliers of the sample.

The similarity requirement (14.40) thus takes the form

hc(ym) = Cy,x ∗ hc(xm) (m = 1, ...,M). (14.46)

The requirement for the optimality of this approximation can use several
gnostic functions depending on the criterial function, which is chosen. The
sum of squares of irrelevances can also be used, because it extremizes the
gnostic variance (14.28). Moreover, the squared Q- and E-irrelevances
determine the intensity of the sources of the entropy field (as can be shown
by substituting f 2

c = 1 + c2h2
c into 10.61). As demonstrated in Chapter

10, these sources are offset by the sources of the information field. This
means, that the extremization of squares of irrelevances affects changes
in both entropy and information. The errors of equations 14.46 can be
computed as differences of both sides, ie additively, because irrelevances
are to be combined additively as prescribed by Axiom 2. The minimization
of the sum of squared errors is ensured by the analogy/generalization of
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14.41

C̃y,x =
(hc(ym)) ∗ (hc(xm))

(hc(xm))2
, (14.47)

ie

C̃y,x =
Gccov(y, x)

Gcov(x)
. (14.48)

When the nature of the object/process described by the data allows the
similarity of the relation Y(X ) to be assumed, the gnostic correlation co-
efficient is

Gcor(x, y) =
Gccov(x, y)√

(Gcov(x) ∗Gcov(y)
(14.49)

in accordance with the equation 14.29.

These relatively simple remarks on the nature of correlation lead to the
following conclusions:

1. Covariance and correlation can be interpreted as measures of the sim-
ilarity of data samples based on the
(a) choice of geometry defining the measurement errors and the opti-

mality criterion,
(b) characterization of similarity by a linear relation,
(c) assumption of symmetry in the similarity relation for the case of

correlation.
2. Gnostic notions of covariance and correlation are consistent general-

izations of the classical statistical definitions.
3. The Riemannian character of the geometric background of these no-

tions results in their robustness, the type of which can be chosen (inner
or outer).

4. These notions have optimal features, because they are based on ir-
relevances, the optimality of which results from the optimality of the
gnostic cycle as proved in Chapter 12.

5. The similarity of data irrelevances is linked directly to the similarity
of data probabilities and improbabilities.

The last statement is justified by recalling relations 10.42: estimating ir-
relevances are simple linear functions of probabilities. The same relation
holds between quantifying irrelevances and improbabilities. These relations
are important, because they justify using regression models of probabilities
or improbabilities (See Chapter 17).
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14.3.7 Standard Equivalent of a Data Sample

The data sample’s equivalent was defined in definition 13 by using mean
values of G-irrelevances and G-weights. The idea was to represent the
mean of pair numbers of a data sample by a single pair number. As
shown in Corollary 15.4, the angular argument of this equivalent is zero
at the point Z0 = Zmed. Another equivalent characterizing the variance
of the sample can be introduced. The statistical notion of the standard
deviation is based on deviations from the mean (error), the mean square of
which is the variance. An “analogous” definition of the gnostic standard
deviation (Zc,std) is the square root of the mean squared irrelevance
equaling the minimal G-variance of the data. Corollary 15.6 expresses this
characteristic and the formulae for its calculation.

Corollary 15.6: Let c ∈ {j, i}. Let Z be a data sample composed of
data Z1, ..., ZN . Let Zc,cen be G-center of the sample, which minimizes
its G-variance. Let Zc,std be the gnostic standard deviation, such that
relation hc(Zc,std

Zc,cen
)

2

= varc,Z (14.50)

holds.

Then
Zj,std = Zj,cen ∗ (

√
varj,Z +

√
1 + varj,Z)S/2 (14.51)

and

Zi,std = Zi,cen ∗
1±√vari,Z

1∓√vari,Z

S/2 . (14.52)

Proof: By substituting 14.30 into 14.50 and writing Zj,std (or Zi,std) in-
stead of Zj,n and Zj,cen (or Zi,cen) instead of Z0.

Before Zi,cen is used, it must be checked for its uniqueness.

14.4 Important Features of Gnostic Characteristics

14.4.1 Limit Values for Precise Data

It was shown in previous sections, that the data sample’s modulus gives
rise to several new properties such as fc, hc, h2

c and covc(N,K). Other
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useful features can be derived from data, when gnostic procedures are
used. In Chapter 9, the notion of sufficiently precise data was introduced
to identify data with a small enough uncertain component, that the higher
members of the power series expansion of individual data characteristics
could be neglected. Now the same concept can be applied to the gnostic
characteristics of data samples. (See section 13.2.2 for the gnostic defini-
tion of a sample).

Let the scale parameter of all data be constant and be equal to S. Define

∆ := max
k

(|SΦk|) (k = 1, ..., N) (14.53)

to characterize the bound of the uncertainties of a data sample. Expanding
the formulae of basic gnostic characteristics into a power series and using
Landau’s symbol O(∗) to represent infinitely small quantities, one can ob-
tain the following approximations, which are valid for sufficiently precise
data:

fc = 1 + 2c2(SΦ)2 +O(∆4), (14.54)

hc = 2SΦ +O(∆3), (14.55)

Ec = 2c2(SΦ)2 +O(∆4), (14.56)

Ic = 2c2(SΦ)2 +O(∆4), (14.57)

h2
c = 4c2(SΦ)2 +O(∆4), (14.58)

MZ,c = 1 + 2c2((SΦ)2 − (SΦ)
2
) +O(∆4), (14.59)

and

covc(N,K) =
1

N −K
N−K∑
l=1

S2ΦlΦl+K +O(∆4). (14.60)

In this specific case, there then exists a close relationship between basic
gnostic characteristics and between the first and second statistical moments
of errors. Under these same conditions, the gnostic covariance converges
to that of classical statistics. However, it must be emphasized, that no
correspondence exists, when there is a sizable data uncertainty. The salient
feature of the gnostic characteristics of strongly dispersed data is their
sensitivity/robustness with respect to outlying data. Let us consider this
problem in more detail.
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14.4.2 Sensitivity/robustness of Gnostic Characteristics

Chapter 11 examined the robust characteristics of individual data. These
same ideas will now be explored for the broader spectrum of characteristics
of data samples (see 13.2.2, Definition 12).

Definition 15: Let χN(Z(L)) be a gnostic characteristic of the data
sample Z satisfying Definition 13 (13.11). This characteristic will be
called additive, if for an arbitrary data sample Z composed of data
Z1, ..., ZN and for a data sample Z ′ composed of data Z1, ..., ZN , Z, the
difference χN+1(Z ′)−χN(Z) depends only on the datum Z, its ideal value
Z0 and its scale parameter S.

The largest positive or the smallest negative real number γ, for which
the inequality

0 < limZ→∞(|χN+1 − χN |)Zγ <∞ (14.61)

holds for an arbitrary pair of data samples Z ′ and Z, will be called the
degree of robustness of the gnostic characteristic χ. The negative of the
value of γ is the sensitivity of the gnostic characteristic.

Gnostic theory needs both additive (eg fc, hc, f 2
c , h2

c, ... ) and
non-additive characteristics (eg MZ,c and covc). Using the notion of the
degree of robustness/sensitivity, Tab. 14.1 summarizes the classification of
the gnostic characteristics of data samples.

χ f 2
j h2j fj hj covj covi hi h2i fi f 2

i

γ −4/S −4/S −2/S −2/S −2/S 0 0 0 2/S 4/S

Tab. 14.1 Sensitivity and robustness of several gnostic characteristics of
a data sample

To verify the values of the degree of robustness (γ) in Tab. 14.1, q :=
(Z/Z0)

1/S (9.7) is substituted (Z0 and S are the ideal value and the scale
parameter of the datum Z). The results from formulae 9.10, 9.11 and 14.60
then show, that the differences χN+1 − χN have following forms:

• ((q2 + q−2)/2)c
2

/N (for the mean of weights),
• (q2 − q−2)/(2N) (for the mean of Q-irrelevances),
• ((q2 − q−2)/(q2 + q−2))/N (for the mean of E-irrelevances),
• ((N −K)/(N +1−K)−1)covc(N,K)+hc,N+1−Khc,N−K/(N +1−K)

(for covariances).
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The values of γ can then be determined by substitution of these relations
into the inequality 14.61.

Definition 15 introduces the notions of sensitivity and robustness from
the standpoint of the response of a specific characteristic to the outlying
data. Such a characteristic, which is sensitive to outliers is robust with
respect to inlying data. The converse is also true. To prevent a misleading
classification, we prefer to speak of robustness with respect to outliers and
robustness with respect to inliers before using the notion of sensitivity.

The question may arise as to whether there is any real utility in having
both kinds of robustness. The answer is decisively positive. If the return
on equity for a sample of firms was being examined, for instance, then ei-
ther extreme positive or extreme negative returns would be interpreted as
“abnormal,” distorting the picture of the dominant part consisting of the
“normal” enterprises. These “peripheral” data (outliers) represent “noise”
in the observations. This is analogous to some repeated physical or techni-
cal measurements, where the (rare) peripheral results are caused by gross
measuring errors. An opposite situation occurs, when the objective of the
analysis is to uncover the dynamics of a market’s turning point, the goal of
which is to discover the start of a sudden process of rising or falling share
prices. In this case the “noise” is the “normal” volatility of the prices (in-
lying data) and the required “signal” is represented by (rare) peripheral
data (outliers), which reach beyond the boundary of the frequent “normal”
price movements. This becomes the signal to take some sell/buy action.

14.5 Summary

The sample’s modulus is introduced to normalize both the sample’s weight
and irrelevance. This allows a single gnostic event to represent the whole
of the sample. This is only a limited representation, similar to the case of a
relativistic particle representing a group of particles in the sense of its hav-
ing the momentum and energy of all of the particles. Many aspects of the
individual data in the sample are not reflected by the sample’s equivalent,
the existence of which is warranted only when a sample is homogeneous.
This draw-back in the utility of the data sample’s equivalent (obtained by
means of the modulus) is more than counterbalanced by the possibility of
making use of this feature for testing the sample’s homogeneity.

The data sample’s modulus can be used to demonstrate the role of
useful additive characteristics such as the arithmetic mean of weights as
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well as irrelevances and their squares and to introduce a new non-additive
characteristic, the gnostic covariance. It was shown, that in the case of
sufficiently precise data, there is a simple relation between the basic gnostic
characteristics and the statistical first and second moments. In the case of
gross errors, however, the behavior of gnostic characteristics is substantially
different from those of statistical origin. This difference stems from the
nonlinearity of the gnostic characteristics with respect to data and their
squares. The result is a desirable robustness in the characteristics with
respect to both outliers or inliers. These two mutually complementary
kinds of robustness allows suitable characteristics for each given task to be
selected. Robustness is a natural product of the theory, an inherent feature
of gnostic characteristics of uncertainty, and not something “imported”
from the outside to satisfy some additional requirements. The degree of
robustness of the gnostic characteristics can also be chosen to suit the
requirements of the problem to be solved.



Chapter 15

Distribution Functions of a Data
Sample

15.1 Goodness of Fit

15.1.1 The Problem

The problem under consideration is to design a smooth distribution func-
tion, which characterizes the pattern formed by different values of a given
data set (sample). In the previous description of the Parzen’s and gnostic
kernels (Chapter 11), it was made clear, that the objective of the discus-
sion concerned distributions of probability and/or probability density. The
outcome of the composition of gnostic kernels provides results, which are
interpreted as probability distributions and/or as distribution functions of
probability density (shortly density) of the data sample. It is to be recalled,
that the notion of probability in gnostics differs from the statistical defini-
tion. As it has been pointed out, in gnostics, probability can be interpreted
as the expectation based on the data in the sample.

The model should be a continuous distribution function of the actual
data distribution. It can be obtained in three steps by choosing:

1. A discrete distribution function (DDF) as a set of primary estimates
of the data’s probability defined by the data values.

2. a family of smooth distribution functions suitable to model the DDF.
(Only gnostic distribution functions GDF will be considered in this
connection).

3. A criterion function, the extremity of which ensures the best goodness-
of-fit of the specific GDF to the DDF.

Algorithms used to estimate the distribution functions can combine dif-

223
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ferent choices of these elements. It is useful to examine the steps in a more
detail.

The choice of the modeling function will be considered in detail below.
The elements of the distribution functions to be constructed—the gnostic
kernels, the unique form of which have been derived theoretically—are
already known. It “only” remains to establish the composition rules to
be applied to the kernels to satisfy the gnostic composition axioms. This
question has a simple answer in the case of Parzen’s method: the kernel
estimate of a probability density function is obtained as the arithmetic
average of kernels associated with all the data.

To obtain the discrete distribution function, DDF, a rule determining
the probability to be assigned to each element of the data sample must be
established. Three versions of the DDF will be considered:

1. The Empirical Distribution Function (EDF),
2. the Kolmogorov-Smirnov DDF (KSDDF),
3. the Maximum Entropy DDF (MEDDF).

An initial impression, that the problem of the best fit becomes a trivial
one once the DDF and its model has been determined (since there are
well-known solutions to the curve fitting problem such as least-squares, chi-
square, etc.) would be incorrect, because each of these methods assumes
a specific distribution for the fitting errors (most frequently the normal
distribution). It should be obvious, that when the objective is to find
an unknown distribution model, a fitting procedure based on having prior
knowledge of the distribution cannot be used. Instead, fitting procedures
based on more general principles are to be applied.

15.1.2 The Empirical Distribution Function

When treating sufficiently large data samples, one can approximate their
density distribution by constructing a histogram. The data range is split
into a series of intervals and the number of data falling within the range of
each interval (frequencies) are counted and transformed into a bar graph,
the horizontal axis of which delineates boundaries of the data value classes
(intervals), while the vertical scale describes the frequencies of events for
all the classes. A frequency polygon can be drawn over the set of average
points representing the classes by connecting these points with straight
lines. The cumulative frequency polygon or ogive is then obtained by con-
necting the cumulative frequency points by straight lines. These polygons
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can be used respectively as approximations of the data probability den-
sity and the probability distribution function. To estimate the frequency,
there must be a sufficient number of data in each class, the more there are,
the lower the estimation error. A well-known (Sturges’) recommendation
([110]) as to the necessary number of classes is 1 + (log(N)/ log(2)), where
N is the total number of scores (size of the data sample). It is obvious,
that this method cannot be used for small data samples. Instead, methods
for providing the probability estimates for each element of the sample’s
data are needed.

In statistics, the empirical distribution function (EDF) is defined for a
random variable X as a function F (x) = Pr{X ≤ x}1, which assigns

a measure (between 0 and 1) to data x1, x2, ..., xN , so that F (xn) is the
proportion of observed values not exceeding x. Formally,

F (xn) = Pr{X ≤ xn} =
n

N
(n = 1, ..., N). (15.1)

This relation defines the EDF for N points, but it is usually shown as a step
function similar to an irregular staircase2. The lower level of the bottom
step is zero, and its top is 1/N . The level at the top of the last step is 1. It
is proved in statistics, that under some generally acceptable assumptions,
this EDF converges to the actual probability distribution function of the
data population, when the sample size (N) tends to infinity.

The EDF is thus useful in statistics in the sense of asymptotic behavior.
But this does not automatically mean, that it is acceptable for use with
finite sample sizes. To demonstrate, recall that according to the axiomatic
features of probability, the following identity holds for all x:

Pr{X ≤ x} = 1− Pr{X > x}. (15.2)

Let the lower bound of the data support be LB and the upper bound UB.
Then 15.1 gives F1 = Pr{LB < X ≤ x1} = 1/N and FN = Pr{X ≤
xN} = 1. Using 15.2, the result is Pr{xN < X < UB} = 0. The probabil-
ity, that some X could lie “below the bottom step” (to not exceed x1) is
thus non-zero, while the probability of exceeding xN (“over the top step”)
is zero. This asymmetry is of no importance in the asymptotic case, be-
cause the step’s height tends to zero in this case. However, for a limited
data sample of size N , this asymmetry leads to a contradiction. Indeed, the
roles of probability and of its complement defined by 15.2 are completely

1The symbol Pr{X ≤ x} is to be read as “the probability that the variable X is less or equal to x”.
2The irregularity of a step’s height results from repeated data values.
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symmetric. The choice between estimating either F (x) or its complement
is the matter of a subjective decision and both should lead to identical
results. But this contradicts the fact shown above, that the first decision
could assign a non-zero measure to one of the potentially infinite intervals,
and a zero value to the other, while the latter choice assigns measures in
the opposite manner.

In spite of the broad usage of the EDF in statistics, eg to depict an
“ideal” distribution for a finite sample, the application of this step function
to arbitrarily evaluate the goodness-of-fit cannot be recommended.

15.1.3 The Kolmogorov-Smirnov Points

The Kolmogorov-Smirnov test of goodness-of-fit represents an indirect
application of the empirical distribution function. It is based on the
Kolmogorov-Smirnov statistic, which is defined as the maximum abso-
lute difference between values of two given distribution functions defined
over the same data support. For a one-sample situation, the hypothesis to
be tested is that the sample was taken randomly from a population, which
has a known distribution function. This is not useful for gnostics, because
no a priori data distribution is assumed. The two-sample Kolmogorov-
Smirnov (KS) test is more relevant for our purposes, especially when one
of the two distributions is the EDF. The KS statistic is then evaluated
as the maximum absolute difference between the value of the distribution
function being tested and the step’s level at each of the data points. The
two-sample KS tests are based on the following rather general assumptions:

1. the samples are random samples,
2. the two samples are mutually independent,
3. the data are measured on at least an ordinal scale,
4. the underlying distributions are continuous.

It should be emphasized, that there is no assumption made as to a
particular form for either of the distribution functions. The application of
the KS two-sample test includes the following steps:

a) determination of the absolute difference between the values of the two
distribution functions at a given set of points (often at the data/points
of the sample),

b) finding the maximum value of the absolute differences,
c) comparison of the maximum value with the critical value of the KS

statistic (given by the sample size and the desired significance of the
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test),
d) decision on whether to reject the hypothesis of the goodness-of-fit.

Imagine a distribution model defined as a function (of a known analyti-
cal form) of not only the observed data, but also of an (unknown) parameter
(eg the scale parameter) or even of several unknown parameters (eg scale
parameter as well as the lower and upper bounds of a data support). In
the sense of this test, the best possible choice for each of the unknown pa-
rameters (to ensure the best goodness-of-fit) is the one minimizing the KS
statistic. In the case of a perfectly flexible distribution model3, the model
values at the data points would cross the points of the EDF’s steps at ex-
actly the center of the step’s vertical edges. These “ideal” points will be
called the KS-points and their height can be determined by the formula4

Prn,KS =
2n− 1

2N
(n = 1, ..., N). (15.3)

The collection of these “ideal” points is symmetric, because the probabili-
ties assigned to the intervals (LB, x1) and (xN , UB) are the same and are
equal to 1/(2N). This is logical, because if there is no information as to
the size of either interval, they can be assigned the same probability. The
height of each of the steps is constant (1/N). Again: there is no infor-
mation on expectations, which would suggest, that different probabilities
should be assigned.

The distribution of the KS-points is in consonance with the concept of
Parzen’s kernel estimation: consider a symmetric kernel, the maximum of
which is located over the data point (say, xn). Let the positive kernel’s
values exist only over the interval [xn − ∆/2, xn + ∆/2] and let them be
zero outside of this interval. The kernel is normalized so that its integral
equals 1. Let us assume, that all data in the sample are different, and
that the kernel’s width ∆ is small enough to ensure no overlapping of the
positive parts of the kernels. The kernel estimate of the density function
in this case is a collection of N separate kernels shifted along the data axis
in correspondence with the location of the data. The weight of each kernel
is 1/N , because of the accepted additive composition law. The estimated
probability distribution is given by integration of this density distribution

3One, in which the curvature can change depending on the value chosen for the scale parameter. The
notion of flexibility relates to the ability to ”bend” the DF by decreasing S so as to make the local radius
of curvature unlimitedly small.

4A simplified case of data is considered here: the data values are not repeated and the a priori weights
of all the data are equal. For a more general case see below.



228 CHAPTER 15. DISTRIBUTION FUNCTIONS OF A DATA SAMPLE

and the estimated probabilities are then obtained by:

P̃ r(LB < X ≤ x1) = P̃ r(xN < X < UB) =
1

2N
(15.4)

and

P̃ r(xn−1 < X ≤ xn) =
1

N
(n = 2, ..., N) (15.5)

ie the same system of probabilities, which was formed by the KS-points
Prn,KS for n = 1, ..., N (15.3).

15.1.4 The Maximum Entropy Goodness of Fit

Consider a k-th individual datum with E-irrelevance hi,k (where i =
√
−1)

as in 9.6. As shown in the previous chapters, a value, pk, (10.42) may be
assigned to this datum and it can play three important roles:

1. Its value is the (gnostic) probability (expectation) of the observed
datum’s ideal value.

2. It is the function of an (unknown) ideal datum’s value A0 (or Z0): the
probability distribution function of A0 or Z0 (given observed value Ak

or Zk) and/or—after differentiation—the density distribution function
(or a kernel for kernel estimation).

3. It is the parameter of the function H(pk) (10.50), which can be used
for evaluation of E-information.

Let us assume for the while, that the sample’s data are ordered, so that
relations z1 ≤ z2 ≤ ... ≤ zN−1 ≤ zN hold. (If these relations are not
satisfied, then the data are to be ordered and renumbered). The bounds
of data support (zL and zU) always exist, but whether these values are
known is not important at this juncture. Probabilities are also ordered
as non- decreasing functions of the data. They define N + 1 non-negative
differences Pk = p(zk)−p(zk−1) (k = 1, ..., N + 1), where p(z0) = p(zL) = 0
and p(zN+1) = p(zU) = 1. Consider the expression

RE =
−∑k=N+1

k=1 Pk ∗ ln (Pk)

ln (N + 1)
, (15.6)

which will be called the residual entropy of a data sample. To justify this
name, let us analyze four important features of the function:

1. Distribution: The sum of arguments
∑N+1
k=1 Pk equals 1. This means,

that the probabilities p(zk) (k = 1, ..., N) together with the bounds
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p(zL) and p(zU) define a discrete distribution of N + 1 subintervals
covering the whole interval of probability from 0 through 1.

2. Collapsed data support (zL = zU = zk for all k): All Pk are zero and
so is RE, because limp→0 p log (p) = 0. This is the case of precise data.
There is no uncertainty in these data.

3. Convexity: It is well-known, that the numerator of RE is a convex
function of its arguments Pk.

4. Maximum: It is also well-known from statistical physics, that
the numerator of RE (formally identical with Boltzmann’s statis-
tical entropy of a dynamic system) reaches a maximum (equal to
− log (N + 1)) if and only if all probabilities Pk have the same value
and if their sum is 1. Data are uniformly distributed in this case,
there is no data cluster, no “preference” to any part of the sample.
The residual entropy RE reaches a maximum of 1.

An important note as to the nature of the numerator of expression 15.6
can be added by recalling the way it was derived: it represents the amount
of information, which was provided by the estimation phase of the Ideal
Gnostic Cycle. The greater this information, the greater the portion of the
entropy increase offset by the estimation. The result is, that the system of
N probabilities

Pk =
k

N + 1
(k = 1, ..., N) (15.7)

forms a remarkable discrete probability distribution assigned to an ordered
data sample 〈z1, ..., zN〉. Points calculated according to 15.7 will be called
the ME-points (points of maximum residual entropy). Compare this sys-
tem of ME-points with that of the KS-points considered above: a legitimate
reason for taking the first and last value of the KS-points (which equal only
half of the “inner” values) would be to have a priori knowledge of the data’s
behavior, information existing “outside” of the data sample. Example: We
know, that the interval between zL and z1 is shorter than the other inter-
vals, and that it therefore “deserves” only half of the measure of the other
intervals. (But one can ask, why just a half, and why always a half, if such
special—obviously not general—information is available). In contrast, the
system of ME-points assumes no additional information on the probability
distribution, only knowledge of the data values themselves.

The form of the discrete distribution of the ME-points 15.7 is especially
suitable, when all the data in the sample are different. The a priori weight
of each datum is the same and equals Wk = 1

N+1 . If there are repetitive
data points, it is more practical to go over to a “compressed” sample, where
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all the data will be different, but with weights correspondingly multiplied.
Summing the “accumulated” weights Wk creates a system of ME-points.

15.1.5 The Weighted Empirical Distribution Function

All three approaches to the construction of a discrete distribution function
DDF defined directly by the data considered above (EDF,KS- and ME-)
were based on the a priori assumption, that all data have equal importance:
points on the EDF as well as the KS points assumed a priori weight 1/N ,
while in the case of the ME-approach the weights were taken as 1/(N + 1)
for each element of the data sample. Such an assumption represents a
limitation, which cannot be generally accepted. In practice, one cannot
exclude cases of repeated data values. A simple example consists of data
given as integers (eg counts of events) or as real numbers with limited
precision. Under these conditions, the probability that a data sample will
include two or more equal data values is not negligible. Another example
of a data sample with repeated data values is for data provided in the form
of a histogram. In this case there is not only a data vector, but also a
vector of “a priori data weights”, which represents the number of times
each data value was observed.

It is important to distinguish between two kinds of data weights:

1. the prior weight,
2. the posterior weight, ie the G-weight defined by 9.5.

A priori in this case means “known before data analysis is begun” or
“based on information available and obtained along with the data.” Indeed,
the information, that some of the data have the same value is available
at the same moment as the data. In the case of “histogram data” the
repetition is already made explicit by a weighting vector; for repeated
observations or measurements, such a weighting vector may be obtained
by simple calculations, which precede the data analysis. The fact, that
some data values may appear more than once provides information about
the data, which must not be neglected in the analysis. There are examples
supporting this position: a simple case is that of the arithmetic mean of
a finite number of data; it is strongly influenced by repeated data values.
Among many other examples is the principle of making decisions based
on a majority vote. The results of voting can be then given the weights
proportional to number of votes. Another example is the treatment of data
measured by methods, which differ in their accuracy.
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In contrast to using a weighting scheme established before the analy-
sis, the gnostic weight of each individual datum results from the gnostic
analysis. It is thus a typical posterior weight available only after the data
analysis has been concluded.

It can now be shown, that if a priori weights exist, then they can also be
used to improve the results of the gnostic analysis. Assume, that a sample
of multiplicative data Zk and a collection of corresponding a priori data
weights Wk, where k = 1, ..., N is given. Each of the variants of the gnostic
distribution functions considered in the following discussion can be adapted
to use the data weights, W , that have been provided. What is being sought
here is the discrete distribution function, which would make use of the a
priori weights. It can be approximated by using the gnostic distribution
function and a criterion function derived by testing the goodness-of-fit.

The form of this function, denoted EW,k is chosen so as to satisfy the
following requirements. It:

• is applicable to an arbitrary distribution of weights W ,
• respects the given relations between weights,
• is consistent with the system of ME-points (the maximum entropy

ideal distribution) in the special case of all weights equal,
• is applicable to both finite and infinite data supports,
• has symmetrical behavior independent of the choice of either EW or

its complement, 1− EW .

Consider the following version of this function using normalized values
wk of the a priori weights Wk:

wk =
Wk∑N
n=1Wn

(k = 1, ..., N) (15.8)

EW,1 = w1/2 (15.9)

EW,k = EW,k−1 + (wk−1 + wk)/2 (k = 2, ..., N) (15.10)

These relations imply, that

EW,N = 1− wN/2. (15.11)

Consider either a finite or infinite data support, an open interval IL,U :=
(ZL, ZU) split by the data into N + 1 semiclosed subintervals Ik−1,k =
(Z(k − 1), Z(k)], where k = 1, ..., N + 1, Z(0) = ZL and Z(N + 1) = ZU .
The probability is again the measure of each interval’s length. The value of
the probability distribution function EW,L in a (zero or positive) point ZL



232 CHAPTER 15. DISTRIBUTION FUNCTIONS OF A DATA SAMPLE

is zero, and in the (finite or infinite) point ZU , it is 1. The first value EW,1

is a probabilistic measure of the first interval I0,1 equaling the normalized
weight w1 (15.8). Similarly, the last value EW,N has the measure 1 − wN .
Both of these values are related to the idea, that the measures are integrals
over the intervals. The measure of both intervals is independent of the
direction of the integration (from left to right or from right to left), which
corresponds to the choice between the EW and its complement 1−EW . Such
a symmetry is ensured for the differences EW,k−EW,k−1, when they satisfy
15.10. The normalization of weights (15.8) is properly chosen, because the
sum of the measures of all subintervals equals 1. This normalization does
not change the proportions of the weights. It is easy to verify, that if all
weights are equal, the points on the EW coincide with the ME-points.

The discrete distribution functions E designated the weighted empirical
distribution functions will be called WEDF.

15.1.6 Criterion Functions

Once a DDF is selected and a family of the GDF is chosen, the specific
form of the gnostic distribution function can be optimized to reach the best
possible godness-of-fit. To do this, a criterion function of the fitting errors
is to be extremized by finding the best estimate of GDF’s parameters5.
Gnostic theory makes available several functions reasonably applicable to
optimum estimation. They all are defined by the already introduced a
posteriori weights and irrelevances of data.

The G-weight (9.10) and G-irrelevance (9.11), in the estimating case
(c2 = −1), have the form

fE,k =
2

q2
k + 1/q2

k

hE,k =
q2
k − 1/q2

k

q2
k + 1/q2

k

, (15.12)

where

qk = (Zk/Z0)
(1/S) (15.13)

is an auxiliary variable in similar form to that of 9.7, where Zk is the k-th
observed data value and Z0 is the (unknown) ideal data value. To measure
fitting errors, the role of Zk takes over the probability estimated by the
GDF in the k−th data point Zk, while the ideal value Z0 is determined as

5As shown in Chapter 16, there is no contradiction in the notion of ’parameters of non-parametric
estimates of distribution functions.
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DDR(Zk). Instead of 15.13, expression

qk =

GDF (Zk)

DDR(Zk)

1/S

(15.14)

is used.

The variable fE (the estimating posterior weight of a datum) will be
called the fidelity, because it measures the weight of the relationship be-
tween two numbers: the actual value and its required value. Both fidelity
and irrelevance are robust with respect to outliers as has already been
mentioned.

A formal note is in order here with respect to symbology. The bar or

overline, (X̄ =
∑N
k=1Xk

N ) is a commonly accepted way of denoting the arith-
metical mean of several values of a variable (eg Xk). When gnostic distri-
bution functions are defined or used, a more general averaging method is
required and the mean is weighted not only by constant weights, but also—
in the case of different a priori weights—by normalized a priori weights wk
(15.8). Therefore the notation using a bar or overline will be retained in
such instances as the estimating version of 13.13,

hE =
N∑
k=1

wk ∗ hE,k, , (15.15)

which is applicable for both equal and different a priori weights. The
index ‘E’ denotes “estimating” and it is used instead of the complex unit
i =

√
(− 1), which might lead to misinterpretation.

Everything has now been prepared to introduce gnostic functions suit-
able as criterion functions for the goodness-of-fit:

CF (fE) := fE (15.16)

CF (h2
E) := h2

E (15.17)

CF (I) := −p ln(p), (15.18)

where pk = (1− hE,k)/2.

The additive composition applied in these formulae is justified by the
theory: From Axiom 2, it is recalled, that the fidelities (data weights,
entropies) are to be composed additively. The additive composition in
15.17 is justified by the fact, that the minimum of CF (h2

E) is reached,
when (hE) = 0, ie when the weighted mean error vanishes. In this condition
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irrelevances are added in accordance to Axiom 2. The expression 15.18 was
derived by application of the linear operation of integration.

The value of the scale parameter S in 15.14 deserves further comment.
The measurement of uncertainty by gnostic weights and irrelevances (and
by their functions such as entropy, information, probability etc.) is equiva-
lent to the application of a Riemannian metric. The main characteristic of
a particular metric is its curvature. The curvature in all gnostic formulae is
determined by the scale parameter. As will be shown, the scale parameter
is always estimated from the data and not assumed a priori. This is the
point of the statement “Let data speak for themselves”: data determine
the scale parameter and the scale parameter determines the curvature of
the geometry applied to measure uncertainty in a particular set of data.
The curvature in turn determines the degree of robustness of the gnostic
characteristics. An illustration is given by formulae 15.12 and 15.13, which
show how the value of S controls the form of the fidelity, the rate, at which
it decreases with the increasing size of the interval between the observed
Zk and the ideal value Z0. However, these formulae signal a problem: the
limiting value of the fidelity for S →∞ equals 1 independently of the ratio
Zk/Z0. In other words, a trivial “optimum” fit exists (independent of the
data) by using a sufficiently large S, therefore the structure of specific al-
gorithms must take this into account and provide a safeguard against this
possibility.

The suitability of gnostic functions to goodness-of-fit problem does not
exclude applications of other criteria. All three functions 15.16 through
15.18 are robust with respect to outliers (see Tab. 14.1). This robustness
can be useful, when individual fitting errors reach extreme values. In some
applications this robustness can cause discrepancies between model and
discrete function, which represents data. Another criterion functions can
provide an unrobust fit. Examples:

• Criterion function obtained by summation of weighted absolute fitting
errors.
• Criterion function minimizing the Kolmogorov-Smirnov statistic.
• Application of weighted squares of fitting errors.

The problem of criterion functions will be examined further in Chapter
17 in connection with the optimality of multidimensional models.
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15.2 Four Versions of the Gnostic Distributions

15.2.1 Introduction

According to the statistical (Parzen’s) approach to kernel estimation, the
question “How to compose kernels” has a seemingly trivial answer: “Take
the arithmetical mean.” This manner of composition does not present a
problem in statistics, because it corresponds to the axiom of the additivity
of the probabilistic measure. The initial motivation to proceed in this man-
ner, as discussed above, probably originated from the possibility of formally
mapping basic statistical variables onto variables of Newtonian mechanics
along with the hidden assumption of the implied applicability of Euclidean
geometry. Moreover, additive composition ensures the asymptotic behavior
required by statisticians.

For gnostics, in the general case, additive composition of kernels cannot
be taken for self-evident, because the notion of probability does not exist
as a fundamental axiom. Probability, determined as a secondary product
of the theory, cannot be manipulated arbitrarily, but only in accordance
with the axioms. From this point of view, the irrelevance has a more fun-
damental meaning than probability, because Axiom 2 prescribes additive
composition for irrelevances, but not directly for probability. An initial
impression, that these two ideas are the same, because the integral of the
probability kernel (10.42) is a linear function of the irrelevance, would be
misleading:

1. There are two ways to compose irrelevances based on Axiom 2. The
first is the arithmetical mean (13.13), but the second, 14.14, is neither
additive nor linear. As previously mentioned, the composition law
applied to the former does not imply homogeneity of the sample, while
the latter does.

2. It was pointed out in Chapter 10, that in using the concept of double
numbers one should introduce probability not only as a real number
as in 10.42, but also as a double number (10.60). The real version of
probability does not contradict the gnostic theory, because p ∗ (1− p)
is equal to pj ∗(1−pj) in the key expressions 10.43 and 10.44. It is cus-
tomary to evaluate probability using a real, not a double number, and
gnostics accepts the use of real probability for calculations, too. How-
ever, the double number version is better suited to the interpretation
of the improbability pi, which is complex.

The point is, that when gnostic kernels are aggregated, primary attention
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should be directed to the aggregation of irrelevances. There are two ver-
sions of irrelevances, and when addressing gnostic distribution functions,
it will be necessary to distinguish between the two types: Q- (quantifying)
and E- (estimating). As discussed above, there are also two composition
rules for irrelevances, the universally applicable arithmetical mean and the
normalized arithmetical mean, which is suitable only for a homogeneous
data sample. To distinguish between the two kinds of gnostic distribution
functions: the local distribution function will be denoted by L (which is
based on the former composition rule), while the global distribution func-
tion will be identified by G (based on the latter rule). The result is four
versions of gnostic distribution functions: the ELDF, EGDF, QLDF and
QGDF. They all have a common root—they represent four applications of
the same formula, and they are all related to the probability distribution
of an individual datum (10.42) derived in Chapter 10:

∗ ∗DF = (1− h∗∗)/2, (15.19)

where h∗∗ is the specific version of the data sample’s irrelevance, either
hEL, hEG, hQL or hQG. Each of these functions will now be examined in
greater detail for samples, for which the scale parameter (S) is constant
throughout the sample.

15.2.2 Transformations of Data Supports

The data weights and irrelevances as well as all their functions introduced
in the previous chapters were taken to be defined over infinite data sup-
ports. There were two kinds of such data: additive data seen as arbitrary
real numbers from the interval R1 := (−∞,+∞) and multiplicative data,
strictly positive numbers from R+ := (0,∞). However, real data are al-
ways bounded, and lie within a finite interval (LB,UB). The theoretical
domain of gnostic distribution functions is R+. In application of these
functions, data must be transformed from their “natural” data support to
the theoretical infinite domain of distribution functions. The converse is
also true: when a quantile of a distribution function is estimated, it is set
in the domain R+; to obtain its “natural” form, it must be transformed
backwards onto the finite data support. To unite the manipulations of
additive and multiplicative data and to simplify the numerical calculation
process, a unified finite closed interval is introduced,

Ze := [1/ exp(1), exp(1)]. (15.20)
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To transform an element Ak from a sample of additive data onto the unified
interval, the transformation

Traz := zfin = exp

(
2 ∗ Ak − Amax − Amin

Amax − Amin

)
(15.21)

can be applied; while in the case of multiplicative datum Mk formula

Trmz := zfin =
(Mk/Mmin)

(2/ log(Mmax/Mmin))

exp(1)
(15.22)

can be used, where Amax and Mmax are the largest and Amin with Mmin

the smallest data in the sample. The transformation Ze ↔ (0,∞) then
can follow using the formula

Trfininf := zinf =
zfin − LB

1− zfin/UB
, (15.23)

where LB is the lower and UB is the upper bound of the finite support.
The backward transformations can be obtained by solving these equations
with respect to their arguments.

Using 15.23 presents a problem, because it implies, that the data support
is assumed to be an open interval, where the strict relations zfin > LB
and zfin < UB must hold, but the solution of practical problems frequently
requires closed data supports. Overcoming this difficulty is taken up in the
next subsection.

15.2.3 Soft and Hard Data Bounds

The assumption, that real data are finite is based on the fact, that they
are real objects in the real world, and that the world itself is a finite entity.
While this fact is necessarily accepted, for data analysis, something more
is needed: information as to the value of the data bounds.

In some special cases, the data support bounds LB and UB are known
a priori, otherwise they must be estimated by using the EGDF. There are
two different cases of a priori known bounds of data support:

1. The open interval of possible data (LB,UB): it is not expected, that
data of values LB or UB will be seen in practice. Examples: zero
weights for real objects (excluding balloons), reaching the speed of
light by a non-zero mass particle.
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2. The semi-closed or closed interval of possible data values, ie (LB,UB],
[LB,UB) or [LB,UB] data can reach the value of the closed end of the
interval. So eg establishing the proportionality of a slice of pie always
results in the closed interval [0, 1], while the values of both bounds are
possible: 0 means ‘zero size for the slice’ and 1 is equivalent to ‘the
whole pie.’

Data sets fitting the former case will be thought of as having soft bounds,
while the latter one will have hard bounds.

Acceptance of the idea of finiteness of real data implies, that both the
normal and lognormal distributions must be rejected, because their data
support is infinite. While they may approximate the occurrence eg of
people, who are close to average size, these distributions will not be very
useful in predicting the presence of extremal sizes: dwarfs or those taller
than NBA giants can serve as an example. Small but non-zero probabilities
would be attached to heights exceeding several times the average. On the
other hand, experience shows, that a maximum “possible” (understand
“not improbable”) height surely exists, but its value is different for each
population. This value is of course uncertain, “fuzzy”, but the form of
a distribution function strongly depends on it. The motive for estimating
these soft bounds is therefore obvious. The robustness of the EGDF can be
used to estimate these bounds as shown in the applied portion of this book
(Part III). The required (uncertain) information on the boundary values is
thus ‘mined’ from the data. The value of the distribution function at the
lower estimated soft bound (LB) is zero, while that of the UB is 1.

On the other hand, hard bounds for data come about from the im-
possibility of reaching data values beyond some point, but also having
the possibility, that the boundary values could be attained: The total
investment needed for a particular project cannot be negative nor can it
exceed 100%, but a prospective investor could either fund its totality or
refuse to participate. A holder of common stock cannot lose more than his
initial stake, expenditures for R & D or capital goods cannot be less than
zero, but then the firm need not make them at all, nor would dividends
paid generally exceed 100% of earnings6, but firms paying no dividends
are relatively common in some industries. Such limitations are implied
by the nature of things, the existence of hard bounds is sure. The fre-
quency of occurrence of the boundary values can be directly estimated as
a discrete probability. It is also true, that obtaining values “in between”

6In the relatively rare case, when dividends exceed EPS, the difference is a nontaxable ‘return of
capital’ and deducted from retained earnings.
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the two extremes is not excluded. The probability of nonextreme values
is characterized by a (continuous or discrete) distribution function. In
the continuous case, the application of a gnostic distribution function to
data subjected to hard bounds easily combines the discrete estimate of the
boundary probability (Pr(LB) and/or Pr(UB)) of hard LB or UB with
the continuous modeling of the nonextreme data. Its distribution function
satisfies the constraints Pr(LB) and Pr(UB).

Distinguishing between the two types of bounds is important from both
the theoretical and the practical (algorithmic) point of view.

15.2.4 The Estimating Local Distribution Function (ELDF)

To obtain this distribution function for a data sample Z, the simplest ver-
sion of the data sample’s estimating irrelevance Hi(Z) (13.13) as defined
by Axiom 2, is applied. Averaging may be either with equal or unequal
weights, therefore the sample’s estimating irrelevance hEL should be de-
noted by hE in the same sense as in 15.15. By using the general expression
15.19, the estimating local distribution function (ELDF or simply EL) can
be written in the form

ELDF ≡ EL(Z, Z0, S) := (1− hE)/2. (15.24)

This same expression could also be obtained as the mean of probabilities
10.42 of individual data in the sample, which would result in a kernel
estimation using the gnostic kernels.

Rewriting 15.24 in a more explicit form, again denoting the data in the
sample as Zk (k = 1, ..., N), the ideal value as Z0 and, using the auxiliary
variables 15.13 and 9.11

EL(Z, Z0, S) =

 1

1 + q4
k

 (15.25)

is obtained. The EL’s density can be found easily by differentiation7

dEL

dZ0
=

1

SZ0

4

(q2
k + 1/q2

k)
2
. (15.26)

7This formula—as well as all other formulae of probability densities in this chapter is based on the
assumption of a constant scale parameter S.
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It is useful to recall the interpretation of the probability distribution of an
individual datum as the probability of the ideal value Z0 given the observed
value Zk. This means, that this probability as well as its density are
functions of Zk, and that the ELDF (as well as other gnostic distributions)
are functions of data and of the ’free’ quantile Z0.

The relations 15.25 and 15.26 reinforce the universal existence and ap-
plicability of this distribution function. Indeed, both the irrelevance and
the gnostic kernel can be attached to an arbitrary datum. Gnostic ker-
nels defined over the infinite data support are positive and finite and their
arithmetic mean is positive and finite as well. Moreover, the range of the
function EL (15.25) is [0, 1]. This function is non-decreasing, because it
represents the integral of positive kernels, and it can therefore serve as
a distribution function. Its interpretation as the probability distribution
function is thus justified. The adjective “local” emphasizes the fact, that
no “global” feature of the data sample such as its homogeneity was as-
sumed. It can be seen, that the ELDF is really “local” in the sense, that
it characterizes the data distribution even over a small subinterval of the
data support if the scale parameter S is sufficiently small.

15.2.5 The Estimating Global Distribution Function (EGDF)

This distribution function is based on the idea, that if a data sample is
homogeneous, then it is possible to represent it by a single gnostic event.
The gnostic weight and irrelevance of this equivalent event can be calcu-
lated by formulae 14.14. In the estimating case (c := i =

√
−1), using

14.8 (the overline is the symbol of weighted averaging as above), one can
rewrite the equivalent irrelevance from 14.14 as

hEG :=
hE
MZ,i

, (15.27)

where fE and hE are (weighted) means of fidelities and irrelevances of
all the data in the sample Z, and where MZ,i is the sample’s estimating
modulus 14.8,

MZ,i :=
√

(fE)2 + (hE)2. (15.28)

In this case, the distribution function from 15.19 takes on the form

EGDF ≡ EG(Z, Z0, S) =

1− hE
MZ,i

 /2. (15.29)
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The EG’s density can be derived by differentiating (15.28) to get

dEG

dZ0
=

1

SZ0

(fE)2 ∗ F2 + fE ∗ hE ∗ FH
M 3

Z,i

, (15.30)

where

F2 =
N∑
k=1

wk ∗ f 2
E,k FH =

N∑
k=1

wk ∗ fE,k ∗ hE,k (15.31)

represent the (weighted) means of squared data fidelities and the products
of the fidelities and irrelevances, respectively. It is worth noting, that
the second addend in the numerator of 15.30 may be negative. When
all data are so precise, that all fidelities fE,k tend to 1, the term FH
approaches hE and its product with fE is positive. However, in the case of
strong uncertainties the variables FH and hE reach negative values, not
necessarily simultaneously, thus making the product negative. This effect
may be so strong, that expression 15.30 is negative. In such cases the
EGDF (15.29) does not exist, because it does not possess the important
feature of a distribution function—that it not decrease. There are two
interpretations of this characteristic of the EGDF’s:

Bad: The applicability of the EGDF is not universal. This distribution
function is suitable only for data samples, for which the EGDF’s den-
sity is non-negative over its full range, and which have only one max-
imum.

Good: The EGDF may be used to test the homogeneity of a data sample.
It will be shown shortly, that such tests are extraordinarily efficient
and reliable, and that they reveal important features of the data.

For data with large uncertainties (which are far from the ideal value), the
auxiliary variable q (15.13) tends to either zero or to infinity. This causes
the estimating fidelities (15.12) to be negligible and the corresponding irrel-
evances to approach 1 or −1. The EGDF therefore suppresses the influence
of the “peripheral” data and focuses on the “central” or “inner” data, for
which the fidelities are close to 1 and the irrelevances tend toward zero.

Other interesting features of this distribution function will be discussed
in the next chapter.

15.2.6 The Quantifying Local Distribution Function (QLDF)

There is an obstacle, which must be overcome in defining the quantify-
ing versions of distribution functions: both the quantifying irrelevance hi
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(9.11) and the improbability 10.58 can reach infinite values, so that the
general formula, 15.19, cannot be applied directly. However, as it was
shown in connection with the problem of quantifying kernels in Chapter
11, it is possible “to see” quantifying irrelevance as if it were the estimating
irrelevance by using formula 11.17. It is therefore possible to compose the
quantifying irrelevances of all a sample’s data and to “observe” the results
by means of “estimating eyes” via the transformation 11.178

More particularly:

hQL :=
hQ√

1 + (hQ)2
, (15.32)

where hQ is the (weighted) mean of quantifying irrelevances of all of a
sample’s data. (Recall, that by 9.11 the quantifying irrelevance of the k–th
datum is (q2−1/q2)/2, while the quantifying weight equals (q2+1/q2)/2 by
9.10.) In this (“local”) case the non-normalized composition of irrelevances
is applied as in the case of hEL. Then the quantifying local distribution
function takes on the simple form of 15.19

QLDF ≡ QL(Z, Z0, S) := (1− hQL)/2. (15.33)

Denoting fQ the (weighted) mean of the quantifying irrelevances of the
sample’s data and differentiating 15.33 one arrives at the density

dQL

dZ0
=

1

SZ0

fQ
(1 + (hQ)2)3/2

. (15.34)

It is easy to see, that for a single datum (N = 1) this expression provides
the same results as is obtained for the densities of the ELDF’s or the
EGDF’s—the gnostic kernel 11.9—because dA0

dZ0
= 1

Z0
. This does not mean,

that the distribution functions will be similar for N > 1; the opposite is
true, because the mean irrelevance hQ and the mean quantifying weight
fQ may include unbounded terms caused by the observed data’s significant
divergence from the ideal value. Taking this into account, one can expect,
that the QLDF will emphasize the “peripheral” data of the sample (the
outliers).

8It is important to see, that this artificial step was taken to obtain quantifying distribution functions.
These have values in the interval (0, 1), which are interpretable as probabilities. This is how distributions
complementary to the EGDF, with their opposite robustness can be obtained. However, improbability
as introduced in 10.42 is a complex function, which can give rise to a (complex) distribution function of
data improbability, the modulus of which rises to infinity with increasing uncertainty. Such a function
can also have a realistic interpretation: eg the wave function of quantum mechanics behaves in a similar
way.
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15.2.7 The Quantifying Global Distribution Function (QGDF)

The same problem exists here as with the QLDF and the same trick is
employed to solve it, but using a different composition rule. Instead of
(weighted) averaging in accordance with 13.13, the normalized (weighted)
average 14.14 is used:

hZ,j :=
hQ√

(fQ)2 − (hQ)2
, (15.35)

where again fQ and hQ represent (weighted) means of quantifying weights
and irrelevances respectively. Using transformation 11.17,

hGQ :=
hZ,j√

(1 + (hZ,j)2)
(15.36)

is obtained. The quantifying global distribution function is therefore sim-
ply

QGDF ≡ QG(Z, Z0, S) :=

1− hQ
fQ

 /2 (15.37)

and its density is
dQG

dZ0
=

1

SZ0
∗
1− (hQ)2

(fQ)2

 . (15.38)

It is again easy to show, that in the case of a single datum, this density
reduces to the form of one gnostic kernel as in all the other cases. More-
over, for sufficiently precise data the mean weight fQ will approach the

data sample’s quantifying modulus
√

((fQ)2 − (hQ)2). This remainder will
vanish and both the QLDF and the QGDF will return the same values
except in the case of strongly dispersed data.

15.3 Main Features of the Distributions

15.3.1 The Unlimited Flexibility of the ELDF

Given data and a scale parameter S, the EL is a non-decreasing function of
the unknown ideal data’s value Z0. Its character is determined by the scale
parameter. The EL function converges to the step function (DDF), when
the scale parameter S tends to zero and its derivative 15.24 converges to a
collection of N δ-functions each placed at a different data point. Fig. 15.1
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demonstrates the behavior of the EL-distribution function as it approaches
the step function for a small data sample Z4 ≡ 〈1, 3, 4, 4.5〉 for S = 0.5, 0.1
and 0.05. Systems of both KS-points and ME-points are shown as well.
Note in the figure, that the values of the EL-functions at each of the data
point are close to the KS-points, but not necessarily near the ME points,
especially for a large S.
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The dependence of the EL-density on the scale parameter is illustrated
by Fig. 15.2. Observe, that the two kernels (peaks) belonging to data values
4 and 4.5 are entirely separate, when S ≤ 0.1, but integrate into a perfectly
smooth hill form, when S increases to 0.5. (Such a group of integrated
peaks will be called a cluster). A scale parameter of 0.5 is large enough,
in this case, to create an inflection in the density curve at the point 3.0.
This causes the three peaks representing data values 3, 4, and 4.5 to be
assimilated into one cluster. The appearance of such a plateau on a density
curve always signals, that the density peak has screened out some other
data. The largest cluster of data will be called the main cluster. We have
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now arrived at the idea of marginal cluster analysis.
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15.3.2 Marginal Cluster Analysis

In statistics, the notion of “marginal distribution” describes the uncon-
ditional distribution of a single variable from a multidimensional model.
When addressing marginal cluster analysis in gnostics, we shall keep in
view the decomposition of a one-dimensional data sample into two or more
subgroups, which manifest themselves in the sample’s density graph as sep-
arated clusters. A simple way of doing this is by using the EL-distributions.

A data peak such as the one belonging to the smallest datum (1.0)
in Fig. 15.2 is sufficiently removed from other data to be considered as
separate from the main cluster. Similarly, Figs. 15.3 and 15.4 demonstrate,
that a data sample Z11 ≡ 〈−13.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉 is found to be
composed of 10 regularly distributed data and an “outlier” (−13.5).
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The EL-distribution is close to the step function (DDF) if the scale
parameter is as small as 0.05. For the same value of scale parameter, the
corresponding density (Fig. 15.4) reveals separate peaks for each datum,
which subsequently dissolve into a principal cluster and an outlier as the
scale parameter is increased. If too small scale parameter is used, the result
is no better than just plotting the data values (the red triangles) on the
horizontal axis. Increasing S smoothes the density curve and leads to the
conclusion, that there is a “homogeneous” cluster of 10 data and an outlier
(-13.5). The designation of this data value as an outlier is supported by
the fact, that it has a separate peak even with as large a value of S as 1;
this also puts it at the lower extremity of the probability curve of the series
of KS-points in Fig. 15.3.

Another example demonstrating the flexibility of the EL-
distributions and of the integration of groups of peaks into clus-
ters is shown in Figs. 15.5 and 15.6 by a symmetric sample
Z11,s ≡ 〈−10,−9,−8,−0.2,−0.1, 0, 0.1, 0.2, 8, 9, 10〉. This artificial



15.3. MAIN FEATURES OF THE DISTRIBUTIONS 247

��

�����

�����

�����

�����

����

	��� 	��� 	�� 	�� �� �� �� ���

����������������

������ ������ ����� ��� ��

�����������
�� 
!"�
#$��"$%�
#$��&'(&
�)��*�����+��)���,���-*.���*��

sample contains one narrow central group of 5 data and two symmetrically
placed peripheral clusters each formed by three data.

Marginal cluster analysis has to answer two categories of questions:

1. How many clusters are there in the data sample?
2. Which data form each of the clusters?

Even such a simple case as that of Z11,s shows, that there is no uniqueness
to the answers. As S is varied, 11, 7, 3 or only 1 cluster are obtained.
It is theoretically possible to get a separate peak for each different data
value, however when two or more data are equal, separate peaks cannot be
distinguished even by making S extremely small.

Due to computation limitations, the exponent 2/S cannot increase over
a certain limit; this is the reason, that the possible maximum of 11 peaks
is not realized (the inner data group is too narrow in comparison to the
sample range). But whether the “true” number of clusters is 7, 3 or 1 still
remains to be determined. Instead of a single answer, the following issues
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must be considered:

• An objective and unique test for the homogeneity of a data sample
cannot be accomplished by using the EL-function; the EG distribution
function must be used. This will be considered in the following section.
• The choice of the S to use with the EL-distribution is a question of

the resolution power of the analysis, which depends on the particular
goal—in what detail do we want to see the inner sample structure.
(This choice is analogous to that of using the zoom of a camera: “What
is the right zoom level?”).
• There are two important aspects involved:

– It is possible to change the resolution power of the analysis by
choosing a suitable value for S.

– The number of separable clusters may be less then the number of
data:
∗ In some particular samples a specific number of clusters cannot

be obtained at all. In Fig. 15.6, the density cannot have an
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even number of maxima because of its symmetry (in some
cases this may be an important result of the analysis).
∗ Data, which have the same value, contribute to the same clus-

ter.

In different applications, the size of the interval for S, over which the num-
ber of clusters remains constant, is not the same; therefore, the “best”
number of clusters to retain may often be taken as that number of clus-
ters, which corresponds to the widest interval usable without reducing the
number, that can be distinguished.

Which data belong to each cluster is only a technical question. Once
the number of clusters is established, it is easy to separate them by finding
the local minima of the density curve. Data associated with each of the
intervals between the minimum points are those, which form the cluster
above the interval.
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Fitting errors of the ELDF

As explained above, there is a benefit to be gained from reducing the
value of the scale parameter, S, but this also results in a trade-off with
respect to the residual entropy ratio, RE. This relationship is summarized
in Tab. 15.1 for the data sample Z11,s:

Scale parameter S Residual entropy RE

0.05 0.972

0.1 0.929

0.2 0.868

0.35 0.810

0.5 0.769

1 0.714

3 0.705

Tab. 15.1 The residual entropy of the EL-distributions for the
symmetric data sample Z11,s.

Decreasing S improves the goodness-of-fit of the EL-distribution, but
the paid price for this is a reduction in the smoothness of the distribution
function. This can be seen in Fig. 15.4, where wavelets appear in the
descending portion of the main density cluster at an already relatively
high value of S = 0.35.

15.3.3 The Robustness of the ELDF

The high flexibility of the ELDF may lead to an impression, that this dis-
tribution function is not robust, because the notion of robustness connotes
a feeling of rigidity contrary to the idea of flexibility. Such a conclusion is
not valid, at least in the case of the ELDF, because the smaller the value
of the scale parameter, the more flexible the ELDF is in adapting to the
placement of the data, and the weaker the influence of data, which form an
independent local cluster. There is a simple explanation: the width of each
kernel becomes narrower as the scale parameter decreases. This indepen-
dence of a local cluster with respect to a more distant cluster is the local
robustness. A much more complex set of interactions of data treated with
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the ELDF will be analyzed in next chapter in connection with estimates
of parameters of location. The above effects, related to local robustness,
have an important application for the ELDF in interval analysis; it allows
data to be split into several classes, ie to classify them with respect to their
relationship to the best estimate of the ‘central’ value of the data sample.
This problem is examined in section 16.4.

15.3.4 The Uniqueness of the EGDF

The estimating global distribution function (EGDF) behaves differently
than the ELDF. Because of the normalization by the sample modulus, the
scale parameter is unable to control the flexibility of the EGDF as it does
in the case of the ELDF. The dependence of fitting errors on the scale
parameter is not a monotonic function as it is with the ‘local’ function.
When the parameter S is varied over a broad interval, the best value is
always found, where the fitting criterion reaches its minimum. No advan-
tage is gained beyond that point. This is the reason, why only the EGDF
finds the best scale parameter and—if it is needed—the best estimate of
the bounds of data support. This is important from several points of view:

• it simplifies applications—the scale parameter is chosen automatically
together with the bounds for the data support,
• it enables hypotheses such as the homogeneity of data samples to be

tested,
• the one and only (the best) EGDF for a homogeneous data sample

can be accepted as the sole representation of the data’s distribution
and it provides unique values of probability for selected quantiles and
unique quantiles for given probabilities.

In other words, the EGDF can be used as a model uniquely determined
by a data set9. It may be a good model, but other methods may produce
different models and the final choice of the model is always a matter of a
careful analysis. The applicability of the EGDF to uniformly distributed
data is demonstrated in Fig. 15.7.

The scale parameter and both bounds of the data support have been
optimized to minimize the fitting criterion (in this case to minimize the
entropy). The probability distribution is practically a straight line passing
through all the ME-points. The EGDF’s density is nearly constant over a
broad interval between 2 and 9 and changes from this constant value only

9The uniqueness problem is examined in 15.3.9 in more detail.
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when the bounds of the data support are approached.

15.3.5 Testing for Data Homogeneity

The fact, that there are two density maxima shown in Figure 15.7 may ap-
pear contradictory, because in theory a homogeneous data sample should
only have a single maximum; and from the plot, the data sample surely
appears to be homogeneous. The answer to this paradox is simple: the
condition of uniqueness of a density’s maximum is related to the distribu-
tion function defined over infinite data support. The process of calculating
an EGDF passes through three important stages:

1. Transformation of the data (which are always defined over a finite
data support) to infinite data support R+. This transformation is
parameterized by the lower and upper bounds (LB and UB) of the
data support. These bounds may sometimes be given, but if they are
unknown, their value is optimized together with that of the S, so as
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to minimize the fitting criterion of the EGDF that is applied to the
transformed data (over R+).

2. Testing to determine the number of density maxima and for the den-
sity’s polarity. The data sample is homogeneous only if the EGDF’s
density has a single maximum over infinite data support R+. And
the EGDF is a distribution function only if its density is non-negative
over its full range.

3. Back transformation R+ → (LB,UB) using the optimum value of S
and the given or optimized bounds LB and UB.

The EGDF’s distribution as shown in Fig. 15.7 results from the third stage
(after back transformation to finite bounds). It can be shown, that over R+

there is no doubt as to the data’s homogeneity; the data sample’s density
has only one maximum.

There can be two causes for a data sample’s non-homogeneity; the ex-
istence of:

1. outliers, or
2. clusters.

An outlier is a datum, the value of which is so different from the other
data, that the EGDF’s density has a local maximum near the datum’s lo-
cation. The ability of the EGDF to sensitively reveal this non-homogeneity
is demonstrated in Fig. 15.8 and Fig. 15.9 for the data sample Z11.

The blue probability distribution function in Fig. 15.8 does not appear
to change its form at the value of the outlier (−13.5), but this is only
because the shape of the curve changes only minimally at that point, the
vertical scale in either figure is too rough to be able to visualize the local
“hill” of the density there, but numerical analysis shows, that it really
exists, and that its value reaches a local maximum of 0.00083. This same
result can be obtained with the EGDF over infinite data support.

The lesson is, that it is inappropriate to rely on what is seen on the screen
or on a graph. The decision as to the homogeneity/non-homogeneity of the
data must be made with the more sensitive numerical methodology.

The symmetrical data sample Z11,s was used in Fig. 15.6 to show, that
the ELDF can interpret the peripheral triples of data either as groups
of three outliers (with a small S) or as two integrated clusters (using eg
S = 0.2). There is no such ambiguity in the case of the EGDF (Fig. 15.10
and 15.11).

The disturbances caused by the peripheral data are shown directly by
the EGDF’s probability distribution, the small ‘bumps’ in the blue line
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of Fig. 15.10. The EGDF’s density curve in Fig. 15.11 is even more im-
pressive: the peripheral data are seen as triples of outliers, because they
produce separated local maxima. Moreover, the density dips to negative
values at these data points. The necessary condition for a distribution
function—that it be non-decreasing—is violated. The blue function in
Fig. 15.10 calculated with the EGDF’s algorithm therefore cannot be used
as a distribution function. However, it provides the useful and important
information, that the peripheral data are separated outliers. Since the
group of five central data appears in Fig. 15.11 as a single cluster, it can
be expected, that if the six outliers were deleted, the resulting sample of
five data would pass the homogeneity test.

15.3.6 The Robustness of the EGDF

Consider the examples shown above from a new point of view: the reaction
of the blue distribution function (EGDF) to the existence of the outlier
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−13.5 in Fig. 15.8 is so minute, that it cannot be seen in the graph. The
distance between the blue line and the ME-point corresponding to the
outlier is large, and the fitting error at this point is much greater than
that of the data belonging to the main cluster. This feature illustrates the
robustness with respect to outliers or inner robustness. The central data
of the sample are accepted by the EGDF with a gnostic weight close to
1, while the peripheral data are given much less weight. This can clearly
be observed in Fig. 15.10: the “inner” cluster of five data is completely
assimilated by the blue distribution, while the outer triples of data are
practically ignored.

15.3.7 Estimating a Sample’s Boundaries

Consider the EGDF denoted as P (Z,Z′,S), where P is probability, the
EGDF’s value at the point Z0 (quantile), Z is the data sample and S the
scale parameter. Assume, that the data have already been transformed



256 CHAPTER 15. DISTRIBUTION FUNCTIONS OF A DATA SAMPLE

��

����

����

����

����

����

��	�

��
�

����

����

��

��� ��� �� 	� �� �� �� �� �� 	� �� ��� ���
���������������������

�� �� �� ���� !��

" #������$�%�&'(�)*'�+,�"*,-'�+,&
*! .�/0������1 �2��300��/ 4����� �/�

��������������

��	
�
������

onto infinite data support (so that all data as well as all values of Z0 are
strictly positive). A homogeneous data sample is defined as one composed
of only one cluster, therefore it has only one density maximum. If there
are several clusters in a sample then each will have a separate maximum
in the sample’s density function. This motivates two important tests:

Definition 16: Let P (Z,SG,Z′) be the EGDF of a fixed sample Z
of positive data and of an arbitrary positive quantile Z0. Let SG be the
global scale parameter, which optimizes the EGDF’s fit with the data.
Let N0 be the number of positive and finite solutions Zx of the equation
15.39

dP

dZ0
|Z0=Zx = 0. (15.39)

The determination of the number N0 will be called the homogeneity test.
The positive statement (“the sample is homogeneous”) will be considered
as supported if N0 = 1 and rejected with an N0 > 1.
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Let Z be the same data sample as above and SG its global scale pa-
rameter. Let Zξ be a positive variable and Z ′ := 〈Z,Zξ〉 the extended
sample. Let Z and SG be fixed.

Let P ′(Z ′,SG,Z′) be the EGDF of Z ′ abbreviated as P ′(Zξ, Z0).

Let Z1 and ZL be respectively the smallest and largest datum in Z.
Let LSB be such a value of Zxi, that all three relations

0 < LSB ≤ Z1, (15.40)

d2P ′(Zξ, Z0)

dZ2
0

|Zξ=LSB = 0 (15.41)

and
d3P ′(Zξ, Z0)

dZ3
0

|Zξ=LSB = 0 (15.42)

simultaneously hold. Let LSB be the only number satisfying these con-
ditions. Then LSB is the lower bound of the sample Z.



258 CHAPTER 15. DISTRIBUTION FUNCTIONS OF A DATA SAMPLE

Let USB be such a value of the variable Zxi, which satisfies both equa-
tions 15.41 and 15.42 and the relation ZL ≤ USB <∞. Let USB be the
only number satisfying these conditions. Then USB is the upper bound
of the sample Z.
Numbers LSB and USB will be the bounds of the membership interval
of the sample Z, shortly the sample’s bounds.

A number ZPM , for which the relation

LSB < ZPM < USB (15.43)

holds, is the potential member of the sample Z. Let Z be a given positive
number. Then the process consisting of the following steps:

1. determination of the LSB,
2. determination of the USB,
3. verification, that 15.43 holds for Z,

is the membership test.

It is well-known, that a point at which the second derivative of a
function reaches zero is an inflection point. The probability distribution
function P ′(Zξ, Z0) is dependent on the value of the extending variable
Zξ, which plays the role of the additional datum to be tested. The
first derivative dP ′(Z0, Zξ)/dZ0 is the density. At the point Z0, where
the second derivative d2P ′(Z0, Zξ)/dZ

2
0 passes through zero, the density

reaches its local maximum or passes through its inflection point. The
probability’s third derivative d3P ′(Z0, Zξ)/dZ

3
0 is negative in the former

and zero in the latter case. Simultaneous zero values of both second and
third derivatives signal, that the density function has passed through an
inflection point. This takes place for a certain value of the parameter
Zξ, which represents either LSB or USB. Homogeneity of the extended
sample Z ′ is thus maintained if LSB < Zξ < USB.

The difference between the homogeneity test and the membership test
can be explained by the question to be answered by the tests:

Homogeneity test: “Is the given sample Z homogeneous?”
Membership test: “Is a value Zξ a potential member of the given sam-

ple Z?” In other words: “Will the homogeneous sample Z remain
homogeneous after extension by Zξ”?

Note, that both homogeneity and membership problems are solved on
the binary (yes/no) level. Since the estimating global distribution function
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is uniquely determined by data for each homogeneous data sample, the
number N0 and the bounds LSB and USB are also uniquely determined
by the data. Both tests are objective, independent of the subject asking
the questions. The outcomes of the tests are thus completely defined by
the data.

Problems of this type also have a solution in statistics, however, the
results of such statistical tests depend on the (subjective) choice of signif-
icance level and on the (subjective) choice of an a priori data model.

The membership problem has both theoretical and practical importance,
eg in mathematics it plays a fundamental role related to notion of a set:
“is x an element of a set X ?” Different answers may give rise to different
mathematical concepts:

• In classical (Cantor’s) set theory, membership is taken as a primitive
notion (“everybody knows the right Y/N answer for any arbitrary x.”)
• In contrast, the popular fuzzy set theory is based on the idea, that

“everybody knows the value of the membership function—to what
degree does the x belong to a fuzzy set X .”

In both of these examples the responsibility for the solution of the mem-
bership problem and for its consequences lies with the user of the method,
on his subjective choice—just as in statistics.

Gnostic tests of homogeneity can be used to establish the membership
of a particular value x. Practical applications for sample’s bounds could
include:

• Given a group of enterprises comparable in the sense, that the sample
R, consisting of a set of financial ratios R is homogeneous, within what
bounds must the ratio Rx of another firm lie to allow its membership
in the group?
• Given a collection of good products with quality parameters Q, which

form a homogeneous sample Q; what should be bounds of another
product’s quality parameter Qx in order to be accepted as “good?”.

The uniqueness and objectivity in the answer to these questions is un-
doubtedly desirable and the robustness of the EGDF with respect to out-
liers and peripheral data provides a reliable homogeneity test as well as
estimates of a sample’s bounds.
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15.3.8 The Flexibility of the QLDF and QGDF

The additive composition of the unbounded quantifying irrelevances, to-
gether with transformation 15.32 results in natural behavior:

1. The QGDF exhibit limited flexibility like EGDF.
2. There is a best scale parameter and best estimates of the probability

domain.
3. The QLDF has an unlimited flexibility like ELDF and can be used for

the marginal analysis.
4. Both the QLDF and the QGDF are robust with respect to inliers.

Hence, the QGDF is also unique for a given data sample like EGDF. A
comparison of the behavior of quantifying distributions with the EGDF,
using the same examples that were considered above shows, that all three
probability distributions taken with the same scale parameter coincide so
closely in Fig. 15.7, that it is impossible to distinguish between their val-
ues. The densities are substantially different only in the vicinity of the
bounds of the data support. The outlier (−13.5 in Fig. 15.8) raises the
value of both the QLDF and the QGDF without affecting their monotonic
character. The fitting errors of the data 1 and 2 are large, while the “pe-
ripheral” data 7, 8, 9 and 10 are modeled by the QLDF and the QGDF
more precisely. Both probability distributions in Fig. 15.8 and densities in
Fig. 15.9 document a similar behavior for the QL- and QG-distributions.
The similarity of these distributions is also seen in Fig. 15.10 and 15.11:
they are essentially identical in the case of symmetrical data samples.

The example in Fig. 15.8 shows, that both the QL- and the QG-
distribution are more rigid than the EGDF—their slope (unlike that of
the EGDF) does not change to reveal the presence of the outlier (−13.5)
when the scale parameter and bounds of distribution’s domain are the
same.

15.3.9 The Robustness of the QLDF and QGDF

Figures 15.8 and 15.9 demonstrated the EGDF’s robustness with respect
to outliers or inner robustness, however the behavior of the quantifying
functions is not the same. In Figures 15.10 and 15.11, both the QLDF and
the QGDF ignore the inner cluster and try to model the peripheral triples
of data, (especially the first and last ones). Such a behavior can be called
the robustness with respect to inliers or the outer robustness. Instead of
the S-form of the EGDF, the QL- and the QG- probability distributions
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take on a less usual form, which can be called the reverse S-form10.

These two categories of gnostic distribution functions (E- and Q- types)
provide an analyst the opportunity to interpret a given sample from two
different perspectives, emphasizing either the inner or outer robustness of
the analysis. Three questions can be raised in this connections:

1. Is there a need for robustness when analyzing real data?
2. If the response is positive, then are two mutually opposite types of

robustness really necessary?
3. If this second answer is in the affirmative, then how should the type

of robustness to apply to any arbitrary data set be chosen?

Question 1) has two aspects. The first one is related to data, which strongly
deviate from a “main” distribution (either outliers or inliers). Any experi-
enced analyst will answer the first question positively. Using a mass pro-
duction process as an illustration: in spite of a high degree of automation,
a high level of production control, and sophisticated quality assessment,
defective products will persist. They must be identified and rejected. As
discussed in Chapter 2, economic data include errors, and it is impossible
to eliminate them without careful analysis. Even with the use of the most
evolved technology, measurement errors cannot be avoided entirely.

The second aspect is connected with the problem of a priori assumptions
with respect to statistical models of data. A method based on such assump-
tions risks, that the real character of data differ from the assumptions. To
guard against the use of potentially false a priori assumptions, statisticians
have labored for decades over the development of robust methods.

Both of these aspects support the idea, that robustness is necessary.
When the problem of dependence of a data processing method on an a pri-
ori data model is considered, the task is clear—such dependencies should
be minimized if the assumptions cannot be verified. What about robust-
ness with respect to outliers/inliers? The need for both types of robustness
can be demonstrated by example: When an inaccurate measurement tech-
nique is used to measure a certain constant quantity, the measurements
are repeated in the intuitive belief, that results, which fall close to a cen-
tral (eg average) value, are more reliable than the peripheral ones. This
notion is based on the Law of large numbers. Such ideas gave rise to the
first robust method of statistics, the so called trimmed mean, which has
been used for physical measurements for centuries. The procedure is to

10However, the outer robustness of the quantifying DFs is related not only to the reverse S-form, it
also manifests itself in the case of S-form quantifying distributions.
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order the measurements and then to eliminate (trim) a percentage of the
results on both ends of the ordered sample. The arithmetical average of
the remainder of the sample (the trimmed mean) is then accepted as the
best estimate of the true value of the measured quantity. In other words,
the data belonging to the central part of the sample are given a full weight,
while the peripheral data are awarded a zero weight. Such discrete weight-
ing can be criticized by observing, that all data are composed partly of
information and partly of “noise” or measurement error. The latter point
of view would augur for a continuous weighting, giving weights to data with
respect to their distance from the sample’s center—the greater distance,
the less weight. Such a weighting scheme is used in gnostics, but instead
of being arbitrarily assigned, the weights are precisely determined by ap-
plication of the theory. While the trimmed mean is (at least at first sight)
a simple procedure, the gnostic methodology results in the preservation of
more information. From the foregoing, it can be seen, that the long lived
use of the trimmed mean shows, that there is a need for inner robustness
in the structure of estimating methods.

Now consider another class of problems:

1. A very short term time series of the price of a security may be tem-
porarily stationary with a modest volatility component; this could be
termed its “normal” behavior. To be able to distinguish a departure
from this state—a rise or a fall—would provide an opportunity to
either buy or sell the issue on advantageous terms. The ability to
quickly recognize a deviation from the normal price pattern would be
a valuable trading tool.

2. Monitoring the quality of production is a similar problem. “Normal”
results fluctuate around a required “central” value within some given
bounds (tolerance). Exceeding these bounds requires an action—at
least the removal of the bad product from the flow of normal products.

3. A third example is monitoring vital signs of a patient. A departure
from the region of “normal” values requires an intervention.

The similarity of these examples lies in their underlying principle: the (fre-
quently observed) “normal” data are much less important (or useful) for
an analyst than those data, which represent a departure from the normal
state. The “normal” data are close to the sample’s center, while the “inter-
esting” ones are peripheral data. If there were no volatility in the “normal”
data, recognition of the change would be simple, but the more volatile the
“normal” data are, the more difficult it is to establish a change in their
mode of behavior. This means, that for a system, which should initiate
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any action, the “normal” data are “noise”, while the required information
is contained in the outlying data. For such cases, it is natural to apply
methods, which suppress the central part of a data sample and emphasize
its periphery. In other words, under some conditions outer data robustness
is also a desirable trait.

The choice then is closely related to the task of the analyst or that of
an automated decision process. If the goal is to identify and describe the
normal (quasi-stationary) behavior of a stock, characteristics of normal
production, or the vital signs of a patient, then the inner robustness is
required. If the objective is to design software for an automatic monitor
to detect departures from the “normal” situation, then outer robustness is
necessary.

There may also be situations, where the goal of analysis has not been
established beforehand. An example is in exploratory analysis: the objec-
tive here is to explain the data in the best possible way. In such cases, it
may be useful to apply both inner and outer robustness and then compare
the results. The “right” robustness in such a case is that, which better
explains the data. “To better explain data” may sometimes mean “to pro-
vide the fit of the data with the least fitting error”, while at other times it
may be something else.

Referring once more to Fig. 15.10, consider first the blue EGDF dis-
tribution, which has the S-form and reveals the peripheral outliers thus
manifesting its inner robustness. It is the best distribution function in the
sense of minimizing the ME-criterion. But if a different criterion were to
be applied, the situation could change.

Now if the MF-criterion11 (which is general in the sense of its appli-
cability to an arbitrary system of a priori data weights) is used instead,
the three functions that are graphed, each take on a reverse-S shape. The
QGDF and the QLDF are essentially on top of each other, while the EGDF
(now using the MF criterion) generally follows the same pattern except for
the central data; the global maximum of the sum of the fidelities is (0.8694)
and it is obtained using the scale parameter S = 6.31. This EGDF has
the reverse S form and it practically coincides with the QGDF and QLDF.
The S-shaped distribution can also be obtained, but only with a much
smaller scale parameter (S = 0.182). The resulting distribution function
will correspond to a local maximum of the MF-criterion, which is only 0.67.

There is no contradiction between the two models. A careful analyst

11Maximization of the fidelities’ sum.
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would make use of both of them: the more flexible to characterize the
clustering of the data, and the more rigid to describe the overall view of
the sample. To obtain either version is easy, it is a matter of the starting
value of the scale parameter. The optimization algorithm will converge
to the local optimum from a small initial S (say, less then 1.5) and to
the global optimum from a larger initial S (greater then 1.8). The same
multiple interpretation can also be used with the QGDF and QLDF.

15.4 Comparison of Distributions

To summarize the results set out above, it will be instructive to compare
the numerical characteristics of the “rigid” distribution functions EGDF
and QGDF, which maximize the mean fidelity of the fit (the MF-criterion).
The optimal parameters of the distributions are S (the scale parameter)
and LB and UB (the lower and upper bounds of the data support).

Para- Distribution Function

meter EGDF QGDF

S 3.76 4.54

LB 0.062 0.122

UB 10.95 10.88

MF 0.99999 0.99999

Tab. 15.2 Comparison of the maximum fidelity values MF obtained by
the rigid distribution functions as applied to the data sample Z10. (Both

distribution functions have the same nearly linear character.)

Although each of the functions was computed using a different value
for the optimum scale parameter, all of them model this uniformly
distributed data with the same (very high) precision (Table 15.2). The
major difference stems from the different boundaries for the data support,
LB and UB, particularly the lower bound; this different behavior can be
seen in Fig. 15.7.
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Para- Distribution Function

meter EGDF QGDF

S 1.15 2.14

LB -13.5 -164.1

UB 23.55 10.80

MF 0.903 0.865

Tab. 15.3 Comparison of the maximum fidelity values MF reached by
the rigid distribution functions applied to the data sample Z11.

This data sample is non-symmetrical (Table 15.3). The EGDF has the
S-form (inner robustness). The QGDF manifests outer robustness. The
large difference in the estimated bounds is caused by the different character
of each of the distribution functions.

The symmetrical data sample Z11,s may be used to show the multiple
interpretation of the S-forms versus reverse S-forms.

Para- Distribution Function

meter EGDF QGDF

S 0.182 0.245

LB -10.1 -10.3

UB 10.1 10.3

MF 0.670 0.664

Tab. 15.4A Comparison of the maximum fidelity values MF reached by
the rigid distribution functions applied to the symmetrical data sample

Z11,s. (Both distributions are of the S-form.)

The “small S” functions EGDF and QGDF violate the basic condition
for being distribution functions, they are not everywhere non-decreasing.
Their quality measured by the MF-criterion (although locally maximized)
is low. This leads to the conclusion, that these S-form interpretations
(Table 15.4A) cannot be accepted. It is useful to look for better results in
a region of greater values of scale parameters.
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Para- Distribution Function

meter EGDF QGDF

S 6.31 7.25

LB -10.3 -10.3

UB 10.4 10.4

MF 0.869 0.870

Tab. 15.4B Comparison of the maximum fidelity values (MF ) reached by
the rigid distribution functions applied to the symmetrical data sample

Z11,s. (All three distributions are of the reverse S-form.)

Both distributions cited in Table 15.4B seem to have the same S-form
and to provide the same quality of fit. However, it would be incorrect to
conclude, that they are identical. The EGDF is flexible enough to reveal
the peripheral outliers (although not as completely malleable as the ELDF,
which can approach the empirical function as closely as desired), while the
QGDF “ignore” these data completely. These differences can be seen by
exploring the behavior of the functions using a more refined numerical
procedure.

However, the most important lesson is, that there can be several (local)
solutions to the optimization task of parameters S, LB and UB. Some of
the solutions can even be unusable and certain efforts may be necessary
to find the global optimum.

The examples and comparisons of the distribution functions (EGDF
and QGDF) optimized by the choice of the scale parameter show, that the
estimating global distribution function (EGDF) has unique features, and
that it has no substitute. When the iterative calculation of this distribution
is initiated using a small scale parameter, a reliable test of the homogeneity
of the data sample can be performed, and the robustness is of the inner
type. If the iterative optimization process of the QGDF is started from a
sufficiently large scale parameter, it manifests robustness of the outer type.
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15.5 Cross-section Filtering

It is quite common in the field of data treatment to associate the notion of
a filter with processing time series. The task is to make use of the whole
signal to extract the desirable components and to suppress the residual
“noise.” The process consists of making use of a known regularity of the
desired signal. When using gnostic distribution functions (which represent
a model of the data’s regularities), reliance is placed on both the theory
(which shows how to create these functions) and experience (in manipu-
lating the data, which make up the distributions). If data are related to
the same time frame, cross-section analysis is used. An example of such a
situation could be a data sample composed of certain financial ratios taken
from financial statements of a set of firms from the same period. The distri-
bution of such data reflects regularities relevant to the financial situation
of the whole group at that point in time. Distribution functions—as a
collective experience—can therefore be used to revise individual data since
these, as a rule, do not exactly correspond to the sample’s smooth distribu-
tion function. Four ways to discretely characterize data distribution were
examined above (the empirical distribution function EDF, collections of
KS-points and ME-points and the WEDF). Each of these systems of points
represents a version of a discrete distribution function (DDF), which can
be directly calculated from the data. Each of the four gnostic distribution
functions (∗∗DF) is a tool for smoothing the DDF. Discrepancies between
the discrete and smooth representations of data may be used to suppress
uncertainties in individual data, ie for cross-sectional filtering.

Definition 17: Let Z be a data sample consisting of data Z1, . . . , ZN .
Let the DDF be the discrete distribution function, points (Dk) of which
are evaluated from data Z using formulae 15.1, 15.3, 15.7 or 15.10.
Let ∗∗DF be any of the gnostic distribution functions ELDF, EGDF,
QLDF or QGDF of the sample Z and let P (Zk) be the probability esti-
mate at the point Zk obtained as the value of this distribution function.
Let Z̃k be the estimate of the true value of Zk such that

P (Z̃k) = Dk (15.44)

holds.

This procedure for obtaining estimates Z̃k for k = 1, . . . , N is defined
as cross-sectional filtering.

The ideas behind this notion of filtering are, that
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1. the value of Z̃k (obtained by inverting the distribution function for
probability Dk) may be closer to the true value of Zk, because it better
corresponds to the direct representation of the data by the DDF than
Zk,

2. the ∗∗DF better describes the regularity reflected by the data than
the DDF, because—due to its smooth character—it integrates the
influence of all the cross-section data, compensates for uncertainties
of individual data and awards to them optimal weights according to
the (∗∗DF’s inner, outer or local) robustness.

It is thus obvious, that this cross-section filtering is robust and the specific
kind of robustness may be chosen by the selection of the ∗∗DF.

15.6 Homo- and heteroscedascity

Homoscedasticity (heteroscedascity) refers to the circumstance in which
the variability of a variable is equal (unequal) across the range of values
of a second variable that predicts it. The variability of a kernel estimate
is determined by the kernel’s width. The kernel’s integral is normalized
to 1. Both width and amplitude of a kernel are determined by the scale
parameter. The “equal” variability of a number of kernels is achieved
when scale parameters of all kernels coincide. The heteroscedastic data
case corresponds to unequal scale parameters of the kernels. There was
an assumption of a constant scale parameter when different probability
densities were considered above. However, this does not limit the appli-
cation of the formulae to heteroscedastic cases, because a constant scale
parameter is used for the entire kernel’s form. The probability and density
of heteroscedastic data will be modeled by kernels having different scale
parameters.

15.7 Summary

Unlike parameterized families of statistical distribution functions, the gnos-
tic distributions have no a priori prescribed form. However, this does not
mean, that they are not parameterized; the primary parameters of gnos-
tic distribution functions are data. The most frequently used secondary
parameters are the scale parameter, and the lower and the upper bounds
of the data support. These are ‘secondary’ in the sense, that they are es-
timated from data. The data thus play the full role of determining both
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the distribution functions and their densities. Again, this is the real thrust
behind the gnostic ‘credo’ of “Let data speak for themselves.”

To estimate the secondary parameters of distribution functions, it is nec-
essary to solve the “goodness-of-fit” problem—to find parameters, which
ensure the best correspondence of the gnostic distribution functions to the
data sample as it is represented by its discrete distribution function.

Several types of discrete distribution functions for a primary represen-
tation of data were examined and several criterion functions were found
suitable to obtain the best goodness-of-fit. The choice of criterion func-
tions can be made from several gnostic criteria, which lead to robustness
of the fit.

Four gnostic models of distribution functions were created from a gen-
eralization of the notion of the gnostic probability of an individual datum.
The main element of these functions is the irrelevance of a data sample,
which is obtained by the composition law (Axiom 2). There are two types
of irrelevance in gnostics; these evolve respectively from the estimating
and quantifying processes. Two composition rules result from Axiom 2
and these create the weighted and normalized weighted mean of the ir-
relevances. The local distribution functions use the weighted irrelevance,
while the global functions are a result of using the normalized weights. The
four versions of gnostic distribution functions are the EL (estimating and
local, ELDF), EG (estimating & global, EGDF), QL (quantifying & local,
QLDF) and the QG (quantifying & global, QGDF).

Formulae for these distribution functions reveal some interesting char-
acteristics: the local ones (ELDF and QLDF) differ from the global gnostic
distribution functions by its unlimited flexibility, which is controlled by the
scale parameter. This feature can be used for marginal (univariate) cluster
analysis to “zoom in” and get a detailed look at the data structure.

The global distribution functions (EGDF and QGDF) have limited flex-
ibility and they are unique for each data sample in the sense, that the best
fit can only be obtained by using an optimizing value for the scale param-
eter. These functions are based on the assumption, that the data sample
is homogeneous (that its density has only one maximum). In the case
of a non-homogeneous data sample there may be more than one density
maximum or the density may even be negative. Given this possibility, the
EGDF and QGDF are particularly suitable for conducting a reliable test
for data homogeneity. Both global distributions are robust; the EGDF is
robust with respect to outliers, the QGDF with respect to inliers. This
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innate robustness of gnostic distribution functions is a welcome feature
especially in the treatment of small samples of widely spread data.

The following table summarizes the major characteristics of each of the
distribution function:

Distribution Function
Attribute ELDF EGDF QLDF QGDF

Type of DF Estimating Estimating Quantifying Quantifying
Kind of DF Local Global Local Global
Composition of Kernels WA WAN WA WAN
Bounds of Data Support Arbitrary Optimized Arbitrary Optimized
Scale Parameter Arbitrary Optimized Arbitrary Optimized
Robustness Local Inner Local Outer
Flexibility High Low High Low
Formula for Probability (15.25) (15.29) (15.33) (15.37)
Formula for Density (15.26) (15.30) (15.34) (15.38)

Tab. 15.5 Comparison of the Features of the Four Distribution Functions.

The composition law for gnostic kernels in Tab. 15.5 is WA (arithmetic
mean of gnostic kernels weighted by a priori weights) or WAN (normalized
weighted arithmetic mean of gnostic kernels).

The suitability of gnostic distribution functions to different applications
is summarized in Tab. 15.6.

Task Symbol Suitable Distribution Function
ELDF EGDF QLDF QGDF

Estimate Probability P (Z0) Y Y Y Y
Estimate Density P

dZ0
Y Y Y Y

Estimate a Quantile Z0(P ) Y Y Y Y
Est. Location Parameter LP Y Y Y Y
Est. Global Scale Parameter SG N Y N Y
Est. Data Support Bounds LB, UB N Y N Y
Est. Sample’s Boundaries SB N Y N Y
Interval Analysis IA Y Y Y Y
Cluster Analysis CA Y N Y N
Cross-section Filtering CSF Y Y Y Y
Test for Homogeneity TH N Y N Y
Test for Membership TM N Y N Y

Tab. 15.6 Applicability of the Four Distribution Functions. Y . . . “Yes,” N . . . “No.”



Chapter 16

Parameters of Distribution Functions

16.1 Parameters of Non-parametric Estimates?

Reality is richer than the words, which attempt to describe the experience.
There are many more objects than words to characterize them, which is
why one word can be used to define a myriad of things. The casual use of
words in this way is imprudent in scientific discourse, where words purport
to precisely define a process or an activity. The synonymity of a definition,
which represents various activities can be confusing to the uninitiated,
but this very often occurs over the period, over which a scientific discipline
develops. What statistics means has been relatively clear for some decades;
the sense of the word corresponds to a definition such as that given in [110]:

Statistics is a collection of methods for planning experiments,
obtaining data, and then analyzing, interpreting, and drawing
conclusions based on the data.

There is no reason to doubt the validity of this definition as it applies to
modern statistical applications, but the processes cited do not uniquely
pertain to statistics. The definition is too broad to delimit the statistical
framework, while—at the same time—distinguishing it from many other
recently developed approaches to the same tasks. One can agree, that ob-
taining data is one of the tasks of statistics, but it is also applicable to
many other methodologies: eg measurement theory describes in detail the
process of “obtaining data” using mathematics (but not statistics), and
derives conditions, under which this process is consistent. Neither statis-
tics or measurement theory are subsets of each other; nor does statistics
use the results of measurement theory to support statistical definitions or
axioms. A rich survey of methods for planning experiments, analyzing
and interpreting data and for drawing conclusions based on data include

271
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a plurality of theories, among others: Fuzzy Sets Theory, Rough Sets, Al-
ternative Sets, Theory of Evidence, Belief Networks, Possibility Theory,
Chaos Theory, Fractal Geometry, Non-standard Logics, Non-monotonic
Logics, Default Reasoning, Temporal Reasoning, Approximate Reasoning,
Multivalued Logics, Belief Updating, Tree Structures, GUHA Method1,
Knowledge Acquisition and Representation, Machine Learning, Inductive
Methods, Neural Networks, Databases, Information Retrieval, Data Min-
ing, Uncertainty in Cognition, Expert Systems and—last, but not least—
Gnostics. All of these undertake the tasks set out in the above definition,
but this does not mean, that they are all a part, a “chapter,” of statistics,
because these approaches are encountered as non-statistical methods. It
has been said, that the present state of the art in this field is a “compe-
tition of paradigms,” but, as yet no one has any idea, as to which of the
methodologies will become the future “medalists.” Therefore, it is diffi-
cult to say today, which of these approaches is more important2. In all of
these procedures one encounters the notion of chance, when the task is to
estimate an unknown element. There is not much doubt as to what this
means in terms of ordinary human activity; however it typically demon-
strates the labeling of different things with the same word. In expressions
such as “a chance of winning,” “a chance to explain,” “a chance to take,”
“to meet by chance,” “no chance,” “by any chance,” “to chance it,” and
in many other uses, the meaning of the word differs. The scientific (un-
derstand: statistical) notion of this word is closely related to the Law
of Large Numbers, which behaves with a surprising consistency among
events, that seem to occur “by real chance”. The non-statistical “com-
petitors” of statistics ordinarily avoid this—on the one hand fuzzy and on
the other hand “reserved for statistics”—word and use another term, eg
uncertainty. A similar nomenclature problem exists with parametric and
non-parametric estimates. In the framework of statistics, a parameter is a
numerical measurement, which describes a characteristic of a population,
while a statistic is a numerical measurement, which describes some char-
acteristic of a sample (a subset of the population). Parametric methods of
statistics can usually be applied under conditions, where some fairly strict
requirements (related to the population) are met. One of these is typi-
cally that the sample data come from a normally distributed population:

1GUHA stands for General Unary Hypotheses Automaton—a powerful method developed by Czech
scientists J. Hájek and T. Havránek used to discover the logical interrelations in large masses of data.

2The major portion of the above list was taken from the call for papers of the 7-th conference on
“Information Processing and Management of Uncertainty in Knowledge-Based Systems” held in Paris on
July 6-10, 1998.
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it is then reasonable to use as estimates of the population’s parameters the
arithmetic mean and the standard deviation. The parametric statistical
methods can be called “distribution based”, because a narrower definition
for a statistical parameter would become something like “the parameter
of a population’s distribution function of a specific type.” In contrast to
the above, statistical non-parametric methods do not assume a particular
distribution for a population and they are sometimes called distribution-
free methods. The six most frequently used non-parametric statistical
tests described in [110] are based on the ranks of ordered data samples
or on patterns of sequences. The name “distribution-free” is not always
justified, because to derive critical values for some tests of this type, it is
necessary to apply the binomial distribution. “Non-parametric” cannot be
strictly interpreted as “having no parameter”, because all the statistics de-
rived from these tests are parametrized at least by the size of the samples.
Another example is the Parzen’s kernel estimating method been discussed
in previous chapters. It is suitable for the estimation of a broad class of
distribution functions independent of their parameters. However, kernels
do have parameters, which determine their form, width, height etc. This
means, that the use of parameters by non-parametric methods is initially
a confusing notion.
Gnostics is not based on the idea of a population. Instead, as has been dis-
cussed previously, it deals with data samples as given objects. The samples
may be extended, because they are elements of a group of data, however,
each extension is the subject of an investigation as to its impact on the
characteristics of the sample, to test if—and to what degree—it is indeed
a member of the sample. The notion of parameters is therefore related
not to an assumed population, but to the data, that is being used. Gnos-
tic distribution functions are estimates, parametrized primarily by data
(much like estimates generated by some other methods), but they also em-
ploy several other parameters (the scale parameter S, the bounds of data
support LB and UB, as well as the location parameter, which is dealt
with in the next section). All these characteristics are estimated from the
data. In this sense, gnostic distribution functions are parametrized only
by data, they are not only “distribution-free” (in the sense of being based
on a priori assumed distribution functions); they also are “parameter-free”
in that they yield all the information necessary for estimation from the
data itself. Despite this definition, the notion of parameters of distribution
functions (such as S, LB, UB and others) will be used to distinguish dif-
ferent features of the estimated distributions. As such, these also will be
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“parameters of non-parametric methods.”

16.2 Scale Parameters

The discussions in the previous chapters should have instilled in the reader
a sense of the importance in the role played by the scale parameter. For
the EGDF, QGDF and QLDF a unique scale parameter exists, which en-
sures the best possible goodness-of-fit. In the case of the ELDF the scale
parameter determines the “resolution power” of the representation of the
data sample’s structure. Moreover, it also determines the width of the tol-
eration interval of typical data intervals as used in interval analysis (to be
discussed later in the chapter). It will be shown shortly, that the value of
the scale parameter is closely connected to the degree of robustness of both
uni- and multivariate gnostic models and to robust filters and predictors.
To delve further in the idea, “Let data speak for themselves,” these impor-
tant parameters must be estimated from data “in the best way”. However,
different applications may require a different notion as to what the best
scale parameter is.

16.2.1 Global Scale Parameters

The unique scale parameters, which optimize the distribution functions
EGDF and QGDF (jointly denoted as ∗∗DF) will be called global scale
parameters, because these distributions provide an overall view of the data
of a sample. To do this, the global scale parameters satisfy the condition
of the best fit. The notion of the best fit depends, on which type of
discrete distribution function is to be fitted. The three approaches, the
KS-points, the ME-points and the WEDF, were described in Chapter 15
along with several criterion functions. Three specific versions of the global
scale parameter will be considered here denoted SG,KS, SG,ME and SG,MF .

Global Scale Parameter SG,KS

In a simple case, when the bounds of data support are known, the proce-
dure for estimating SG,KS as described in Chapter 15 can be written as a
minimax task. Denoting

erm− = ∗ ∗DF (S,Zm)− EDF (Zm)− (16.1)
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and
erm+ = ∗ ∗DF (S,Zm)− EDF (Zm)+, (16.2)

where Z1, ..., ZN are data, and where ∗∗ specifies the function (EG, QG or
QL). Expression EDF (Zm)− is the left hand limiting value of the empirical
distribution function EDF at the point Zm, while EDF (Zm)+ is its limit
on the right side. Quantities erm− and erm+ are thus the fitting errors.
The task is

SG,KS = arg (min
S

(max
m

(max(|erm−|, |erm+|)))). (16.3)

This scale parameter has one advantage and several disadvantages. The
advantage is, that it provides a clear statistical sense of the distribution’s
optimality: the distribution function minimizes the Kolmogorov-Smirnov
statistic, which is familiar to statisticians. A statistician may need to be
persuaded from time to time, that a particular gnostic distribution func-
tion is good enough to be used. A useful argument in this case is the value
of the Kolmogorov-Smirnov statistic minimized by SG,KS. Its value is fre-
quently so small, that the KS-test rejects the hypothesis of a bad fit with
a high level of significance. The main disadvantage of the SG,KS is, that
the procedure for solving 16.3 requires the extremization of a non-smooth
function. There are suitable algorithms for this, but they are neither very
simple nor fast. In the more general and useful situation of unknown
bounds, additional numerical problems may arise.
The SG,KS scale parameter was applied to the EGDF distribution func-
tion to compute all the estimates of gnostic location parameters for the
comparison of robust methods cited in [62].

Global Scale Parameter SG,ME

This type of global scale parameter is associated with the maximum en-
tropy fit. Its value is determined by solving the maximization problem

SG,ME = arg (max
S

(F1 ∗ ln (F1) +
N∑
k=2

(Fk − Fk−1) ∗ ln (Fk − Fk−1))),

(16.4)
where

Fk = ∗ ∗DF (S,Zk) (16.5)

is the value of the distribution function ∗ ∗ DF at the data point Zk. In
this case the scale parameter, SG,ME, is computed by finding the extreme
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values of a smooth and differentiable function, but its disadvantage is, that
it is not suitable for data, which do not all have prior equal weights.

Global Scale Parameter SG,MF

It is not difficult to extend the problem to the simultaneous estimation of
SG,MF along with the bounds of the data support LB and UB. This global
scale parameter maximizes the sum of the fidelities and is denoted SG,MF ;
its value can be obtained by solving the equation

SG,MF = arg

max
S

N∑
k=1

2

(Fk/Ek)2/S + (Ek/Fk))2/S

, (16.6)

where the Ek are values of the weighted empirical distribution function
(15.9 and 15.10) and Fk is again 16.5. This scale parameter can also be
simultaneously estimated with the bounds of the data support. As already
noted, the values of the weighted empirical distribution function E are the
same as the ME-points, when all prior data weights are equal, so that for
this special case the scale parameter SG,MF coincides with SG,ME. Because
of its universality, the scale parameter 16.6 is a basic type of global scale
parameter suitable for most applications.

16.2.2 Global Scale Parameter SL1

A useful version of the global scale parameter can be obtained by solving
the equation

SL1 = arg(min
S

N∑
k=1

| Fk − Ek |), (16.7)

where the same symbols are used as in 16.6, and where the symbol L1
is used to recall the name of ’L1-approximation’.

16.2.3 Local Scale Parameter

When non-homogeneous data samples (those with a complex structure hav-
ing several clusters of data) are to be analyzed, it cannot be automatically
assumed, that the most suitable model is a single scale parameter, which
is constant for all clusters. It often occurs, that such samples are a mix-
ture of several subsamples, each of which represents a different object or
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process. Individual clusters may have a different width due to a different
spread of data. The composite sample may thus need a “local” parameter
dependent on a specific point on the data support rather than a single
scale parameter, which is constant over the whole sample. The value of
such a parameter characterizes the spread of data over the neighborhood of
the point. Such a suitable local scale parameter results from the following
theorem, which then characterize a region of the ELDF.

Theorem 16: Let ZN be a sample of multiplicative data (Z1, ..., ZN)
defined over the infinite data support R+ and let ZLP be a location
parameter of the sample not necessarily equal to the ideal value Z0.
Let SL(ZN , ZLP ) be a local scale parameter of the sample. Now let
Ej(Zk/ZLP ) = fj(Zk/ZLP )− 1 be the change in entropy of quantification
(10.26) and fj(Zk/ZLP ) the corresponding Q-weight (9.10) for c2 = 1)
written as

fj(Zk/ZLP ) =
(Zk/ZLP )2 + (ZLP/Zk)

2

2
(k = 1, ..., N). (16.8)

Let

g(ZN , z, ZLP , S) =
4

(q1/S + q−1/S)zS
, (16.9)

where q = ( z
ZLP

)2, and where S is an abbreviation for the scale parameter

SL(ZN , ZLP ). Let

IEj =
∫ ∞
0
Ej(z/ZLP )g(∗)dz, (16.10)

where g(∗) is the density 16.9).
Then:
A There exists exactly one scale parameter SL(ZN , ZLP ) < 2 satisfying

the condition ∑N
k=1Ej(Zk/ZLP )

N
= IEj. (16.11)

B This scale parameter can be obtained as the solution of the equation

πS/2

sin(πS/2)
=

∑N
k=1 fj(Zk/ZLP )

N
. (16.12)
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Proof of Theorem 16: In order to prove 16.11 for the discrete quanti-
fying weight it is sufficient to show, that the means of fj(Zk/ZLP ) (16.8)
and of its continuous version fj(z/ZLP ) = ((z/ZLP )2 + (ZLP/z)2)/2 are
equal (the means of the constant terms, which equal 1 on both the left
and right sides of 16.11 cancel). Taking into account, that dq = 2 z

Z2
LP
dz,

one can write the integral

∫ ∞
0

(
z

ZLP

)2

g(z)dz =
2

S

∫ ∞
0

dq

(q1/S + q−1/S)2
, (16.13)

where g(z) is the density (16.9). The latter integral is a special case of
the integral ∫ ∞

0

xt−1

(1 + xr)2
dx =

1

r

(t− r)π/r
sin ((t− r)π/r)

(16.14)

(known from the literature [29]), which exists for t < 2r. Integral 16.14
therefore also exists for S < 2 and has the value shown:

∫ ∞
0

(
z

ZLP

)2

g(z)dz = 2
πS/2

sin(πS/2)
. (16.15)

The differential of the reciprocal value q′ = 1/q is − 1
q2dq, so that

∫ ∞
0

(
ZLP
z

)2

g(z)dz = − 2

S

∫ 0

∞

dq′

(q′1/S + q′−1/S)2
. (16.16)

Exchanging the integral’s bounds in 16.16 to get the same direction for
the integration path as in 16.13, summing the two equations and adding
1 results in IEj (16.10.)

This expression should equal the arithmetical mean of the entropy
changes of the data in accordance with condition 16.11. After substitution
of 16.15 and its equivalent 16.16 into the continuous weight fj(z/ZLP ),
statement B 16.12 is obtained. The left hand side of 16.12 increases
monotonically from 1 to infinity, when parameter S increases from 0 to 2.
The right hand side of this equation does not depend on S and may take
values between 1 and infinity depending on the data and the value of the
location parameter ZLP . Hence, given a data set, there exists exactly one
S(ZLP ) for each value of the parameter ZLP . Therefore statement A.

The idea expressed by condition 16.11 deserves further interpretation.
The function g(∗), (16.9), is the probability density of the estimating local
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distribution function (ELDF). Integral IEj (16.10) is therefore the inte-
grated mean of the continuous quantifying entropy Ej(z/ZLP ), which is
one estimate of the mean quantifying change in the entropy of the data
sample. This estimate is dependent on the scale parameter S as is the
density. A second estimate of the entropy’s change is the arithmetical
mean of the discrete entropy changes evaluated without prior knowledge
of the scale parameter. Condition 16.11 requires, that both estimates be
equal. The proper value for the scale parameter is then calculated by ap-
plying 16.12. The mean quantifying entropy change is robust with respect
to inliers (but is sensitive to outliers). Estimates of the scale parameter
obtained from 16.12 will therefore retain these same characteristics. How-
ever, obtaining an estimation procedure robust to outliers is not difficult; it
is sufficient to recall, that equality fi = 1/fj holds between the estimating
and quantifying weights. The scale parameter estimate robust to outliers
results from the solution of S of the equation

sin(πS/2)

πS/2
=

∑N
k=1 fi(Zk/ZLP )

N
. (16.17)

16.2.4 Scale Parameter for Required Fidelity

The global scale parameter3 can only be used with distribution functions
EGDF, QGDF and QLDF. Applying a local scale parameter instead would
not make good sense, because there is no freedom in the choice of scale
parameters for these distributions; they are to be used with the best—
global—scale parameter. Because the local scale parameter is dependent
on the spread of data in the neighborhood of a location parameter ZLP ,
its local character is useful in some applications of the ELDF, but it may
be undesirable in other cases. Under certain conditions, it may become
necessary to find the value of a scale parameter, which will provide a given
quality of fit for the whole data sample. A suitable measurement for such
a condition is the mean fidelity of the fit

QF = fi(EL(ZN , Zk, S))/EMF,kN , (16.18)

where EMF,k is the k-th value of the weighted distribution function (15.9
through 15.11) of the MF-fit, and EL(∗) is the value of the ELDF of the
data sample ZN at the point Zk. While formula 16.18 is used to evaluate

3Note, that using the adjectives ‘global’ or ‘local’ to describe distribution functions does not necessarily
imply, that the same type scale parameter (global/local) is the parameter, that should be estimated.
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the quality of the MF-fit, when the scale parameter S is given; in cases,
where a specified quality for the MF-fit (QF ) is desired, it can also be
solved for S to find the scale parameter, which will provide the required
quality. Such a scale parameter is denoted SRF . There are interesting
applications for this scale parameter. In marginal cluster analysis it may
help in deciding, which level of resolution power should be chosen (or how
many separate clusters should be revealed). The resolution power may be
“normalized” by always requiring the same quality QF for the MF-fit of
all the samples to be analyzed. When the similarity of samples is being
tested by interval analysis (to be discussed in section 16.4), the samples’
intervals can be made comparable in this manner.

16.2.5 Variable Scale Parameter

There is, of course, no reason to expect, that all the data in a sample
will have a constant spread. In statistics, this condition is known as het-
eroscedasticity. Heteroscedastic data are frequently encountered in eco-
nomic analysis, especially when the cross-section structure of groups of
non-homogeneous objects is being examined. It is also true, that time
series data cannot be automatically taken as having a time-independent
spread. Gnostics provides tools to overcome this difficulty. The statistical
notion of heteroscedasticity is based on the notion of variance. As previ-
ously explained, this measure of data spread is acceptable in gnostics only
in the case of small data errors, as a limit to the mean data weights (14.54),
the mean data entropy (14.56), mean information change (14.57) or mean
squared irrelevance (14.58) under decreasing amounts of uncertainty. All
of the cited formulae demonstrate the role of the scale parameter S. More-
over, the first derivatives of all four gnostic distribution functions (density
functions) are proportional to the reciprocal value of the scale parameter
(see 15.26, 15.30, 15.34 and 15.38), and the second derivative is propor-
tional to 1/S2. Recall, that the second derivative of a function is a measure
of its curvature. The local curvature of a gnostic distribution function is
thus specified by the local scale parameter, and vice versa: the local scale
parameter is determined by the local curvature of the distribution function.
A low S ⇔ a high curvature and low data spread, large S ⇔ a flat form
for the distribution function and a large spread. The local scale parameter
can be estimated by solving 16.17 for the data sample being considered.
Solutions can be obtained for different values of the parameter ZLP , ie at
different points of the data support. The greater the change in the local
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Ss, the larger the change in the data spread. This effect can be viewed
more vividly by using the idea of the kernel estimation of densities and
distributions dealt with in Chapter 11. Both the statistical kernel 11.6 and
the gnostic kernel 11.7 are functions of the scale parameter S, which de-
termines the width and height of the kernel: a large S ⇔ a broad, flat and
low kernel, a small S ⇔ a narrow, sharp and high kernel. The former case
is that of a strong data uncertainty (large spread), the latter corresponds
to a small spread (better precision of data). The distribution functions
and densities are obtained by superposition of kernels. Heteroscedastic-
ity thus leads to changes in scale parameters and vice-versa. A practical
observation related to the algorithmic use of the variable local scale pa-
rameter obtained by 16.17 is, that this equation does not warrant using
the best fit to data, it gives only a relative profile SL(ZLP ). To optimize
the fit, it is necessary to introduce another parameter S0, the value of
which in S0 ∗ SL(ZLP ) minimizes the fitting errors. Kernels can also be
used in estimating global scale parameters in view of the fact, that the
distribution function consists of kernels attached to individual data. In a
heteroscedastic case, a scale parameter, which is a function of the ideal
value Z0 could be used rather than a constant (unknown) S for all ker-
nels included in the optimization process. An example of such a function
might be S = S0 exp (σZ0). Both constants S0 and σ are unknown, but
they can be estimated using the extremization condition of the best fit.
This simple function embraces several types of spreads: the homoscedastic
case (σ = 0), decreasing and increasing linear cases (a small |σ|) and expo-
nential changes (an arbitrary real number σ). The type of function, that
applies in each case, can be chosen by inspection of the data fitting errors.

16.3 Location Parameters

The location parameter is the numerical characteristic of a data sample,
which provides information, as to where the data are placed on the data
support. There are many types of location parameters; the most frequently
used in statistics are eg the arithmetic or geometric mean and the quan-
tiles directly obtained from an ordered data sample (median, quartiles and
others.) The minimum and maximum data value of a sample also indicates
the breadth of the data. Analogously, the given or estimated bounds of the
data support may also play this role. When a robust distribution function
for a data sample is available, other location parameters such as robustly
estimated quantiles (related to their probabilities) can be used. Useful lo-
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cation parameters such as quantiles, for which the density function reaches
its maximum may also be derived from this function, ie the most frequently
occurring value of the sample’s data (the mode). Two such kinds of pa-
rameters will be distinguished, the GEL (Global Estimate of Location)
and the LEL (Local Estimate of Location). The former parameter is asso-
ciated with the three versions of the gnostic distribution function (EGDF,
QGDF and QLDF), for which a unique “best” scale parameter exists. The
latter location parameter can be derived from the ELDF. It is important to
emphasize, that the “location of the maximum density” in all these cases
is informative only if it is specified, to which data support it relates.

16.3.1 The GEL vs. Traditional Location Parameters

The behavior of the different location parameters can be illustrated by
examples using the simple data sample Z10 of uniformly distributed data
1, 2, 3, ...,10 (Fig. 16.1).
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These data are fixed, while an 11-th data element is free. Its value
changes as it rises from a negligible value to infinity. When it is on either
side of the range of the fixed data, the free value is an outlier. The red line
shows the effect of these changes on the arithmetical mean (AM) of the 11
data taken together. When the outlier is very small, the AM approaches
the value 55/11=5. An unlimited increase in the single outlier results in
the unlimited increase of the location parameter. This effect is the well-
known unrobustness of the arithmetical mean. The median, evaluated
directly from the data, (the sampling median SM) shown by the magenta
line is constant (5) until the point, at which the free datum reaches the
highest value in the sample (10). At this point and for all larger values of
the free datum the SM is again constant and equals 6. While the AM is
oversensitive to large outlier values, the SM exhibits the opposite tendency
and is completely insensitive to changes in the value of the free 11-th datum
over broad intervals. The trimmed mean TM (blue line), obtained by
omitting the smallest and the largest data elements, is constant outside
the data range just as the SM. Within the range, it gradually increases
from 5 to 6. The robust median (RM, green line, the quantile for which
the EGDF reaches 0.5) and the global location parameter GEL (brown
line) exhibit a surprising behavior: they both decrease with an increase in
the outlier from a very small value to that of the smallest datum (1). This
effect may be examined from at least two different points of view:

1. It may simply be accepted as the outcome of a mathematical theory,
which results in maximizing the information contained in the data, or

2. the analyst may try to interpret, what it really means.

The former approach needs no further comment. An attempt to explain
the latter can take a more intuitive form. With only the data Z10, the
estimate of their “mean” value of 5.5 can be accepted. However, after it
is learned, that there is an additional 11-th datum, with a value of less
than 1, the estimate is revised and a lower “mean” is computed. There
may also exist a contrary effect: if the additional value is a real outlier,
which has a value much less than 1, the smaller it becomes, the larger the
weight of the remaining (fixed) values in the sample and the weaker the
outlier’s effect on the mode. The dependence of the location’s estimate on
the position of the additional value is continuous. This is why the mode
rises, when the free value approaches the value of the smallest datum (1).
A similar explanation may be applied to an “overshoot” of both RM and
GEL beyond the largest data value of 10. Note, that in the case of an
outlier, which is well beyond the range of the fixed data, the application
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of the EGDF is limited by the potential appearance of a second density
maximum. Both the quantifying distribution functions QGDF and the
QLDF have a “global” character in that for them there is a unique (best)
scale parameter, which is also the case with the EGDF. A comparison of
the sensitivity of these three functions to an additional “free” datum is
shown in Fig. 16.2.
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There is no significant difference in the behavior of the three functions
over the range of the fixed data (1 through 10) nor over the interval (0,
1). However, as the free data’s value increases beyond the last datum’s
value, all three location parameters first decrease, then begin to rise. For
both the QGDF and the QLDF the increase is accentuated, while for the
EGDF it is much less pronounced and levels off at about 6. This effect is
caused by the outer robustness of the quantifying distribution functions,
which both give an increasing weight to the “outlier.”
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16.3.2 A Detailed Comparison of Location Parameters

The fast pace in the growth of robust statistical theory over the postwar
decades resulted not only in the development of many robust estimating
methods, but also in the appearance of extensive numerical studies de-
signed to compare their respective features and to evaluate the efficiency
of the new techniques. In order to validate these tests, “artificial” data
were used (where both the “true” and the “disturbance” components were
known). The use of this procedure was defended using the argument, that
it was necessary to know in advance, what the “true result” should be.
However, researchers with a more realistic orientation objected, that in
practice, the true character of data is never known beforehand, and that it
would be difficult to judge, whether a “theoretically” good method would
provide substantive results, when applied to real data. This was the objec-
tive behind S.M.Stigler’s [106] decision to test 11 types of robust statistical
estimators of location using 16 independent samples of real data made fa-
mous for their historical measurement of well known physical parameters:

1. the parallax of the sun (Short 1763),
2. the mean density of the Earth (Cavendish 1798),
3. the speed of light (Newcomb 1882, Michelson 1879 and 1882).

The samples contained between 17 to 100 observations. The eleven robust
estimating methods tested were: six “traditional” measures (sample mean,
sample median, three trimmed means (10%, 15% and 25%) and Edge-
worth’s L-estimator) and five “recently” developed parameters (outmean,
three types of M-estimators (Huber P15, Andrews AMT and Tukey Bi-
weight) and an adaptive estimator (Hogg T1))4. His motivation was, that
since the true value of these measured quantities (which were unknown at
the time the measurements were taken) have recently been estimated with
a high precision:

The closer the realized value of an estimator to the current ‘true’
value of the estimated quantity, the better the estimator.

Stigler concluded, that

Modern estimators are not worth the time necessary to compute
them,

and that

The smallest non-zero trimming percentage included in the
study emerged as the recommended estimator and the mean itself

4A description of these methods can be found in [106]
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did rather well.

A second study using contemporary analytical-chemistry data [94] also at-
tempted to determine the most useful location parameter. In this endeavor,
it was felt, that the current “true value” of the classical data was irrelevant,
because of the possible existence of a bias, which could be larger than the
variation across the data:

What is of importance is the variance of the location estimator
used, since lower variance means, that the population location
parameter is more precisely determined.

A comparison of the variance of the estimators applied to both the classi-
cal and modern analytical-chemistry data resulted in the suggestion, that
either severely trimmed means or modern robust estimators are required
to obtain optimum performance. These conflicting conclusions suggested,
that a comparison of the gnostic global estimate of location (GEL) with the
11 statistical ones using the same classical physical data [62] would prove
instructive. Since the 12 estimating methods were to be compared using
16 samples of data, each sample was normalized, so that the task could
be interpreted as the estimation of a single fixed quantity. The problem
of the “true” data values was solved by associating the idea of an “expert
board” of top statistical experts with the respective methodology of each of
its members (Profs. Huber and Andrews, among others), whose outcomes
are listed by their names in the table following. The authors of the classical
methods are, of course, unknown, but it can be assumed, that they were
the top experts of their time. It is therefore possible to accept in the same
manner the ideas of “Prof. Mean, Prof. Median” and others. Thus there are
12 expert estimates of location parameters for 16 normalized independent
data samples. Justification for this approach can be shown by the test,
which demonstrates, that the distribution of the 12∗16 ‘expert estimates’
around the mean value of 1 is undoubtedly Gaussian. The outcome of using
these methodologies, ordered by the standard deviation of the estimating
errors from the mean is summarized in Table 16.5.

Conclusions drawn from Table 16.5:

• The best results, which were close to the mean of the estimates of the
whole “expert board,” were provided by the gnostic estimator GEL.
• The higher percentage of trim, the better trimmed mean.
• Both the sample median and the arithmetic mean performed badly.

The last two conclusions are similar to those of [94]. In contrast, to [106],
this study showed, that (some) robust estimators are really worth the time
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necessary to compute them. The standard errors of about 4% (GEL) or
of about 6% (Hogg T1) have to be preferred over the more than 20% SE,
which results from the use of the sample mean or the sample median.

Estimator Measure of the error
(method) Stand. deviation Mean error Range of errors

Gnostic (GEL) 0.038 −0.001 0.139
Hogg T1 0.061 −0.017 0.261
25% Trim 0.070 −0.029 0.261
Edgeworth 0.079 −0.011 0.273
15% Trim 0.104 0.032 0.447
Tukey Biweight 0.131 −0.043 0.631
Andrews AMT 0.147 0.025 0.660
Huber P15 0.210 0.083 0.856
10% Trim 0.211 0.097 0.821
Arithmet. mean 0.212 0.078 1.055
Sample median 0.278 −0.124 0.962
Outmean 0.610 −0.086 2.603

Tab. 16.5 Errors of 12 robust estimation methods of location parameters
applied to 16 normalized samples of historical data.

16.3.3 Local Location Parameters (LEL)

The sensitivity of the estimating local distribution function ELDF to out-
liers has been shown to differ significantly from that of the EGDF (Chapter
15). It is no surprise, then, that the local estimate of the location param-
eter (LEL) behaves differently. Moreover, an examination of its behavior
under a changing additional datum opens a path to a new way to classify
data. Once again consider the same data sample, Z10, of 10 uniformly
distributed data 1, 2, ..., 10 and once more extend it with an 11-th ‘free’
datum, which changes its value over a broad interval. The object of interest
is the sensitivity of the estimating local distribution functions ELDF for
three values of the scale parameter S (0.8, 1.0 and 1.2). The ELDFs have
unimodal densities for these values of the scale parameter. The dependence
of two location parameters (RM—the robust median and LEL—the local
estimate of location) on the value of the additional free datum is shown in
Fig. 16.3.

The behavior of the robust median is not surprising, it is reminiscent
of the form of the trimmed mean from Fig. 16.1, only the sharp edges are
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smoothed. A difference can also be observed outside of the data range,
where the trimmed mean is constant (5 or 6), while the RM deviates from
these values. Using 15.24 it can be shown, that the limit of the devia-
tion in this case can reach ±Z11. The LEL’s behavior is more interesting.
When moving from left to right on Fig. 16.3, three portions of the LEL
can be distinguished: one, which decreases to a minimum, an increase to
a maximum and then once again a decreasing portion. These effects are
considered in more detail in the following section and they are illustrated
in Fig. 16.4.

16.4 Interval Analysis

16.4.1 Three Interesting Data Intervals

The following definitions will facilitate the analysis of the location param-
eters of a data sample derived from the estimation of the local distribution
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function (ELDF) of a data sample.
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Definition 16: Let ZN be a data sample of N fixed data elements
defined over the infinite data support R+.
Let wk (k = 1, . . . , N) be a priori weights of fixed data.
Let Zx be an N + 1-th datum, which can take any arbitrary value from
R+, so that ZN+1 is the data sample ZN extended by the variable datum
Zx, the a priori weight of which is 1.
Let the ELDF be the estimating local distribution function of the sample
ZN calculated for a scale parameter S, such that the ELDF’s density is
unimodal, and let Z0 be the mode of the ELDF’s density, ie location of
the density’s maximum. Let Z0(Zx) be the main mode of the extended
sample ZN+1. Denote ZL the smallest and ZU the largest finite value of
Zx, for which the equation

d(Z0(Zx))

dZx
= 0 (16.19)



290 CHAPTER 16. PARAMETERS OF DISTRIBUTION FUNCTIONS

holds. Introduce notation

Z0,L =
d(Z0(Zx))

dZx
(ZL) (16.20)

and

Z0,U =
d(Z0(Zx))

dZx
(ZU) (16.21)

Then the interval [Z0,L, Z0,U ] is the tolerance interval of the mode and
interval [ZL, ZU ] is the interval of typical data. An analogous notation
and terminology will be used for finite data support, onto which the points
of infinite data support are transformed.

Figure 16.4 shows the function d(Z0(Zx))
dZx

transformed onto the finite sup-

port of additive data, ie as function d(A0(Ax))
dAx

. All multiplicative data Z∗
are represented as their additive transforms A∗. The graph represents the
sample A10 of fixed additive data 1, 2, ... , 10, which is extended by a “free”
eleventh datum (“outlier”) A11, whose value is indicated on the horizontal
axis as A11. Values of the corresponding location parameter of the type
“mode” are on the vertical axis. Several observations are in order:

O1 The mode of the extended data sample exactly equals the mode (A0)
of the original (non-extended) sample, when the value of the eleventh
datum is A11 = A0.

O2 Regardless of the value taken on by the eleventh “free” datum the
location parameter (mode) will always remain within the tolerance
interval [A0,L, A0,U ].

O3 The value A0 as defined in O1 above is the limit of the mode of the
extended sample, when A11 → −∞ as well as when A11 →∞.

O4 The function d(A0(Ax))
dAx

increases only within the interval of typical data
delimited by the points AL and AU .

O5 There may also be some peripheral data from the fixed sample, that
are atypical if they lie outside the interval of typical data.

These features are preserved even when the outlier takes on an extreme
value; under these circumstances, the distribution becomes bimodal, the
second mode coinciding with the outlier’s location. The form of the graph
in Fig. 16.4 is considered “typical behavior” for the location parameter,
when an increase in the value of a datum causes the location parameter
to change also. It might have been expected, that the location parameter
would increase as well; a view probably rooted in the habitual use of the
arithmetic mean as the location parameter, where this expected behavior
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is natural. In the case of the LEL (Local Estimate of Location) defined
as the mode of the ELDF such “natural” behavior is only observed inside
the typical data interval, which is obviously determined by the sample of
fixed data. If datum A11 is typical, the “board” of fixed data, “supports”
increases in the mode as a result of increasing the value of A11. However,
a value of A11, which is outside the interval of typical data is “rejected”
by the “board”, because it is in conflict with the location of the fixed
data. This “resistance” manifested by the decreasing mode is weak, when
the outlier is very far from the fixed data—the weight of the outlier is
small, but when the outlier approaches the bounds of the typical data, its
weight increases and its influence on the mode reaches extreme values. It
was shown in the foregoing sections, that the global distribution functions
EGDF are robust with respect to outliers. It should now be clear, that the
ELDF is also robust in this same sense. When the bounds of the intervals
are revealed, they can all be used to undertake a new type of data analysis,
interval analysis5. Making use of the fact, that a finite data support has
a lower and an upper bound (LB and UB), and transforming the bounds
of the intervals introduced in this section and the mode Z0 onto the finite
support, the additive data support can be split into subintervals defined
by following bounds:

(−∞, LB,AL, A0,L, A0, A0,U , AU , UB,∞).

Therefore, data may be classified by noting, within which of the eight
intervals it falls. It is even possible to measure the probability of a datum
being assigned to each of the subclasses (intervals), because the distribution
function (ELDF) is available. This procedure permits different samples to
be reliably tested as to identity, similarity and dissimilarity, which whets
an interest in exploring the theory of data intervals.

16.4.2 Theory of the Data Intervals

The estimating local distribution function ELDF (shortly denoted as EL,

15.25) has the density d(EL)
dZ0

(15.26). Under the theory of intervals, it is

assumed, that EL(Z0) is defined over the infinite support R+ of multi-
plicative data. (For applications to real data, which have a finite support,
transformations of the resulting bounds onto the finite support is assumed.

5Kind readers are asked to again tolerate usage of a term, which already has its meaning elsewhere (to
denote treatment of data given as intervals instead of ’mere’ numbers). Taking of such data into account
in estimation of gnostic distribution functions will be considered in Chapter 19.
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The logarithmic scale naturally lends itself to graphing the probability and
density over the infinite support. Then the density of the sample ZN ex-
tended by Zx according to Definition 16 is:

d(EL)

d log (Z0)
=

N+1∑
k=1

1

S
wkf

2
k (16.22)

(resulting from 15.26), where

fk =
2

(Zk/Z0)2/S + (Z0/Zk)2/S
(16.23)

is the estimating weight (the fidelity), and where ZN+1 is Zx. This density
reaches its maximum, when equation

d2(EL)

(d log (Z0))2
= 0 (16.24)

holds. Both S and Z0 are strictly positive finite numbers, therefore equa-
tion 16.24 may be rewritten after differentiation as

N+1∑
k=1

wkf
3
k ((Zk/Z̃0)

2/S − (Z̃0/Zk)
2/S) = 0, (16.25)

where Z̃0 is the mode (the location of maximum density). According to
the assumption, only N data (Zk for k = 1, ..., N) are fixed, while the
N + 1-th datum denoted Zx is a variable taking arbitrary values from R+.
The equation of the mode is therefore

N∑
k=1

wkf
3
k ∗ ((Zk/Z̃0)

2/S − (Z̃0/Zk)
2/S) + f 3

x ∗ ((Zx/Z̃0)
2/S − (Z̃0/Zx)

2/S) = 0.

(16.26)
Equation 16.26 may be used to show, that the observation O1 (in 16.4.1)
based on Fig. 16.4 is of a general nature. Indeed, in the case of Zx = Z̃0 the
second term in 16.26 vanishes. However, Z̃0 is the mode and the first term
is zero also. The location parameters of the non-extended and extended
sample always coincide, when the additional datum Zx is equal to the mode
of the initial (non-extended) sample. The stage is now set for a formal
statement, which defines the intervals of the local estimates of location.
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Theorem 17: Let ZN+1 be a sample of N multiplicative data defined
over the infinite data support R+. Let this sample be partitioned into
a subsample ZN containing data Zk (their prior weights are wk, k =
1, ..., N) and the N + 1-th data element is Zx. Let data Z1, . . . , ZN be
fixed positive numbers having fixed weights and let a positive constant S
be a scale parameter, such that the ELDF’s density has only one mode
Z̃0, which is a root of equation 16.26. Let Zx be a positive real variable.
Then the following formula holds:

dZ̃0

dZx
=
Z̃0

Zx

3f 4
x − 2f 2

x∑N
k=1(3wkf

4
k − 2wkf 2

k ) + 3f 4
x − 2f 2

x

, (16.27)

where fk and fx are the same fidelities as in 16.23 and 16.26.

Proof of Theorem 17: Write equation 16.26 as an implicit function
of two variables

F (Z̃0, Zx) = 0. (16.28)

From 16.26, function F is differentiable by both its arguments, therefore
the total differential exists and equals zero:

∂F

∂Z̃0

dZ̃0 +
∂F

∂Zx
dZx = 0. (16.29)

Assume, that the derivative ∂F

∂Z̃0
is zero. Then the second term in 16.29

must be zero, and the function F (Z̃0, Zx) does not depend on its argu-
ments; however, it is also the second derivative of the distribution func-
tion ELDF (15.25). According to the assumption, the function must be
a quadratic function of the ideal value Z̃0 and of a datum Zx. Since this
contradicts formula 15.25, the assumption is wrong, and the derivative
cannot be zero. Derivative

dZ̃0

dZx
= −

∂F
∂Zx
∂F

∂Z̃0

(16.30)

therefore exists. The numerator of this ratio is

∂F

∂Zx
=

4

SZx
∗ f 2

x ∗ (1− 3h2
x), (16.31)

where hx = ±
√

1− f 2
x is the estimating irrelevance. Analogously, the

denominator is

∂F

∂Z̃0

= − 4

SZ̃0

 N∑
k=1

wkf
2
k ∗ (1− 3h2

k) + f 2
x ∗ (1− 3h2

x)

 . (16.32)
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Taking into account the relation between irrelevances and fidelities and
substituting both partial derivatives into 16.30, the relation 16.27 is ob-
tained.

It can now be seen, that Theorem 17 completely solves the problem of
the bounds, that are needed for interval analysis:

Corollary 17.1: Let the conditions of Theorem 17 hold and let ZL and
ZU be the lower and upper bounds of the interval of typical data. Then

ZL = Z̃0 ∗
√3− 1√

2

S/2 , ZU = Z̃0 ∗
√3 + 1√

2

S/2 , (16.33)

ZU
ZL

=

√3 + 1√
3− 1

S/2 (16.34)

and
ZL ∗ ZU = (Z̃0)

2 (16.35)

Proof of Corollary 17.1: According to its definition, Z̃0 is a root of
equation 16.26 for a given Zx. As such, it is a function Z̃0(Zx). The
derivative of this function results from Theorem 17 (16.27). The lower
(upper) bound ZL (ZU) of the typical data’s interval is defined as the
point, where the function Z̃0(Zx) reaches its minimum (maximum), ie at
the points, where the numerator of 16.27 equals zero:

f 2
x =

2

3
. (16.36)

There are two points satisfying this condition, namely the roots of the
quadratic equation

2

(Zx
Z̃0

)2/S + ( Z̃0

Zx
)2/S
−
√√√√2

3
= 0. (16.37)

Identifying these roots with bounds ZL and ZU , one arrives at 16.33.
Ratio 16.34 and product 16.35 of the bounds result directly from 16.33.

As a result of Corollary 17.1, the width of the typical data’s interval is
determined by only one parameter of the data sample, the scale parameter
S. Moreover, the bounds ZL and ZU of this interval are placed on the data
support so, that the mode Z0 of the EL’s density of (non-extended sample
ZN−1) is the geometric mean of the interval’s bounds (see 16.35).
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16.4.3 Steps in Interval Analysis

Interval analysis of a data sample is comprised of the following steps:

1. Test of homogeneity of the data sample by means of the EGDF. If the
sample is not homogeneous, it is split into homogeneous subsamples.

2. Estimate the EGDF’s parameters LB and UB (bounds of the data
support) and the scale parameter S.

3. Solve 16.26 (with fx = 0 and with the EGDF’s S) for the mode Z̃0 of
the non-extended sample.

4. Calculate the bounds of the interval of typical data ZL and ZU using
16.33.

5. Calculate the bounds of the tolerance interval Z0,L and Z0,U by solving
16.26 first with Zx = ZL and then with Zx = ZU .

6. Calculate probabilities EL(ZL), EL(Z0,L), EL(Z0,U) and EL(ZU).

There are two typical applications for interval analysis: determining,
whether a datum belongs to a data sample and testing for the similar-
ity between data samples. Given a datum Zx, it can be determined if
(and to what degree) it can be considered as a possible member of a given
data sample ZN . Interval analysis of the sample (performed without the
candidate datum) permits the following expectations as to Zx’s potential
membership in ZN to be estimated:

Highly probable: Zx = Z̃0.
Within tolerance: Zx ∈ [Z0,L, Z0,U ].
Typical: Zx ∈ [ZL, ZU ].
Possible: Zx ∈ (LB,UB).
Improbable: Zx ≤ LB or Zx ≥ UB.

Probabilities evaluated by means of the ELDF can be used to quantify
these statements. Examples of simple applications include:

• For financial statement analysis, a set of ratios taken from a group of
comparable companies form the sample ZN , while Zx is a ratio of the
same type for the candidate firm. How closely does the candidate’s
behavior follow that of the group taken as the “norm” for that specific
measure of performance?
• In a quality control application, the parameters of a “normal” sample

are ZN . The analysis would then determine, whether Zx fits within
the bounds of acceptable quality.

An additional situation, which Interval Analysis can resolve consists of
determining the similarity between two samples, say ZA and ZB. The
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similarity of the samples’ states or processes can be classified by using the
following criteria 6:

High: Z̃0,A = Z̃0,B.
Within tolerance: [Z0,L,A, Z0,U,A] ∩ [Z0,L,B, Z0,U,B] 6= 0.
Typical: [ZL,A, ZU,A] ∩ [ZL,B, ZU,B] 6= 0.
Possible: (LBA, UBA) ∩ (LBB, UBB) 6= 0.
Improbable: (LBA, UBA) ∩ (LBB, UBB) ≡ 0.

Two data samples are very similar, when their modes coincide. Similarity
“within tolerance” (a non-empty intersection of tolerance intervals) means,
that there exist a single datum to each of the samples such that extension of
both samples by their suitable datum would cause equality of their modes.
The “typical” similarity (a non-empty intersection of the typical data’s
intervals) means, that some typical data of sample A may be typical data
of sample B. The “possible” degree of similarity (non-zero intersection of
the data supports) means, that there exist some “common” data in both
samples.

16.4.4 A Link to Statistics

Within the framework of statistics, there is an idea, which plays a role
complementary to probability, the likelihood. Probability is a theoretical
construct, which is not directly related to any particular data. In contrast,
with the likelihood function, a data set with unknown distribution or den-
sity parameters is tested to determine the likelihood, that it belongs to a
specific distribution. Estimates computed using the maximum-likelihood
method have favorable statistical features. A further development of this
concept can be observed in robust statistical theory with M-estimates of
location parameters (which maximize the likelihood function) ([33]). As
shown in [77] and [78], formula 16.26 for the LEL estimator Z̃0—under cer-
tain statistical assumptions,—may be interpreted as a special case of the
statistical robust M-estimator. This formal coincidence is further amplified
below:

1. There are a large number of different M-estimators in robust statistics,
each based on different statistical assumptions. It is therefore not easy
to choose “the right one” to apply to a particular real data set (see
Tab. 16.5 for an example). The gnostic LEL estimator does not need
any prior statistical assumptions, because it is a product of a theory,

6The symbol ∩ corresponds to the interval’s intersection and 0 denotes the empty interval.
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which is independent of statistics. The LEL’s form is unique and there
is only one parameter (S) to be fixed.

2. From the point of view of science and contribution to general knowl-
edge, it is a positive development, when a new autonomous theory
(gnostics) coincides with special cases of a generally accepted old the-
ory (statistics) even though the fundamental ideas of both theories
are entirely different. Such “common boundaries” between gnostics
and statistics have already been shown by the limit behavior of gnos-
tic characteristics in the case of a weak data uncertainty. The formal
similarity of the LEL and an M-estimator is more important, because
it exists not only for weakly spread data, but also for a general case.

3. If the statistical assumptions (independent and identically distributed
data) really apply to specific data, then the LEL also possesses
the favorable statistical features proved in robust statistics for M-
estimators. However, if the data are not “iid7”, nothing can be said
about the use of M-estimators, while the LEL is still valid.

16.5 Membership of a Data Sample

The idea of the sensitivity of a given sample’s characteristics with respect
to its extension by an additional ”free” data item can also be applied to
an estimating global distribution function (EGDF). Recall, that a data
sample is considered homogeneous only if its EGDF, calculated for the
unique scale parameter of the global type, is unimodal. Considering the
notion of a sample’s homogeneity in more detail, let it be noted at the
start, that a data sample is created to satisfy the need for quantitative
information about a subject or an event. Therefore, the subject or event of
interest must first be qualitatively delimited. Data are thus “messengers”
delivering a (more or less certain) message to the “client”, the observer.
It is natural to expect, that this transfer of information has some sense of
“order”: observations on an object, “A,” should not be disturbed by data
attributable to another object, “B.” The membership problem is “easy”
as posited as a primitive notion in classical set theory; it is assumed, that
“everybody knows, whether any element is a member of a given set.” The
problem in Real Life is more complex. Example: is our kind reader sure
to belong to the set of healthy people? In contrast, “fuzzy theorists” use
a function to provide a vivid notion of the “degree of membership” of an

7Independent and identically distributed (a statistical condition).
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element to a (fuzzy) set. Instead of the “sharp” yes/no determination
used by the classicists, the required fuzzy statement takes the form of a
number, which places the location of the statement somewhere between
the two extremes of ‘yes’ or ‘no.’ However, it often occurs, that the
observer only has the data and nothing further to help distinguish the
data coming from “A” from that of “B.” Such necessary supplementary
information may be unavailable. Data have their values and a data
sample is specified by its distribution function. This explains, why the
membership problem in statistics is solved by using estimated probability:
highly probable data values are considered to be “members” of the data
set, while data to which a low probability is attached are deemed to be
“non-members,” or outliers8. The risk attached to making the statistical
decision of member/non-member is measured by probability; and this risk
corresponds to a (sometimes subjectively chosen) significance level: “Do
you wish to ensure against membership by a non-member? Then increase
the significance.” Subjectivity is also seen in the fuzzy approach, when the
choice of the membership function is left to the user of the method. The
major difference between the above methods and gnostics is, that gnostics
solves the membership problem of a given (homogeneous) sample uniquely
A data sample defines its global distribution function uniquely, the EGDF
is completely determined by the data and by three other numerical pa-
rameters (the global scale parameter and the bounds of the data support),
which are also uniquely estimated using the data. The homogeneity test
(the EGDF’s unimodality) also has a “sharp” yes/no character. By leaving
out data, which cause inhomogeneity, the rest of the data can be made
into a homogeneous sample. Taking a set of homogeneous data, together
with their scale parameter and the bounds of their data support, consider
changes in the EGDF’s density caused by the addition of another datum,
Zx, which is transformed onto the infinite data support. Specify the EGDF
as F (Zx) : (0,∞) → (0, 1). This function is continuous and unlimitedly

differentiable, the density D1 := dF
d(ln(Zx)) and derivatives D2 := d2F

d(ln(Zx))2

and D3 := d3F
d(ln(Zx))3 exist and are also continuous. Increases in Zx to

values sufficiently greater than the largest fixed data, or decreases in Zx
below the smallest member of the fixed data can lead to the formation
of a second density’s maximum. (The density D1 over the infinite data
support has always at least one maximum.) The boundary state between

8To be an outlier is not necessarily something bad. So, eg, an extraordinarily high profit for a company
may be an outlier in a group of otherwise comparable companies.
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the one-maximum and two-maximum situation corresponds to a Zx value,
at which exactly one additional inflection point exists in the density, D1.
It is easy to see, that for an inflection point in D1, equation D3(Zx) = 0
holds. This equation has two roots in the case of unimodal density D1
and four roots in the bimodal case. The boundary point is characterized
by coincidence of the third and fourth inflection point. Such a “double in-
flection point” is easy distinguishable from the “ordinary” first and second
inflection points, because in the double point the equation D2(Zx) = 0
holds. There obviously exist two such double inflections, the lower
and upper ones. These points determine the bounds of a homogeneous
data sample and enable the idea of interval analysis to be further extended.

Definition 16A: Let ZN be a homogeneous data sample composed of
N data, which after transformation onto the infinite data support form
a vector ZI. Let W be the vector of a priori weights of these data. Let
S, LB and UB be optimum estimates of the scale parameter, lower and
upper bound of the sample ZN based on ZI and W . Let F : (0,∞) →
(0, 1) be the estimating global distribution function obtained as

F := F (ZI,W, S, LB,UB,Zx), (16.38)

where Zx ∈ R+ is an additional variable, which extends the sample ZI.
Taking the above as F (Zx), while holding the function’s other argu-
ments fixed, then the values for ZLSB (0 < ZLSB < min(ZI)) and ZUSB
(max(ZI) < ZUSB <∞), when equationS∗ | d2F

d(ln(Zx))2
| + | d3F

d(ln(Zx))3
|

Zx=ZB

= 0 (16.39)

holds, are correspondingly the lower (B = LSB) and upper (B = USB)
bounds of the sample ZN .

The sample bounds were defined over the infinite data support and are to
be calculated in this format. Users, who would work with the more natural
data form defined over a finite support should not forget to transform the
bounds onto the natural scale. It is useful to consider an example. Ten
normally distributed samples have been generated by the pseudo-random
generator of S-PLUS for mean of 0 and a standard deviation of 1. Each
sample consists of 10 data. Neither estimates (AV G) of the means nor
estimates of the standard deviations (STD) are equal to their theoretical
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values because of the randomness. The sample estimates are summarized
in Tab.16.6 along with the gnostic membership bounds LSB and USB.

It is seen, that the volatility of the estimates of both statistics is
significant. Statistical control of normally distributed samples is ordinarily
based on limits set as multiples of the standard deviations. Denote such
a control limit by M ∗ STD. Multiplication factor M is a function of the
chosen significance of the statistical test, the limits being AV G−M ∗STD
and AV G+M ∗ STD.

Ser. MEANS St.Dev. Gn. bounds
No. AVG STD LSB USB

1 -0.245 0.806 -3.79 3.68
2 -0.117 1.120 -3.88 3.87
3 0.096 0.784 -2.91 3.04
4 0.117 0.927 -3.97 3.82
5 0.484 0.586 -3.67 3.85
6 -0.120 0.889 -3.19 3.09
7 -0.026 1.042 -3.51 3.50
8 0.137 0.888 -3.64 3.68
9 0.588 0.756 -3.33 3.69

10 0.002 0.808 -3.30 3.41

MIN -0.245 0.586 -3.97 3.04
MED 0.049 0.848 -3.58 3.68
MAX 0.588 1.120 -2.91 3.87

Tab. 16.6 Statistics and gnostic sample bounds for 10 normally
distributed samples together with their minima (MIN), maxima (MAX)

and medians (MED)

In the case of the ten series from Tab. 16.6 the estimated statistical con-
trol limits vary between AV G±M ∗0.586 and AV G±M ∗1.120 depending
on the significance chosen. The relative range of the control limit defined
as (max{STD}-min{STD})/median{STD} is thus (1.120-0.586)/0.848 =
0.630 for an arbitrary M . The gnostic sample bounds LSB and USB in
Tab. 16.6 do not depend on the significance level and they are relatively
stable in spite of strong random variations of the series. 9 Their relative

9To estimate their values, it was assumed, that the given data cannot have values outside of the
interval (−4, 4). For theoretical data distributed as N (′,∞) the probability of appearing outside this
interval is 0.000063. This probability is even more negligible in practice, where data are always bounded,
“trimmed”. The assumption, on which the sample bounds are based is therefore realistic.
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range is 0.296 for the LSB and 0.226 for USB—less than a half of the
statistical case. (Note, that this comparison neglects the volatility of the
estimated mean, AVG).

It is seen from Tab. 16.6, that the volatility of the results is smaller if the
gnostic methodology is applied. This is remarkable, because many people
believe, that the application of pure Gaussian distributions raise the least
doubts on the validity of classical statistical concepts.

16.6 Summary

All the information necessary for computing gnostic distribution functions
is taken from the data. These functions are completely defined by the data
and by parameters, which also are specified by the data. Three (“primary”)
parameters—the scale parameter and bounds of data support—determine
the form of these distributions. Other (“secondary”) parameters derived
from the distributions provide numerical characteristics of the analyzed
data sample.

To estimate the unique (“global”) scale parameter, which provides the
best fit of data for the distributions EGDF, QGDF and QLDF, it is neces-
sary to solve the corresponding extremization problem. When the bounds
of the data support are not given, they are found by optimization together
with the optimum scale parameter. There are several methods, by which
the quality of the data fit can be evaluated. Three types of best global
scale parameters were examined based on the Kolmogorov-Smirnov mini-
max measure, the maximum entropy principle and on maximization of the
fidelity of the fit.

The choice of a scale parameter for estimating a local distribution
function ELDF depends on the task. The local scale parameter may be
useful in evaluating the local behavior of the distribution function, eg
within a cluster of data, to test the constancy of the scale parameter
over a whole data sample or to treat a data series. An alternative to the
local scale parameter is the scale parameter, which ensures a required
quality for the fidelity fit. In particular, it may be applied to make local
distribution functions of different samples comparable to each other, and
in order to set the resolution power in cluster analysis.
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The location parameters are important secondary parameters of dis-
tribution functions. While a quantile for an arbitrary probability can be
useful in analyzes, the most frequently used numerical parameters of the
sample’s location are the distribution’s median and mode. A sizable case
study using well known historical data showed, that the mode of the es-
timating global distribution function EGDF is an excellent location pa-
rameter and its robustness exceeds that of many estimators used in robust
statistics. The location parameter also plays an important role, when the
estimating local distribution function (ELDF) is used in interval analysis.
This technique allows the degree of association of individual data elements
within the sample to be determined with respect to the whole sample.
Another application is to evaluate the similarity between data samples.

The sensitivity of these operations depends on the choice of the scale
parameter. Its unique estimation along with the bounds of a data sample
with the EGDF provides an objective answer, as to whether a datum could
be of “member” of a given homogeneous sample.

The suitability of different scale parameters to specific tasks is summa-
rized in Tab. 16.7.

Task Scale Parameter Description
Kolmogorov-Smirnov’s Test SG,KS 16.3
Estimate Probability SG,MF 16.6
Estimate Density SG,MF 16.6
Estimate a Quantile SG,MF 16.6
Est. Location Parameter SG,MF 16.6
Est. Data Support Bounds SG,MF 16.6
Est. Sample’s Boundaries SG,MF 16.6
Test for Homogeneity SG,MF 16.6
Interval Analysis SG,MF 16.6
Comparison of Samples SG,RF Subsection 16.2.3
Multivariable Modeling SG,RF , SG,MF or SL Chapter 18
Cluster Analysis Chosen S Subsection 15.3.2
Heteroscedastic Analysis Variable S Subsection 16.2.4
Filtering of Time-Series SL 16.17
Cross-section Filtering SG,MF 16.6

Tab. 16.7 Recommended Scale Parameters



Chapter 17

Gnostic Regression

17.1 Basic Concept

The term, regression, was introduced by Francis Galton in connection with
his observation, that the average height of children tended to move or
“regress” toward the average height of the population as a whole. This idea
of “regression to mediocrity” (Galton’s words) found a broad application
in statistical modeling. As he defined the concept [26]:

Regression analysis is concerned with the study of the depen-
dence of one variable, the dependent variable, on one or more
other variables, the explanatory variables, with a view to es-
timating and or predicting the (population) mean or average
value of the former in terms of the known or fixed (in repeated
sampling) values of the latter.

This description does not state explicitly, that the dependent variable is not
deterministic, but a stochastic function, nor that in advanced regression
models even the explanatory variables may be stochastic. Another impor-
tant unstated characteristic is, that the model’s structure (the mathemat-
ical description of the dependence based on some unknown parameters) is
assumed to be given. The statistical estimation or prediction of the de-
pendent variable is ordinarily completed by an analysis of variance of the
results. As is the usual practice in statistics, the behavior of the stochastic
components is assumed to be described by a priori given statistical mod-
els. In robust statistics, the a priori assumptions are weaker, but they still
exist.

A regression function corresponding to the classical definition will be
called an explicit regression, because it distinguishes between the explana-

303
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tory variables and at least one explicitly expressed dependent variable.

The gnostic notion of explicit regression differs from the statistical for-
mulation in following ways:

1. In statistics, data are viewed as random samples taken from a popula-
tion, the statistical model of which is assumed to be known. A gnostic
regression is based on the different gnostic definition of uncertain data
and data samples (see Chapters 5 and 14).

2. Instead of using the usual statistical criteria (eg minimum variance,
unbiasedness, etc.), gnostic regression procedures minimize one of the
six gnostic measures of uncertainty for the system being examined
(Chapter 10).

3. Classical regression models do not meet the requirements of robust-
ness. The robustness of regression models in robust statistics is due
to additional statistical assumptions, which have been made with re-
spect to the data models. In contrast, gnostic regression models are
naturally robust because of their inherent features, which result from
the application of the selected gnostic criterion function.

The gnostic approach to the regression problem is comprised of the follow-
ing steps:

A The selection of a model structure, which respects the available data
and the goal of the modeling.

B The choice of a gnostic criterion function to evaluate the quality of the
data explanation.

C Optimization of the model’s parameters by extremization of the criterion
function applied to an ex ante portion of the available data.

D An analysis of the residuals (modeling errors) by means of distribution
functions and drawing conclusions as to the

1. homogeneity of the data samples,
2. suitability of the model structure to explain the data,
3. need to separate the various data clusters,
4. evaluation of the quality of modeling,
5. need to carry out another iteration from step A.

E Validation of the quality of the model by testing the ex post portion of
the data and comparing the distribution function of the results with
the distribution function of the initial subsample.

The separation of the model identification phase (C and D) from the veri-
fication phase (E) by splitting the data into ex ante and ex post portions is
a routine procedure in time-series analysis. It is highly desirable to apply



17.2. ROBUST REGRESSION MODELS 305

this process to cross-section regression analysis, because it provides to the
user an indication of the real efficiency of the modeling. The only obsta-
cle may be a critical lack of data, but this constraint can be frequently
overcome by using two similar data sets.

Gnostic methodology as it is applied to a broad and important class of
regression models will be discussed in the subsections to follow.

17.2 Robust regression models

The formulation and solution of this problem is general enough to include
both linear and nonlinear versions of cross-section models as well as dy-
namic models of interrelations between time series. Explanatory variables
may be interpreted as inputs and the dependent variable plays the role of
the output of the model.

17.2.1 Formulation of the Problem

The approach to the robust regression problem represents a generalization
of the method originally published in [60].

Problem: Let F be a differentiable function of a known type,

F : RM ×RM → R+. (17.1)

Let C ∈ RM be a column vector of unknown but constant parameters. Let
x ∈ RM denote an explanatory (or input) vector of a (generally nonlinear)
regression model

z = F (C, x), (17.2)

the variable z being the dependent variable (or the output). Suppose, that
neither the input nor the output is known precisely. Let the n-th true
values x0,n and z0,n be related by means of the equation

z0,n = F (C, x0,n). (17.3)

Let xn and Zn denote the uncertain observations of x0,n and z0,n (data) for
n = 1, . . . , N.
Given a twice differentiable function

D : R1 → R+. (17.4)
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Let c2 ∈ {1,−1} and hc be the irrelevance, either hj (quantifying, c2 = 1)
or hi (estimating, c2 = −1), so that at the n-th point relations

qn =

 Zn
z0,n

1/S

(17.5)

hj,n = (q2
n − q−2

n )/2 (17.6)

and

hi,n =
q2
n − q−2

n

q2
n + q−2

n

(17.7)

hold for an estimate z̃0,n of the true value z0,n and for a positive scale
parameter S.

The objective is to find the estimate C̃ of the unknown vector C of
parameters, so that the criterion function

ϕ :=
N∑
n=1

D(hc,n) (17.8)

is minimized, ie
C̃ = arg min

C
(ϕ(S)). (17.9)

The scale parameter S is assumed to be given based on some other consid-
eration. Alternatively, the minimization task may include optimization of
the scale parameter’s value (Sopt), so that

C̃ = arg min
C

(ϕ(S))|S=Sopt. (17.10)

When choosing between these alternatives, it must be taken into account,
that the scale parameter’s value determines the degree of robustness of the
results with respect to inliers (c2 = 1) or outliers (c2 = −1). Expression
17.10 is to be interpreted as the minimization of ϕ constrained by the
condition, that S reaches its optimal value. This optimality should be
based on a criterion function other than ϕ to exclude the trivial minimum
ϕ = 0, which is obtained as S →∞.

17.2.2 Iterative Solution

The optimization problems 17.9 and 17.10 can be solved directly by nu-
merical methods. However, to obtain a theoretical insight to the solution
of at least the task represented by 17.9, an iterative solution is more useful.
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Theorem 18: Let the assumptions and definitions of 17.1–17.8 hold.
Given a scale parameter S and given the k-th iteration C(k) of the esti-
mate of the parameter vector C together with estimates

z̃0,n = F (C(k), xn) (17.11)

of the ideal values (17.3) for n = 1, . . . , N .
Let hc,n be irrelevance (17.6) or (17.7) using qn (17.5), where the estimates
z̃0,n are substituted for the ideal values z0,n.
Establish the column-vector (relative value of the gradient of the function
F )

gn :=
1

z̃0,n
∗
(
∂F

∂C1
, . . . ,

∂F

∂CM

)T
C(k),xn

(17.12)

(n = 1, . . . , N), and scalars

D
′

c,n :=
dD

dhc,n
, (17.13)

D”
c,n :=

d2D

dh2
c,n

, (17.14)

h(1)
c,n := z̃0,n

dhc,n
dz̃0,n

. (17.15)

Then the k+1-th iteration, which decreases the criterion function ϕ (17.8)
can be approximated by the formula

C(k+ 1) = C(k) +

 N∑
n
D”
n(h

(1)
c,n)

2 ∗ (g
n
gT
n
)

+

×
− N∑

n
D
′

nh
(1)
c,ngn

 , (17.16)

where all quantities on the right-hand side of 17.16 are estimated by
substitution of C(k) and z̃0,n instead of C and z0,n, respectively, and
where the symbol M+ denotes the pseudo-inverse of a matrix M .

Proof of Theorem 18: To take into account the uncertainty of the
criterion, the criterion will be analyzed together with its variation dϕ.
Let the condition for minimization of the variated criterion be

dϕ+ d2ϕ = 0. (17.17)

Both differentials are functions of the irrelevance hc,n, hence

N∑
n
D
′

n(dhc,n + d2hc,n) +
N∑
n
D”
n(dhc,n)

2 = 0. (17.18)
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The second differential d2hc,n in the first sum can be neglected as a small
quantity with respect to dhc,n. The irrelevances hc,n are functions 17.6 or
17.7 of z̃0,n, therefore

N∑
n
D
′

nh
(1)
c,n

dz̃0,n

z̃0,n
+

N∑
n
D”
n(h

(1)
c,n)

2

dz̃0,n

z̃0,n

2

= 0. (17.19)

The following scalar product results from 17.11 and 17.12:

dz̃0,n

z̃0,n
= gTdC. (17.20)

The scalar product commutes (gTdC = dCTg). Therefore, the equation

dCT

 N∑
n
D
′

nh
(1)
c,ng +

N∑
n
D”
n ∗ (h(1)

c,n)
2g
n
gT
n
dC

 = 0 (17.21)

should hold identically, ie for all dCT . Taking approximately

dC .= C(k)− C(k + 1) (17.22)

and using the pseudo-inverse of the square matrix 17.16 is obtained.

There are good reasons to apply pseudo-inversion to obtain the solution,
because it is possible, that the square matrix may be singular for several
reasons:

1. A larger number of parameters may have been chosen (the dimension
of the vector C) than is necessary to explain the data.

2. A linear dependence of the rows/columns of the square matrix may
result due to data uncertainty.

3. The limited precision of the numerical representation of vectors and
operations available in the computer software may reduce the rank of
the matrix.

The application of pseudo-inversion does not involve any additional prob-
lems and it offers some extra improvements:

1. When computing the pseudo-inverse by means of the SVD-technique
(Singular Value Decomposition), there is full control of the numerical
determination of the matrix by evaluation of the ratio of the smallest
to the largest of the singular numbers.
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2. A suitable dimension for the parameter vector (and for the model
under consideration) can be established by using the information on
the singular numbers.

3. The SVD-technique substantially improves the precision of the re-
sults, because it applies only linear (not quadratic) operations to the
matrices.

4. This technique provides important (geometric) information (orthogo-
nal bases of both row- and column-subspaces) about the vector sub-
spaces occupied by the data matrices.

5. It can be shown, that an important advantage results from this or-
thogonality: the possibility of unifying the solution’s scales, which
simplifies numerical operations.

6. In the case of regularity, the pseudo-inverse matrix is identical to the
inverse matrix.

The use of pseudo-inversion is thus a way of obtaining extended generality
and better quality in the modeling.

17.2.3 Interpretation of the Iterative Solution

The results obtained above may be interpreted in terms of the ordinary
least-squares method. This statement is neither obvious nor trivial. A
more detailed explanation is therefore desirable. Expression 17.16 may be
interpreted as

C(k + 1)− C(k) =

 N∑
n=1

GnG
T
n

+  N∑
n
GnEn

 , (17.23)

where
Gn :=

√
|D”

n|h(1)
c,ngn (17.24)

and

En := − D
′

n√
|D”

n|
. (17.25)

There are obviously N column vectors Gn. Let us compose an N × M
matrix X using vectors GT

n as the rows of X, so that

Xn,m = Gm,n n = 1, . . . , N, m = 1, . . . ,M. (17.26)

It is well-known, that the singular value decomposition of the matrix X
(which has the rank R ≤ min (N,M)) can be uniquely obtained as the
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product of three matrices
X = UWV T , (17.27)

where U is an N ×R-matrix, W is R×R and V is M ×R. It is also well-
known, that matrix W is diagonal with ordered non-zero singular numbers
dr (r = 1, . . . , R), and that both matrices U and V are semiorthonormal,
ie UTU = V TV = I(R), where I(R) is the R × R identity matrix. It is to
be emphasized, that in order to obtain the decomposition 17.27, only the
SVD-algorithm to matrix X needs to be applied. The semiorthonormality
of U allows the n-th row un equation

R∑
n=1

uTnun = I(R) (17.28)

to hold. The n-th row of X is GT
n = unWV T . Therefore

N∑
n=1

GnG
T
n = V TW 2V = XTX (17.29)

and

(
N∑
n=1

GnG
T
n )+ = V TW−2V = (XTX)+. (17.30)

Using the matrix X and composing a column vector E of the components
En, one may write

N∑
n=1

GnEn = XTE. (17.31)

Solution 17.23 may be thus written in the form

C(k + 1)− C(k) =
(
XTX

)+
XTE, (17.32)

which actually is the least-squares solution of the equation system

X(C(k + 1)− C(k)) = E. (17.33)

Returning to the original variables, the n-th equation of the system can be
rewritten as:

FW (Zn/z0,n) ∗ gTn = E(Zn/z0,n), (17.34)

where
FW (Zn/z0,n) =

√
|D”

n||h(1)
c,n| (17.35)

results from 17.24 and E(Zn/z0,n) is En (17.25). System 17.33 of these
equations is an iterative but linear substitute for the original, but more
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complex task of 17.9. This substitution was made to examine the behavior
of the solution. Row-vectors of the matrix X (ie GT

n ), which have the form
of the left-hand side of 17.34 now play the role of the explanatory (input)
vector variables of the now linear model 17.33, with the scalars En as its
outputs.

Gradient gn (17.12) does not depend on uncertainty (at least after itera-
tion), but the multiplier FW (17.35) does, because the uncertainty causes
the ratio Zn/z0,n to decline from 1. The multiplier amplifies or attenuates
the impact of the input vector gn depending on the uncertainty, potentially
suppressing its effect. The function FW (17.35) may therefore be called
the filtering weight.

The difference between the observed value of the dependent variable and
its value as provided by the model represents the error of modeling (the
residual error) and it may be called an additive residual. To protect the
quality of the solution of the regression from data errors, robust statistics
creates residual functions known as influence functions, which are based on
some a priori accepted assumptions about the nature of the data. The effect
of these functions can be interpreted as nonlinear filters: instead of directly
using the (linear) residuals, they are transformed (in a nonlinear way) by
means of this influence function. The gnostic function E also plays the
role of an influence function, but with some differences: instead of additive
residuals, its argument is the multiplicative residual Zn/z0,n

1, which instead
of being based on a priori statistical assumptions, is completely defined by
the gnostic criterion function D (17.8), that is based only on theory.

The multiplicative residuals Zn/z̃0,n determine the filtering effect ap-
plied both to the inputs (explanatory vectors, 17.24), and to the output
(dependent variable, 17.25). This effect is specific; it is different for each
equation represented by 17.34, because the error of each equation is differ-
ent. It will now be shown how this filtering affects the robustness of the
method.

17.2.4 Robustness of the Gnostic Regression

The results from 17.15 and 17.5–17.7 are such, that

h
(1)
j,n = − 2

S
fj,n (17.36)

1It is multiplicative, because it states how many times the observed value Zn is larger/smaller than
the true model output zn,0.
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and

h
(1)
i,n = − 2

S
f 2
i,n, , (17.37)

where fj,n and fi,n are Q- and E-weights (9.10), which are bound to the
irrelevances by the relations

fj,n =
√

1 + h2
j,n fi,n =

√
1− h2

i,n. (17.38)

There are three pairs of gnostic characteristics, which are interesting as cri-
teria D(hc) (17.8) associated with Q- and E-entropy, Q- and E-information,
and with the sources of the fields of these quantities. These are summa-
rized in Tab. 17.1. A numerical multiplier in the definition of D does not
change the results of the optimization. The sign of D is chosen to provide
a positive first derivative D

′

n. Additive constants do not play a role in D,
they can be omitted, because only derivatives D′ and D” are needed for
the solution. ,

Case Gnostic characteristic D(hc,n) References
Q1 Sources of the Q-entropy’s field h2j,n/2 (10.47)
E1 Sources of the E-entropy’s field h2i,n/2 (10.48)
Q2 Q-information Ii,n (10.58), (10.56)

(10.48)
E2 E-information Ij,n (10.52), (10.50)

(10.42)
Q3 Q-entropy (Q-weight) fj,n (10.26),(9.10)
E3 E-entropy (E-weight) -fi,n (10.26),(9.10)

Tab. 17.1 Gnostic characteristics usable as criterion functions for the regression
problem.

An examination of the particular formulae, which control the filtering ef-
fects derived from Tab. 17.1 may be of interest.

Filtering Weight Error Function
Case 2 FW (17.34) E (17.25)

Q1 fj hj
E1 f 2

i hi
Q2 1 fj arg tan(hj)
E2 fi fi arg tanh(hi)
Q3 1/

√
fj

√
fjhj

E3
√
fi

√
fihi

Tab. 17.2 Filtering weights and error functions for different gnostic
criteria D used in Tab. 17.1.
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The above functions are depicted in Figs. 17.1 through 17.5. The vari-
able on the horizontal axis in Figs. 17.1-17.4 (which show the three cate-
gories of Q- and E- weights and errors) is Φn = lnZn/z̃0,n—the uncertainty
measured as the additive residual error (the scale parameter equals 1 in
these examples). Figure 17.5 compares the behavior of the six error func-
tions. To provide a more comprehensive comparison, each of the error
graphs also plots the Euclidean error.

So as to properly understand the behavior of all the filtering functions,
it is useful to recall, that by equation 17.34, the filtering weight (FW )
amplifies or attenuates the left-hand side of the equation, while the error
function E is on the right-hand side. Both of these functions are dependent
on the equation error (multiplicative residual) Zn/z0,n, but in a different
way: Using a simple example of a linear regression, for which equation 17.3
reduces to

z0,n = C0 +
M∑
m=1

Cmx0,n,m, (17.39)

the gradient 17.12 is

gn :=
x0n

z̃0,n
(17.40)

with the row-vector x0n composed of elements x0,n,m. The ordinary least-
squares regression (OLS) is based on the assumption, that the explanatory
vectors xn are disturbed only by a “white noise,” ie that elements of the
explanatory vectors3 are not correlated. Such an assumption is unrealistic
in many applications. So, eg, if the dependent variable were the profit of a
firm and the xns were other economic parameters such as financial leverage,
a liquidity ratio, total asset turnover etc., then there will be uncertainties
on both the input and the output sides of the regression equation and they
will surely be correlated. In the case of a “proper” choice for the criterion
function D, the filter weights (FW ) will suppress the input uncertainties
and the error function (E), the uncertainties of the output variable. The
resulting model will thus be robust with respect to both input and output
uncertainties. Different criteriaD will result in different types of robustness
(inner/outer) with respect to the inputs and/or outputs.

Consider the case of Q-regressions (Q1, Q2 and Q3, in Tab. 17.1), where
the filtering weights have the form of Fig. 17.1. Three qualitatively different
behaviors of the FW functions are documented:

3In statistics, there are generalizations of the OLS methodology for a more general case of disturbances,
but these assume knowledge of the correlation matrix of the disturbances, which is not always available.
If an estimate of this matrix is used instead, it is likely, that there will be problems with the traditional
method, which will result in unrobust estimates.
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1. The FW of criterion Q2 is neutral to input uncertainty: the filtering
weight is constant as in the case of the classical OLS (Ordinary Least
Squares) method,

2. Unlike OLS, a strong outer robustness is manifested in the case of Q1.
3. An inner robustness results in case Q3.

For E-type regressions, all three cases E1, E2 and E3 (Fig. 17.2) lead to the
same kind of (inner) robustness but with a different intensity. In all (Q-
and E-) cases, the FW s converge to 1, when the multiplicative residual
approaches 1 (zero value of the additive residual Φ) which means, that
for very weak uncertainty, the differences between it and the OLS-method
vanish.

It can be shown, that—for very weak uncertainties—all (Q- and E-)

error functions, E, converge to the linear function 2Zn−z̃0,nz̃0,n
. This can be

called Euclidean relative error and it proves, that all six considered cases of
gnostic regression are consistent with the classical regression methodology,



17.2. ROBUST REGRESSION MODELS 315

��

����

����

����

����

��

	��
� 	�� 	��
� �� ��
� �� ��
�
�������������������

�� �� ��

����������� �!�" #$�%� $&!'��%
�	�����((�)�

�*������+������)�������!)��,���-����

��������*�.�/�0�������')1��(�)2��/���	����)3��2��45

��������*�.� 6������������	��2)�-���)�

��������*�.�2�������������	����)3�

if uncertainties are sufficiently weak. Moreover, the gnostic regressions
were derived without the usual statistical assumptions, they have their
own axiomatic justification, which makes them more generally applicable
and they yield robust results.

The error functions E may be interpreted not only as “influence func-
tions” (as already mentioned) but also as definitions of a Riemannian met-
ric: they determine how an (output) error should be measured. To compare
their behavior with that of the Euclidean case, Figs. 17.3–17.5 also show
the Euclidean metric. For weak uncertainties one can again see the co-
incidence of the curves with the Euclidean one, however there are large
differences, when strong uncertainties are present.

In all three Q-cases, the E-function strongly amplifies the effect of un-
certainties thus ensuring outer robustness. It is worth noting, that there
are three different combinations of input (IR) and output (OR) robustness
for Q-regressions:
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1. Q1 - IR: outer, OR: mixed,
2. Q2 - IR: neutral, OR: outer,
3. Q3 - IR: inner, OR: strong outer.

The robustness OR for Q1 has been called ‘mixed’, because for some middle
intensity of uncertainty (Φ between roughly 0.25 and 0.85) the E function
rises more slowly than the Euclidean line (more like inner than outer ro-
bustness), but for large uncertainties it clearly manifests outer robustness
(see Figure 17.3).

These differences between the types of input and output robustness in
the Q-versions of D can be useful in applications, where the makeup and
intensities of the input and output disturbances are different.

In contrast, for E-regressions, all input (FW , Fig. 17.2) and output
(E, Fig. 17.4) filtering effects demonstrate an inner robustness, but with
different intensities. There are other effects to be noted with respect to the
error functions in Fig. 17.4:
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1. Differences between the E2 and E3 cases are very small, when only
the error functions are considered: the type and the effect of output
robustness is nearly the same although the criterion functions differ.
This, of course, does not mean, that there is complete equivalence,
because as shown in Fig. 17.2, the intensity of inner robustness is dif-
ferent.

2. There is a qualitative difference between the error function of E1 and
the other two functions: the former behaves in a “saturating” way,
while the form of the E2 and E3 error functions is “redescent”4. The
saturating filter takes all uncertainties beyond a certain limit as “the
same”, while the redescent filter completely attenuates very large un-
certainties.

All six E-functions are shown in Fig. 17.5 plotted against a horizontal axis
of multiplicative residuals Zn

z̃0,n
so as to compare their deviations from those

4To apply the term used in robust statistics to describe such influence functions.
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of the Euclidean function (which shows its true linear nature).
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A natural question at this point relates to the choice to be made between
the six types and intensities of robustness: “Which one is the best?” Each
serves its own purpose and a choice may be alternatively based on

• the prior experience of an analyst with particular types of input and
output data,
• the data ‘speaking for themselves:’ that is, to run procedures using all

six versions of the gnostic criterion functions sequentially or in parallel
and to measure the quality of the results of such a ‘pilot’ analysis so
as to determine the best D, which can be subsequently applied to
analogous situations.

Recall, that all six approaches are optimal, each in its own strictly defined
and theoretically justified sense. An important observation should be made
as to the geometrical aspects of the measuring errors connected to the re-
gression problems. Euclidean geometry is not curved, it measures errors
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linearly. However, each of the gnostic error functions shown in Fig. 17.5
represents a nonlinear measuring method, which corresponds to a certain
Riemannian (curved) geometry. This curvature is what provides robust-
ness to the measurement process: the smaller the local radius of curvature,
the stronger the effect of robustness. As Fig. 17.5 shows, the curvature
is different at different points along the line. The slope at each of these
points is determined separately, by the value of the individual datum. An-
other factor also influences the curvature at all the data points, the scale
parameter (S), the value of which is estimated through optimization of the
quality of the model’s results (see Chapter 16). All this again manifests
the gnostic credo: “Let the data speak for themselves.”

The local curvature is determined by the gnostic functions D, which
result from the fundamental features of real data as elements of the com-
mutative group. The metric of uncertain data space is thus determined by
the nature of data as mapped real quantities, by “some objectively existing
regularities” as specified by Riemann a long time ago.

17.2.5 Example of a Gnostic Filter

To demonstrate the power of the approach, consider a gnostic regression,
which applies the technique to a univariate case: time series robust filtering.
The criterion for case E1 (see Tab. 17.1 and Tab. 17.2) has been chosen. The
model 17.11 in this case has the form

Z̃0,n = C ∗ Zn, (17.41)

where Z̃0 is the estimate of an unknown ideal data value, which should
represent all uncertain data Zn. This quantity thus plays the role of the
filtered value. Parameter C is unknown. The k + 1-th iteration to the
solution 17.16 reduces to

Ck+1 = Ck +
S
∑N
n=1 f

2
i,nhi,nxn

2f 4
i,nx

2
n

, (17.42)

where hi,n is the n-th estimating irrelevance and fi,n the estimating weight.
Multiplying by xn and using 17.41 one arrives at

Z̃
′

0,n = Z̃0,n +
S
∑N
n=1 f

2
i,nhi,n

2f 4
i,n

. (17.43)

If the data sample is a regular time series, a recursive filtering formula
may be desirable to track possible changes of the current “mean” value.
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A suitable method is “exponential forgetting”, which can be achieved by
using a factor β < 1, so that instead of 17.43 the recursive formula

Z̃0,N = Z̃0,N−1 +
SNN−1 ∗ β + Sf 2

i,Nhi,N/2

SDN−1 ∗ β + f 4
i,N

(17.44)

is applied for N = 1, 2, . . ., while

SN0 = SD0 = 0. (17.45)

To demonstrate the function of such a filter, a simulated time series
has been prepared, the elements of which were generated as additive data
a = D0 +N (1, 0.05), ie a constant D0 and a normally distributed pseudo-
random variable with mean of 1 and standard deviation of 0.05. At random
times, 20% of these data were additively contaminated by Cauchyan dis-
turbances d = C(0, 10). Data to be filtered were transformed onto R+ by
exponentiation (Z = exp(a+ d)). The length of the series was 200, but it
was composed of 4 portions of 50 elements. The quantity D0 was given
values 0, 3, 0, 3 within the partial intervals to demonstrate the filter’s
transients.

The result of this simulated experiment is shown in Fig. 17.6, where the
output of the linear recursive filter

Z̃0,N =

∑N−1
n=1 Zn ∗ β + ZN
(N − 1) ∗ β + 1

(17.46)

with β = 0.6 is shown. It is obvious, that a linear filter is unsuitable with
these gross disturbances.

Next a statistical robust filter of the L-type (known from the literature
[104]), which is based on moving medians having for an odd degree V the
form

M(V,K) = median(ZK−U , . . . , ZK , . . . , ZK+U), (17.47)

where U = (V − 1)/2. The recursive formula of filter 53H is

Z̃0,N =
M(5, N − 2)

4
+
M(5, N − 1)

2
+
M(5, N)

4
. (17.48)

When it is applied to the data used in Fig. 17.6, this filter suppresses the
outlying data in most cases as shown in Fig. 17.7. However, it fails when
there are strong disturbances following each other over short time intervals.

On the other hand, the gnostic filter (shown in Fig.,17.8) using formula
17.44 performs well even under these difficult conditions.
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17.3 Non-traditional Regression Models

17.3.1 Implicit versus Explicit Regression

Returning to the definition of regression analysis cited at the beginning of
the chapter, it was noted, that the separation of one of the variables as
the ‘dependent’ one from the other (‘explanatory’) variables is based on
knowing the nature of the dependence. There is also another important
assumption: that the dependent variable to be modeled is only one-way. In
other words, the ‘dependent’ variable has no influence on the ‘explanatory’
variables, there is no ‘feed-back.’ Regression models of this type can be
called explicit, because they are based on explicit equations. There are at
least three problems with respect to explicit regression models:

1. In the real world strictly one-way dependencies are the exception
rather than the norm.
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2. It is not always possible to solve the model’s equations with respect
to the ‘dependent’ variable, even if such a variable exists.

3. Solutions of overdetermined systems of equations—such as explicit
regression equations—can be only approximate. This results in in-
consistencies if one attempts to exchange the roles of ‘dependent’ and
‘explanatory’ variables.

Indeed, the mathematical definition of a dependence as a function easily
introduces a strictly one-way action: ‘arguments → dependent variable.’
Modeling real processes is frequently far from easy, because each of the
variables being considered is dependent on others. Vivid examples can be
found in financial statement analysis:

Profitability is a frequent object of interest to analysts and financial
managers, who are interested in discovering, how it depends on other fac-
tors such as financial leverage, various turnover relationships, working cap-
ital, etc. A regression with profitability as the dependent variable is ex-
pected to estimate these effects:

RPR,k = C0 + C1 ∗RRWC,k + C2 ∗RTATO,k + C3 ∗RFL,k. (k = 1, . . . , K)
(17.49)

Each of the variables R∗,k are financial ratios of individual firms: PR is
profitability, RWC the relative value of working capital, TATO total asset
turnover and FL financial leverage. All of these financial parameters are
mutually dependent. When there is a good profit margin, a manager may
decide to decrease financial leverage, to improve liquidity, to accelerate
the total asset turnover by additional investment (if the demand exists) as
well as to take other positive measures, because there are sufficient financial
resources. This illustrates the multidimensional “feed-backs”, which cause
the explanatory ratios to be dependent on the profitability as well as on
each other. There are methods in control theory to solve such problems,
but their application could be even more complex than the initial problem.

The solution of an explicit regression task (17.49) suffers from another
serious drawback: Since the firm’s growth is also dependent on the level of
the working capital, why not evaluate the dependence of working capital
on the other financial parameters using a regression such as 17.50 with
working capital as the dependent variable?

RRWC,k = c0 + c1 ∗RPR,k + c2 ∗RTATO,k + c3 ∗RFL,k. (17.50)
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Once the parameters have been estimated, the profitability can be ex-
pressed as

RPR,k = (RRWC,k − c0 − c2 ∗RTATO,k − c3 ∗RFL,k)/c1. (17.51)

The problem here is, that the coefficients 1/c1, −c0/c1, −c2/c1, and −c3/c1

are not the same as those of the regression 17.49.

This unpleasant inconsistency is easily explained. A system of regression
equations ordinarily contains more equations than unknown coefficients
(K > 3 in this case) so as to minimize the uncertainty of the solution.
The solution will then depend on using an optimization method and the
result is, that the uncertainty of the observed values of the variables in
equations 17.49 and 17.50 is suppressed differently in each regression even
if the same optimization method is applied. Obviously, when different
results are obtained by the same method from the same data, deciding,
which of the two solutions is the true one, is difficult.

The conclusion to be drawn here is, that dividing the variables of an ex-
plicit regression into categories of ‘dependent’ and ‘explanatory’ is seldom
theoretically consistent, because any of them can be either ‘dependent’ or
‘explanatory’ depending on how the problem is set out. Such an analysis
introduces an asymmetry into the solution, which leads to inconsistencies
in many practical cases.

The desired symmetry in the roles of all the variables can be achieved by
using the implicit form of a regression. Note, that if C0 6= 0, then equation
17.49 can be rewritten in the form

Rk,N/C0 −
N−1∑
n=1

Ck/C0 ∗Rk,n = 1 (k = 1, . . . , K) (17.52)

or—in a new notation—
N∑
n=1

C ′n ∗Rk,n = 1 (k = 1, . . . , K). (17.53)

Here, all the variables play the same role. Once a solution for coefficients C ′∗
is obtained, 17.53 can be used to express any desired variable as an explicit
function of the others without any danger of inconsistency. Further, a
single ‘universal’ solution is preferable, rather than a different one for each
“dependent” variable.

The problems associated with explicit regressions in economic analyzes
are due to the fact, that the inner interactions of the variables of an eco-
nomic system are nearly as complex as those of a living organism. Indeed,
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it is impossible to state, that any one single parameter (such as eg temper-
ature, blood pressure, pulse rate, electric potential, number of blood cells,
or the composition of fluids) of a living creature is “only dependent” on
other variables and does not also influence them. These same problems also
exist in other application fields. The above example using financial state-
ment analysis was linear; however, the same difficulties are also present
in the more usual non-linear cases. Problems of the same nature also ex-
ist in other application fields. It would seem, that some important Laws
of Nature are formulated in an implicit form, and that there are similar
non-linear interdependencies in economics and in the other social sciences.
Returning to the gnostic approach to the regression problem, it is evident,
that the discussed formulation can include both explicit and implicit forms.
The explicit case was considered in detail, but to undertake an implicit re-
gression, it is only necessary to substitute a vector of “1’s” for the observed
‘output’ values, z0,n.

Calculations of an implicit regression can require modifications of algo-
rithms ordinarily used in variance analysis, because they assume a non-zero
variance of the ‘dependent’ variable.

17.3.2 Regression in Probabilities

It was shown in subsection 14.3.6, that a univariate regression is closely
connected with the idea of the (linear) similarity of samples measured by
the cross-covariance of the ‘dependent’ with the ’explanatory’ variables
normalized by the variance of the latter. This interpretation can also be
applied to the multidimensional linear regression:

Explicit regression: A linear combination of explanatory variables
should be similar to the dependent variable.

Implicit regression: A linear combination of explanatory variables
should be similar to a constant (eg to 1).

The OLS (Ordinary Least Squares) solution of the regression problem is a
matrix composed of the cross-covariances and variances of all the variables.
Using the reasoning of subsection 14.3.6, it can be concluded, that the OLS
method resulting from the ordinarily defined covariances and variances is
based on the Euclidean measure of 1D (one-dimensional) errors and MD
(multidimensional) lengths. The application of Riemannian geometry of
the gnostic type leads to a linear relation 14.46 between irrelevances. The
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MD extension of this relation is

hc(yn) =
M∑
m=1

Cm ∗ hc(xn,m), (17.54)

where the index m identifies each of M explanatory variables and n =
1, ..., N denotes the number of the equation. For N > M , the equation
system is overdetermined and its OLS solution applies gnostic covariances
and variances such as those in 14.46, but this time in the matrix form. As
shown in 14.3.6, the linear dependence of irrelevance on probability 10.42
in the estimating case enables the equations 17.54 to be rewritten in the
form

P (yn) = C0 +
M∑
m=1

Cm ∗ P (xn,m), (17.55)

where P (α) is the probability of the value α, and where C0 is the constant

C0 = 1−
M∑
m=1

Cm. (17.56)

Regression 17.55 will be called a regression in probabilities in both linear
and nonlinear applications.

The relation 10.42 also establishes the linear dependence of improba-
bility on the quantifying irrelevance. An analog to equation 17.55 can
therefore be used for improbability in the quantifying case. The differ-
ence between the estimating and quantifying version will lie in the type of
robustness:

estimating irrelevances: probabilities, variances and covariances are ro-
bust with respect to outliers.

quantifying irrelevances: improbabilities and other quantifying character-
istics are robust with respect to inliers.

Variables in regression models may frequently have a different range of
values. Financial leverage Total Debt

Total Assets can take on values in the interval [0, 1],
while the price-earnings ratio PE = Price/EPS could theoretically reach
any value in the interval (−∞,∞). Not only do these different ranges make
the interpretation of model coefficients difficult, but the magnitude of their
values is not comparable, the scales are different. Other problems arise
from the physical dimensions and the measurement units of the variables:
some (eg financial leverage) are dimensionless, some may be expressed
in percentage form (eg profitability), while others are generally given in
physical units (a turnover dependent on a time unit, book value of equity
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on a monetary unit). All of these effects contribute to difficulty in making
valid comparisons between the coefficients of the regression model, in which
variables are quantified using different physical units. Further, the use
of “natural” measurement units for variables prevents an easy survey of
dependencies. It is therefore desirable to unify the measuring scales. All
of these desirable effects can be obtained by using the probabilities instead
of ‘natural’ variables:

1. The range of values of all the transformed variables is the same: [0, 1].
2. All transformed variables are dimensionless.
3. All the coefficients of a (linear, implicit) regression are directly ex-

pressed as the weights of the transformed variables (probabilities),
they are comparable.

4. The probabilistic transformation made by means of the EGDF (Esti-
mating Global Distribution Function)— due to its inner robustness—
efficiently filters the data, so that the effect of outliers is suppressed.

5. Important by-products of the application of EGDFs are:
(a) Estimates of the bounds of the values of all variables are obtained.
(b) Possible data inhomogeneity is revealed and eliminated.
(c) Data censoring can be accounted for (see Chapter 19).

The effect of robustness due to the EGDF differs from the effects of
the filtering weights FW and the error function E (described in 17.2.3)
in an important aspect. Both latter functions are dependent on the mul-
tiplicative residual Zn/z0,n, ie on “inner” relations, ‘input/output’ of the
n-th equation. One can therefore speak of row-wise filtering. Note, that
the FW gives the same weight to all of the components of the gradient g
17.34, but the robustness of the EGDF affects each element of this gradi-
ent in a different way, because it redistributes the weights within a column,
thus realizing column-wise filtering. In the case of an explicit regression
in probabilities, the values of the error function E are also substituted
by their probabilities; they are therefore also filtered column-wise. This
means, that a gnostic regression in probabilities ensures the double fil-
tering of the uncertainty of data. The effect of double filtering can be
expected to contribute to the robustness of the method.

The notion of gnostic covariances was introduced with the modulus
of a data sample (Definition 14, 14.19 and Corollary 15.3, 14.21). The
usefulness of these notions is emphasized by their connections to the mea-
surement of dissimilarity analyzed in 14.3.6 and by their application to
regression in probabilities.
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17.4 Summary

The gnostic approach to modeling interdependencies between variables dif-
fers substantially from statistical methods:

1. no a priori statistical assumptions on data are applied,
2. all variables are represented by data samples, which are the only in-

formation given on the variables,
3. both dependent and explanatory variables may contain unknown un-

certainties,
4. instead of a mean or average value for the dependent variable, its

distribution function is estimated or predicted,
5. the use of a very practical and advantageous regression in probabilities

is theoretically justified,
6. the implicit regression model extends the application field of the or-

dinary (explicit) versions,
7. the gnostic characteristics used as criterion functions ensure, that the

model will possess the unusual qualities of inner/outer robustness, and
the minimization of losses of information.

The problem formulation is general enough to cover not only linear, but also
nonlinear multivariate regression functions applied both to cross-section
and time-series models. The influence functions of errors were examined
for six types of gnostic criteria by using an iterative solution for the equa-
tions resulting from a variated model function. It was shown, that this
approach provides several useful kinds of influence functions, which ensure
a saturating, redescent or expanding reaction to data uncertainties. The
nonlinearity of gnostic criteria leads thus to effects, that are comparable to
those of nonlinear filters resulting in the protection of the estimated model
parameters in both explanatory and dependent variables against the in-
fluence of uncertain components. The characteristics of these filters are
optimized, because they extremize the chosen gnostic optimality criterion.
This choice determines the type of robustness of the model.

Classical covariances can be interpreted as “by-products” of the solu-
tion of the regression task. Their drawback is the sensitivity to outliers,
especially when they are estimated from small data samples. Gnostic re-
gression models use robust covariances originally introduced in connection
with the modulus of a data sample (see chapter 14).



Chapter 18

Optimal Numerical Operators

18.1 A Side-step to Statistics?

The formulation of the regression problem in the previous chapter was
general enough to cover not only static (cross-section) problems, but also
dynamic problems such as uni- and multivariable time-series processing. In
practice, there are a broad spectrum of problems to be solved, therefore it
is useful to accept as broad a definition of “processing” as possible. From
the previous chapter, it might appear, that there were only three classes
of tasks to be considered, the explicit as well as the implicit regression,
and the regression in probabilities. The “dependent” or “output” variable
was z in the former and a constant (1) in the two latter cases. To show,
that the concept set out in 17.2 really covers a more extensive range of
problems, the more detailed analysis which follows will demonstrate, that
special numerical operators are needed, and that an appeal to statistics
will be useful.

18.1.1 Diversity of Modeling Problems

An explanatory vector x can take on a different character depending on
the nature of the problem. Consider three examples of an “input” vector
of length M :

1.
xCS,n,t = 〈xn,1(t), xn,2(t), . . . , xn,M(t)〉 (n = 1, . . . N). (18.1)

The set of M different input values of the n-th variable describes the
vector’s instantaneous state at time t. The N×M matrix composed of
these rows characterizes the state of the N objects, the cross-section
of the group.

329
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2.
xTS,t = 〈x(t), x(t− 1), . . . , x(t−M + 1)〉. (18.2)

This vector describes the “history” of a certain input variable, its
value at time t along with the M − 1 lagged values. If there are T
such vectors (t = 1, . . . , T ), then the T ×M matrix composed of these
rows characterizes the dynamics of the variable.

3.

xCSTS,M,N,t = 〈x1(t), x1(t− 1), . . . , x1(t−M + 1),

x2(t), x2(t− 1), . . . , x2(t−M + 1),

. . . , . . . , . . . , . . . ,

xN(t), xN(t− 1), . . . , xN(t−M + 1)〉. (18.3)

This vector describes the “history” of a group of N objects, their
values at time t and their M − 1 lagged values. If there are T such
vectors (t = 1, . . . , T ) then the T ×(N×M) matrix composed of these
rows describes the dynamics of the cross-section.

The “historical” vectors 18.2 and 18.3 apply a moving window strategy,
which assigns to all M − 1 lagged components the same a priori weight as
the index value (equal to 1), while the higher lags receive a zero weight; they
are “completely forgotten.” While this concept has some merit, it is not
completely satisfying since there easily arise questions such as, “What is the
difference in significance between the values of x(t−M + 1) and x(t−M),
which justify the inclusion of the former, while excluding the latter?” A
useful method for overcoming this problem is exponential forgetting, which
was introduced in the example of the gnostic filter (Section 17.3). The
concept is to apply a forgetting factor β (0 < β < 1), such that eg the sum
of the vectors’ xTS,t of the exponentially “forgotten” components has the
form

Σx,t =
M−1∑
m=0

βm ∗ x(t−m). (18.4)

This technique and its modifications result in a smoothing of the forgetting
effects. Another advantage is the recursive character:

Σx,t+1 = x(t+ 1) + β ∗ Σx,t. (18.5)

The model (17.2) can be thus interpreted as

z∗ = F (C, x∗), (18.6)
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where x∗ is 18.1, 18.2 or 18.3, and where z∗ denotes one of the many possible
forms. The simplest representation of the dependent variable z∗ is related
to a cross-section analysis using an explicit regression with explanatory
vectors having the form of 18.1, while the dependent variable is another
parameter of the same (n-th) object at the same time t. (Example: The
dependence of the return on assets (ROA) on other financial ratios for the
same year.) However, there are a variety of alternatives:

1. The explanatory vector is 18.2 and the dependent variable is z∗ = x̃(t),
ie the best estimate of the last value of the time series. This is the
case of filtering. Example: given a series of volatile observed share
prices, estimate a recent “true” value.

2. The same explanatory vector, but the dependent variable is now rep-
resented by z∗ = x̃(t+ τ), where τ > 0. This is the case of time-series
prediction. Example: given a series of sales of a product, predict a
future value of sales.

3. The explanatory vector is now 18.1 and the dependent variable is
z∗ = x̃n,M+1(t + τ), where xn,M+1 is another parameter of the n-th
object and the task is the prediction of the object’s parameter based
on a given cross-section. Example: given sets of financial ratios of an
industry for a year Y , predict industry sales for the year Y + τ .

4. The explanatory vector is 18.3 and the dependent variable is z∗ =
x̃n,M+1(t + τ), where xn,M+1 is another parameter of the n-th object
and the task is to predict an object’s parameter based on the given
time series of cross-sections. Example: given sets of financial ratios
of an industry for years Y , Y − 1, . . . , Y −M + 1, predict the share
price of the n-th firm for the year Y + τ .

In all the above examples, the data are directly observable. There may
be an objection, that the datum x(t + τ) has not yet occurred at time
t, however, there are ordinarily three time intervals associated with the
treatment of time series([27]):

1. the model estimation period,
2. the ex post forecast period,
3. the ex ante forecast period.

Over the first period, the initial portion of the “historical” time series
of explanatory and dependent variables is used to estimate the model’s
parameters. The rest of the historical time series is used for verification of
the model’s applicability and for the estimation of its errors. The values of
the dependent variable are thus known for both of these phases. The model
is not really “used” until the third period, when a forecast of future values
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is desired: given the input, predict the (unknown) output. Information
on the model’s errors can be purged from the third period, but only after
the true value of the output becomes known, however these techniques are
usable only when the data are directly observable.

There are tasks, when either the variables’ input or output values are
not directly observable; these must be mathematically derived from data.
Let us confine ourselves to linear operations on continuous variables and

to their discrete (numerical) representations, to linear numerical opera-
tors. Although constrained, the playground for this game is still large. An
example is in order: it is well-known, that investments in science, research
and development, in technology, know-how, skill of employees, marketing
expenses and other factors accelerate sales after a time interval. However,
this acceleration is not directly observable, it must be mathematically de-
rived from the time series of sales. In the continuous case, acceleration is
proportional to the second time derivative of the state function. In the
case of discrete function values (which are given at regularly distributed
time intervals), the acceleration is proportional to the second difference of
this function. However—as it is well known—differentiation amplifies noise
(or data errors). In order to minimize this effect, in a statistical analysis
redundant formulae are developed, ie formulae, which make use of more
data than is necessary for a purely analytical minimum.

There are cases, when neither the dependent variable nor the explana-
tory variables are directly observable. Example: the short-term financial
situation of a firm is dependent on the rate of cash inflow and outflow.
These events are discrete (and perhaps highly variable), so that to obtain
reliable estimates of these flows, they must be smoothed. Such a model can
eg evaluate the current need for short-term financial requirements based on
smoothed cash flows and their rates of change. The smoothing instruments
(filters) are numerical operators, which treat the time series of cash flow.
In other fields of application a need for directly unobservable quantities
can also exist. An example might be that of a feedback control system,
which uses velocity, acceleration and/or integral signals for its stabilization
and optimization.

This need for numerical operators can also be met, when implicit models
are used. Regularities with respect to relations between variables can be
sometimes expressed by an equation, which has zero on its right-hand side.
(This “dependent” variable becomes z∗ ≡ 1 after exponentiation of the
equation transforming the task onto the infinite data support R+.) These
situations occur in the case of certain balancing statements. Some of the
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elements to be balanced may not be directly observable, in which case they
must be drawn out from the time series by numerical operators.

Because gnostics has been presented as a method, which surpasses statis-
tics in yielding information from small samples of strongly dispersed data,
one may wonder, whether it is consistent to apply statistical instruments
such as (statistically) best numerical operators in combination with gnostic
methods. The answer is positive:

1. data series can be subjected to robust filtering by gnostic methods
before numerical operators are applied so as to minimize the effects of
possible gross data errors,

2. this robust filtering of data reduces data uncertainty to such a low
level, that statistical methods—as shown by gnostics—yield results,
which approach the best possible quality,

3. gnostic methods allow the reliable estimation of covariances needed
for some numerical operators.

It will be seen from the material that follows, that the most effective
analysis of this type will result from the joint use of both statistical and
gnostic procedures, because the advantages of each methodology can be
exploited. There are, then, good reasons to consider in more detail the
problem of optimal numerical operators, by which the directly unobservable
quantities can be derived from data. This will not only provide instruments
useful to the extension of the application field of the gnostic methods, but
also offer a better insight into the eternal battle of man versus uncertainty.

18.1.2 A Short History of the Problem

An important contribution to the solution of the problem of filtering ran-
dom sequences was made by A.N. Kolmogorov in 1941 ([46]). This class
of problems was also secretly studied during World War II in connection
with the development of radar. Some of the results of this work were pub-
lished in the famous post-war book of Norbert Wiener ([116]). Wiener’s
filtering problem assumed a random signal, which had the form of a sta-
tionary continuous function. This concept was extended by L.A. Zadeh
and J. Ragazzini, who added a non-random component to the continuous
signal ([119]). The optimality of the linear forms of least-squares estimates
was proved by the Neumann-David theorem [20]. The rapid development
of digital computers then turned attention back to discrete time series and
R.E. Kalman’s recursive filter ([41]) opened a new line of development to
the state-space approach, which was later shown by P. Swerling ([107])
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to be a version of the known recursive solution of the least-squares prob-
lem. A discrete version of the Zadeh-Ragazzini problem was considered by
M. Blum ([10]) and generalized by P. Kovanic ([47]). Different aspects of
treating discrete signals composed of a stationary random component and
a non-random non-stationary component were analyzed in [68], [38], [10]
and [50]. A generalization of the Gauss-Markov theorem [69] subsequently
extended the application field to the estimation of correlated signals.

In 1954, V.M. Semyonov ([98]) made a substantial contribution by con-
sidering a mixture of a “useful” random signal (represented by a poly-
nomial, which had random coefficients) and a stationary random noise.
Unlike the traditional concept of BLUE (the Best Linear Unbiased Es-
timate), Semyonov’s approach dealt with unconstrained minimum vari-
ance estimates. Such estimates are ordinarily biased, but their variance
can be lower than the well-known Cramer-Rao low bound of BLUE. The
minimum-penalty concept [52] and [53] allowed the integration of all non-
recursive least-squares methods into one generalized estimate. This method
permitted both unconstrained and unbiased estimates to be obtained as ex-
treme cases of a generalized estimate by choosing the value of the penalty,
which determined the weights of both types of estimates. The universality
of this approach makes it useful as a base for considering the theory of
optimal linear operators.

18.2 The Minimum Penalty Estimate

18.2.1 Definitions and Notation

The matrix form will be used to represent the data samples for cases of
both time series and data sets, which are not regularly distributed in time
or space. As usual, MT is the transposed matrix M and M+ is the Moore-
Penrose pseudo-inverse ([89]) of M .

Definition 17: Let St be a set of N real numbers tn (n = 1, . . . , N),
such that tB ≤ tn ≤ tE. Let It be the interval [tB, tE] of real numbers.
Consider a function ξ(t) : It → R1. The vector x = 〈ξ(t1), . . . , ξ(tN)〉
will then be called the vector representation of the function ξ over the
support St.

Consider a set Sx of M functions ξm(t) m = 1, . . . ,M of the afore-
mentioned type. Let L be a linear functional L : Sx → R1. Then the
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row-vector L := 〈L(ξ1(t)), . . . ,L(ξM(t))〉 will be called the numerical op-
erator. Let the data model be a real column vector

Y := Y x + Y e, (18.7)

where Y x is the vector representation of the true and Y e of the error
component of a function represented by data, which may be made up of
both random and non-random elements. Let the means of the random
components be zero.

Denote the mathematical expectation of a random matrix Q by
︷︸︸︷
Q .

It is assumed, that all the first and second statistical moments of the

variables under consideration are known and constant. Let
︷ ︸︸ ︷
YxY

T
e = 0.

Let A be a zero-mean random column-vector, for which relation

︷ ︸︸ ︷
AAT = I (18.8)

(with the identity matrix I) holds, so that the covariance matrix of the
information component Yx = XA (for a non-random N ×M matrix X)
is ︷ ︸︸ ︷

YxY
T
x = XXT . (18.9)

Let the covariance matrix of the noise component be

B :=

︷ ︸︸ ︷
ŶeŶe

T
. (18.10)

and let the required result of the estimation be

Zx = LA. (18.11)

Let a scalar

‖Q‖ := trace{
√︷︸︸︷
Q } (18.12)

be a measure of a random matrix Q. Let a constant (row-vector) operator
W be applied to perform the estimation by means of the linear form

Z = WY + C (18.13)

with a constant vector C. Let the estimation error of the first kind and
of the second kind be respectively

ex := ‖WYx + C − Zx‖ (18.14)
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and
ey := ‖WY + C‖. (18.15)

Let the penalty p be a scalar

p := pxe
2
x + pye

2
y, (18.16)

where px and py are non-negative weights. Let

r := py/(px + py). (18.17)

A centralized random vector is then denoted by V̂ := V −
︷︸︸︷
V .

Using centralized variables simplifies (18.13) to

Ẑ = WŶ . (18.18)

The decomposition in 18.9 is not unique, but applies to all X, which satisfy
18.9. Columns of the matrix X can be considered as vector representations
of the already mentioned functions ξm(t). Matrix X defines a subspace of
the vector space RN × RN by its columns: it may be called the basis of
this subspace.

The rank of the covariance matrix B can be full (equaling N) or less,
depending on the features of the noisy data component Y y, which contami-
nates the data. The errors of treatment of both data components are given
a weight by the penalty to express the preference of one kind of error over
the other.

18.2.2 The Main Result

Theorem 19: Let the definitions and notation introduced above hold.
Then the minimum penalty estimator has the form

W = L(rI +XTB+X)+XTB+. (18.19)

More detail on this theorem and on its more general versions as well
as its proof can be found in [52] and [53]. The most important types of
the vector L are given in [50]. To more fully understand its role, interpret
the elements of the matrix X (numbers xk,m) as values of the set Sx of
M differentiable functions ξm defined above, so that xk,m = ξm(tk) for
k = 1, .., N and m = 1, ..,M . Cases of special interest are determined by
the following components of the numerical operators L:
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Analysis: LA,l = 1 for m = l, LA,l = 0 for m 6= l, (m, l = 1, ..,M). The
results of estimation are weights Am of functions ξm(t).

Smoothing: LS,m(t∗) = ξm(t∗) (m = 1, . . . ,M, M < N). This operation
includes filtering (t∗ = tN), smooth interpolation (t1 ≤ t∗ < tN)
and smooth extrapolation (t∗ < t1 or tN < t∗). (There would be
no smoothing effect for N = M . Such a case would correspond to
ordinary Lagrange’s interpolation or extrapolation.) The quantity t∗
will be called the target point.

Smoothing differentiation:

LDn,m(t∗) =
dnξm(t)

dtn
|t=t∗. (18.20)

The resulting derivatives can be interpolated or extrapolated depend-
ing on the chosen value of t∗.

Smoothing integration:

LI,m(t∗) =
∫ t∗
t0
ξm(t)dt. (18.21)

Smoothing convolution: Given a kernel function f : R1 → R1. Then

LC,m(t∗) =
∫ t∗
t0
f(t)ξm(t∗ − t)dt. (18.22)

It is well-known, that such convoluted integrals simulate the reaction
of a dynamic object (the impulse response function of which is f(t))
to the input ξm.

18.2.3 On Signal-to-Noise Ratios

An important role is played in the formula for optimal linear operators
18.19 by the term XTB+X, which can be interpreted as a matrix signal-
to-noise ratio of the data being considered. Indeed, the matrix B is the
covariance matrix of noise 18.18, while X is the square-root of the co-
variance matrix of the “signal” (informative, true) component. For some
square matrices M 1 and M 2, both expressions M 1M

+
2 and M+

2 M 1 have
some of the features of a matrix ratio. However, these expressions may be
asymmetric even in cases, when both matrices are symmetric.

In contrast, by definition, expression XTB+X is always symmetric. It
also has the important feature of a matrix ratio, that multiplication of
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both the “numerator” (XTX) and “denominator” B by a full-rank matrix
does not change the expression’s value. The impact of the matrix signal-
to-noise on the optimal linear operator increases with rising covariances
of the signal components and decreases with increasing noise. The weaker
the noise, the better the quality of the results obtained by the operators.
This statement can also be supported by consideration of the estimate’s
errors as discussed in [52] and [53].

What has been discussed thus far in this chapter as well as what
follows in the next several sections represents the application of statistical
principles. Even so, this approach provides a clue, which leads to a better
understanding of the gnostic method. The matrix operator W attaches
weights, which are dependent on the matrix signal-to-noise ratio of the
data: bad ratio—small weights—low confidence in the data. Covariance
matrices represent estimates of the volatility of the whole population,
from which the data originate. The matrix signal-to-noise ratio evaluated
from covariances is therefore a collective characteristic of the relationship
between two populations. The weights given to individual data by W
do not distinguish between good and bad data. But since some good
individual data invariably must be present, if the collective signal-to-noise
(matrix) ratio is bad, then the confidence ascribed to all the data is low
regardless of their individual quality. Therefore some of the information
borne by good data cannot be used.

A bad collective behavior is not the “fault” of the good individual com-
ponents, but all members of the sample are “punished” to the same degree
by the low weights because of the “collective fault.” It seems logical, that
if individual weights could be attached, more information could be ex-
tracted from the data. This idea was one of the important starting points
of gnostics many years ago. Indeed, gnostic weights are attached to data
depending on the value of the ratio Z/Z0, ie on the ratio, which includes
both the “useful signal” Z0 as well as the uncertainty—noise component of
the observed value Z. Z/Z0 is therefore also a version of the signal-to-noise
ratio, but a strongly individual one, which reflects the particular datum’s
specific quality with respect to the “collective” quantity Z0.
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18.3 Special Cases of the Minimum Penalty Estimate

18.3.1 Constrained (Unbiased) Estimates

Limiting the preference of the error ex to ey corresponding to py = 0 (ie
r = 0) reduces 18.19 to

W = L(XTB+X)−1XTB+. (18.23)

When this operator is applied to data in accordance to 18.18, it is known
to yield asymptotically unbiased minimum variance estimates. The most
important special cases are:

Ordinary Least Squares: Let

B = ς2I (18.24)

with ς2 > 0. Let the result of the estimation be the vector A of weights
of X’s columns in decomposition Yx = XA. This can be achieved by
using the numerical operators of analysis LA,l for l = 1, . . . ,M . The
required estimate will then result from 18.19 in the form

Ã = (XTX)−1XTY , (18.25)

ie it will be the ordinary least squares estimate (OLS).
Neumann-David Estimate of Linear Forms: Let L be an arbitrary

real vector of dimension M . Let Ã be the OLS estimate 18.25 and let

z̃ = LÃ. (18.26)

Then—according to the Neumann-David theorem ([20])—the estimate
z̃ will be BLUE (the best linear unbiased estimate) of the linear form
LA.

Gauss-Markov estimate: The substitution of LA,k into 18.26 for k =
1, . . . , L enables the set of L operators W to be obtained in the form
of the L×N matrix

WA = (XTB+X)−1XTB+, (18.27)

which can be called the analyzer. Applying the analyzer to data in ac-
cordance with 18.18 provides the generalized Gauss-Markov estimate
([69]).
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Generalized Discrete Zadeh-Ragazzini Estimate: Let the covari-
ance matrix B be regular and the data be of the form

yk =
M∑
m=1

amξk,m + sk + nk (k = 1, .., N), (18.28)

where ξk,m are values of some given independent functions ξt,m, and
am are non-random but unknown coefficients. Numbers sk are values
of a useful, informative random function s(t) and nk is noise. The
required result of the estimation is the numerical representation of
the function L(

∑M
m=1 amξt,m + s(t)) at a given point t = t∗. The a

priori information is given by
• the covariance matrix B of the noise,
• the N ×M full-rank basis matrix X composed of vectors ξ∗,m,
• the operator L.

This task implicitly assumes that the vector composed of sks belongs
to the subspace, which has the basis X. The estimator derived in [47]
therefore reduces to 18.19, into which r = 0 is substituted.

18.3.2 Unconstrained Estimates

It is well-known, that the BLUEs (Best Linear Unbiased Estimates) are
efficient, ie they reach the lower bound of Cramer-Rao inequality for vari-
ance. However, this is true only among unbiased estimates. Biased esti-
mates may be better than BLUEs in the sense of having smaller variances.
Estimators, which reach an unconstrained minimum of variance were re-
viewed in [107]. Such an estimator was first presented and published in
1954 by V.M. Semyonov in [98]. A generalized version of the unconstrained
estimates can be obtained from 18.19 by the substitution r = 1. This value
of the penalty means, that the error component ex is completely ignored:
an absolute priority is given to the error ey.

An interesting modification of the unconstrained estimate represents the
ridge regression ([4]), which provides an estimate of the weighting vector
A in the following way:

Ã = (KI +XTX)−1XT Ŷ . (18.29)

This method did not result from a theoretical notion, but from the ex-
perience, that introducing the term KI with a positive K decreases the
estimate’s variance. However, by using formula 18.19 instead a theoretical
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justification for this type of estimator can be obtained: it will be optimal
(in the sense of minimizing the penalty) in the case of uncorrelated noise
(B = I) and for K interpreted as the relative penalty r. It is useful to
note, that the variance of the minimum penalty estimate depends on the
matrix signal-to-noise ratio XTB+X.

By choosing a penalty ratio of r 6= 0 and r < ∞ one can reach a
compromise between the conflicting requirements of minimum variance and
zero bias. The best choice depends on the characteristics of the data being
considered and it can be made by the evaluation of errors ex and ey, when
a particular data set is being used.

18.4 Applications of Numerical Operators

18.4.1 The Method of Static Programing

The formula for optimal numerical operators 18.19 depends on the data
values in a complex way, because the data determine covariances, from
which the operator is calculated. However, the situation changes signifi-
cantly, when it is possible to assume stationarity of the object or process
under consideration. In such a case, all variances and covariances converge
to constants with increasing data volume. The operators then become
fixed matrices/vectors, which can be estimated “once forever” (valid until
the occurrence of large scale changes in the data structures). If the “new”
data entering the formula 18.18 can be assumed to originate from the same
population as the “old” ones (from which the operator was determined),
operation 18.18 is linear with respect to the “new” data. It reduces to the
ordinary scalar product of vectors or to the matrix product of matrices.
The operator is constant and repeatedly multiplies the new operands—data
vectors.

In this manner, the repeated application of numerical operators can be
separated from the “design” of operators. A typical flow of data treatment
then comprises two stages:

Calculation of optimal numerical operators:
• estimation of the mean values needed for the centralization of

vectors,
• estimation of the covariance matrix B (18.9) of the noise,

• estimation of the covariance matrix
︷ ︸︸ ︷
XXT (18.9) of the useful data

components and calculation of its “square-root” matrix X,
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• calculation of the vector L according to Definition 17,
• calculation of all elements of the formula 18.19 with the relative

penalty r as a variable,
• optimization of the operator by finding the most suitable value

of the relative penalty r with respect to the particular data and
both of the errors ex and ey,
• calculation and storing the operator W .

Application of operators: Repeated operation of 18.18 on new data
vectors/matrices.

This approach (called static programing [48]) was developed some
decades ago and was motivated by the necessity to minimize the time and
memory requirements of computers, when these were rising much faster
than the computers’ capacity. In spite of the enormous progress in com-
puting technology, these constraints still persist as an economic problem.
The execution of an operation on a computer or the storage of a byte is
incomparably cheaper now than in the early days, but it still costs money.
On the other hand, the demand for an increasing volume of computations
to be performed has risen so fast, that the product of their cost and the re-
quired number of operations surely has not fallen. Therefore, ideas, which
lead to economical programs do not lose their value. “Old ideas” do not
always mean “bad ideas.”

The scheme of static programing is easily extended with the use of robust
gnostic filters (see Chapter 17):

First, static phase: calculation of optimal numerical operators.
Repeated phase:

1. Robust cross-section or time-series filtering.
2. Application of operators to filtered data.

Robust filtering suppresses gross data errors thus making the data suitable
for optimal linear operations.

18.4.2 Main Classes of Applications

There are several classes of applications, which differ by the structure of
the data samples to be treated. Samples can consist of numerical repre-
sentations of smooth functions of a non-periodical or periodical character
as well as non-smooth functions or functions defined only by covariance
matrices. The choice of the basis of the informative data subspace (of the
matrix X) must reflect the nature of the data. The following important
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cases are set out in more detail.

A Polynomial Basis

Smooth and differentiable continuous functions can be approximated by
polynomials of a sufficient order. A typical example is the Taylor’s expan-
sion. If the informative component of the signal has no special features
(such as periodicity) and if the signal can be assumed to be sufficiently
smooth, then the polynomial approximation is suitable. The tasks consid-
ered above relate to discrete representations of continuous functions. In
the case of a polynomial approximation of the signal, the components of
the data vectors and the matrices of the discrete model are also polyno-
mials. To get columns of the basis X to be independent (theoretically), it
is sufficient to use elements Xn,m = tmn (m = 0, 1, . . . ,M), where t is the
independent space- or time-variable of the model.

Applications using a polynomial basis suffer from the following prob-
lems:

1. The degree of the polynomial must be optimized. A low degree in-
creases the approximation error of the smooth data components. A
high degree causes a high volatility of the approximation errors, which
results in the strong amplification of the noise components.

2. Functions tm and tk are theoretically independent for all k 6= m. But
this does not mean, that they are independent, when they are rep-
resented numerically in a real computer. Depending on the length
of the code (bits used to represent numbers), each computer sets a
limit on the polynomial’s degree. Those exceeding this limit are not
represented properly by the computer; this can cause errors in the
calculations of the numerical operators or even a failure of the calcu-
lations.

3. A polynomial basis is not suitable for signals with large slopes and/or
with sudden changes of slope. These would require a polynomial of a
degree higher than the specified limit.

4. For the same reason, the polynomial basis is not suitable for signals,
that have several maxima and minima. Periodic or other multimodal
basis functions are preferable in such cases.

In spite of these limitations, the application of polynomial bases for nu-
merical operators in combination with a robust gnostic filter can be very
efficient.
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Periodical Basis Functions

Common practice has been to treat periodic functions with Fourier trans-
forms, particularly after the FFT (Fast Fourier Transforms) became avail-
able. Periodic signals exist in many application fields and their processing
solves important tasks. An advantage of the Fourier transform is, that for
a sufficiently long data series, it provides estimates of the signal’s harmonic
components without a priori knowledge of the basic frequency. There are
also drawbacks to using this technique:

1. It assumes stationarity of the series and a constant sampling interval.
2. It cannot be applied to a series of periodic components superimposed

over an unstable drift.
3. Its precision depends on the length of the series, which is to be ap-

proximated or examined.
4. It is sensitive to outliers, its results are unrobust.

A drift of the signal’s “mean” value violates the basic assumption of
the Fourier series, that all elements of the series are mutually orthog-
onal. A drifting non-periodic component is not orthogonal to the har-
monic functions cos(mt/T ) and sin(mt/T ) (where T is the basic period
and m = 1, . . . , J with a sufficiently large J). Moreover, the longer the
series, the better the Fourier approximation (theoretically), but the lower
the (practical) hope, that the temporary mean remains constant.

There are methods available to (at least partially) escape these problems
in the form of programs cited in [103]:

De-meaning: Subtracting the series’ mean from the series before appli-
cation of the Fourier transform.

Detrending: Subtracting a linear trend (estimated by means of the least
squares method) from the series before applying the Fourier transform.

Tapering: An operation applied to a de-meaned or detrended series to
reduce the leakage phenomenon in spectral estimates. Leakage occurs,
when there is a large amplitude peak at a particular frequency f .
Then the spectral estimates at frequencies near f can be higher than
expected. Tapering consists of multiplication of the series’ values by
numbers w taken from the closed interval (0, 1). The weights w are
close to zero at the ends and close to one in the central part of the
series.

Smoothing: Smoothing can be applied either to a periodogram (square
of the discrete Fourier transform) or to autocovariances obtained from
the periodogram by the inverse Fourier transform. The usual tools are
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moving (running) windows and bandwidth filters.

These methods suffer from unrobustness. All these transformations have
a linear character. They do not reflect the individual uncertainty of a
datum and as such, they cannot cope with gross data errors. Moreover,
the parameters of tapering sequences as well as of smoothers are chosen
subjectively. This means, that these methods can produce results, which
are unrobust and far from information optimality.

Some analysts use an alternative method of de-meaning or detrending:
they form new series consisting of differences between neighboring values of
the original series. The first difference rids the series of a non-zero mean,
the second difference removes the linear drift, the third difference takes
care of a quadratic drift, and so on. The problem is, that differentiation
strongly amplifies noise and errors in the data.

Consider now the extended scheme of static programing with a basis
matrix X composed of three kinds of columns:

• cosines (cos(mtn/T ), m = 1, . . . , J, n = 1, . . . , N),
• sines (sin(mtn/T ), m = 1, . . . , J, n = 1, . . . , N),
• powers (tdn, d = 0, . . . , D, n = 1, . . . , N),

where T is the period of the basic harmonic and tn are values of an in-
dependent space- or time-variable, the values of which do not have to be
uniformly distributed (the sampling interval is not necessarily constant).
There is a freedom in selecting the harmonic functions, not all m from 1
to J need to be included; some of them can be left out as uninteresting.
It is assumed, that the basic period T is known, either by previous experi-
ence or by enforcing it. The latter case frequently occurs in experiments,
when an object is subject to periodical disturbances and its reaction is
to be analyzed. An example can show the real efficiency of this approach
based on experiments performed on an extensive power-distribution system
[54]–[55]:

At the end of the seventies, the electrical power generating and distribution systems of
many Central- and East-European countries including Soviet Russia were interconnected
to form a grid. This large system helped to provide an efficient redistribution of power
between countries, when the national systems experienced demand peaks for power at dif-
ferent points in time. Because the quality of electrical power as measured by its frequency
decreases, when the network is overloaded, this international cooperation enabled surplus
power generating capacity to be used wherever it existed in other countries. This activity
had both commercial and technical aspects, because it led to frequency stabilization over
the complete system.

The problem to be solved was to determine the response of the network’s frequency
to a local increase of production or consumption of electricity. The difficulty of this
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task was compounded by the enormous size of the system: for instance, the emergency
switch-off of a power generating station in East Germany, that represented a negative
disturbance of 1000 MW was not picked up by the measuring and registering apparatus
of the network’s Central Dispatching in Prague. The effect was buried in the permanent
volatility of the network’s generated power and demand. It became obvious, that a “step-
response” experiment (which had been sufficient for such measurement in the past) was
inapplicable under these new conditions. Therefore a decision was made to test the idea of
numerical operators prepared to analyze a periodic signal superimposed over a polynomial.
A periodic power disturbance was introduced using hydroelectric stations, which could
increase or decrease their power from the technological minimum to full capacity and back
again within a fraction of a minute. The test consisted of a set of power cycles made up
of a two minute sequence at full power followed by a reduction to minimum power for
two minutes. One experiment was comprised of three or four such cycles immediately
following each other. The amplitude of these power disturbances represented only about
0.1% of the total power of the complete grid. The “signal” matrix (X) was composed of 5
harmonics (sines and cosines) of the base period (4 minutes) and a quadratic polynomial
with unknown coefficients.

In spite of the relatively weak disturbance, which was deeply imbedded in the volatil-
ity of the power output, the periodic response of the network’s frequency as well as the
polynomial drift were reliably identified and estimated with a surprisingly high accu-
racy. Moreover, it was possible to estimate the transfer function of the “network’s fre-
quency/power” and to estimate the distribution of the disturbance between the different
international transmission lines.

At least three favorable factors led to this success:

1. the simplicity and statistical optimality of the approach,
2. the known value of the base period enforced by known power impulses,
3. a practically zero probability of observing a similar periodic component in random

“noise” within the “natural” volatility of the power and frequency.

Another successful application of the harmonic & polynomial analyzer was in the
acoustic analysis of the state of different means of transport. Diagnostics such as these
can serve to discover and identify faults through the analysis of changes in acoustic spectra.

This methodology can also find interesting applications in economics.
Imagine eg a large super- or hyper-market, which has a need to identify
the reaction of sales to price changes. Sales fluctuate over an ever changing
mean value. Three or four very weak price “impulses” can be introduced
similar to the power fluctuations seen above. An analysis of the response
of sales using the harmonic & polynomial analyzer could reliably reveal the
sensitivity of the market (price elasticity of demand) to price changes.

Operators for Automatic Monitors of Processes

The supervision of processes in many fields of application (economics,
medicine, technology, production quality assessment etc.) represents one
of the most typical uses of computers for the treatment of time series. Such
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tasks include not only filtering (providing a type of moving average), but
also a broad selection of other functions based on the recognition of sev-
eral possible states of the object to be monitored. The automatic device
must reliably distinguish “abnormal” situations from the desirable “nor-
mal” ones. Moreover, it is frequently necessary to determine, which one
of a foreseen set of “abnormal” situations took place, and to initiate the
proper response from the supervising system. Numerical operators used in
a scheme of static programming are a suitable tool for the purpose, but
only when the basis matrix X is adequately defined. The task of filtering,
of checking limits, of estimating rates of change (trends) or acceleration
can ordinarily be solved by operators based on polynomial or harmonic
versions of X. However, there are transient processes, which cannot be
decomposed into simple smooth and differentiable functions and their nu-
meric representations. Examples of such processes are considered below.

Basis Matrix Determined Experimentally

Using the basis matrices described above can be justified with a priori
knowledge of the nature of the data samples or the data series. If such
knowledge is missing or if it is not reliable, a direct application of the
formula (18.9) can help to define the basis matrix. A necessary condition
before taking such a step is, of course, an experimental determination of
the covariance matrix of the informative data components.

18.4.3 Intelligent Sensors

Starting with computers of the second generation, a typical approach to
the control and supervision of complex technological processes has been
through the use of large central main-frame computers, where all infor-
mation gathered from a mass of simple peripheral sensors via centralized
multiplexers and analog-to-digital convertors is concentrated in the central
CPU. Such a centralization—although advantageous in many respects—
also has serious problems:

1. Danger of technical faults: A breakdown of the central computer could
cause a serious outage affecting the whole system. The installation of
stand-by computers involves additional complex electronic equipment,
which further increases operating and software problems.

2. Danger of software faults: The complexity of the system and of its
functions requires support by extremely complicated programs. It is
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not possible to verify the operation of the software under all con-
ceivable operating conditions, so that an unexpected situation could
occur, under which the software would fail.

3. Vulnerability of the system: A single center for all monitoring, emer-
gency, and control functions could easily be damaged or suffer an
attack with vital consequences for the system.

For these reasons, initial centralized control lead to a tendency toward
decentralization. The recent development of integrated electronics has al-
lowed, not only simple monitoring tasks, but also many more sophisticated,
‘intelligent’ functions of the main-frame computer to be decentralized. It
is currently possible to create intelligent sensors, which integrate a sensor
with a microprocessor, taking over many important activities of the cen-
tral ‘brain’ of the system as well as allowing new functions to be locally
controlled:

1. reliable self-diagnostics of each sensor,
2. robust filtering and/or prediction of the process level,
3. reliable classification of the states of the observed object (‘everything

is O.K.,’ ‘significant trend,’ ‘fast transient,’ ‘emergency condition of
i-th class’ etc.),

4. efficient automatic control of local subsystems,
5. activation of local warning or emergency systems,
6. ‘post-mortem’ records (archiving of the process as it develops during

emergency conditions),
7. on-line estimation of probabilities of some events or states.

The decentralization of automated decisions allows a significant simplifica-
tion of the central supervising computer and its programs. The application
of gnostic algorithms ensures informational optimality and enhanced reli-
ability for the management of intelligent sensors, especially when a robust
gnostic filter is combined with the application of properly selected nu-
merical linear operators. The basis matrix X provided for an intelligent
sensor/monitor can include columns, which represent the following suitable
functions ([51]):

• polynomials of a low order to monitor a smooth drifting level and to
derive rates of change and acceleration,
• single outlier (0, . . . , 0, 1, 0, . . . , 0),
• step function (0, . . . , 0, 1, . . . , 1),
• ramp function (0, . . . , 0, 1, 2, 3, . . . ).
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Experimental runs of such a monitoring system can be used to obtain
gnostic distribution functions of the “amplitudes” (weights) of these com-
ponents to establish bounds for “normal” situations based on accessible
probabilities and to set limits for automatic signaling of different “abnor-
mal” conditions. These states can then be classified using information,
as to which of the components exceeded their limit. A broad application
field for intelligent sensors and monitors is currently being developed in
connection with environmental control.

For example, the discharge outlet for industrial waste into rivers as
well as factory chimneys can be fitted with automatically monitored au-
tonomous devices independent of the plant supervisors. The principal ob-
jective of these policies would be to deliver intelligent and reliable signals
on dangerous situations to competent authorities. Many environmental
norms are extremely low and the quantities to be controlled are barely
measurable. Informational efficiency of intelligent sensors is therefore an
important factor in these kinds of applications.

Algorithms for intelligent sensors can be used not only for decentralized
control, but they can also be useful as program modules of a main-frame,
which surveys a large number of variables. An example would be moni-
toring the prices of stocks or commodities in financial markets to facilitate
decision-making. The high effectiveness of gnostic intelligent sensors has
been proved by several applications to real data:

• Real-time buy/sell decision making on an on-line currency exchange
system.
• Robust monitoring and prediction of dust concentration in a clean-

room of a producer of high-tech chips.
• A monitor for low-level radiation.
• A fast and precise weighing machine for mobile operation.
• A robust sensor for an adaptive control system working under random

disturbances.
• Acoustic monitors for diagnostics of complex machines.

18.4.4 Identification of Models

Numerical operators can be used to derive variables, which are not directly
measurable, but which are needed as input or output variables for a model.
A simple example may be a system of Lotka-Volterra equations, which has
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the form

1

xk

dxk
dt

= ek +
∑
m 6=k

Gk,mxm +
∑
m
Hk,mym (m, k = 1, . . . ,M) (18.30)

with parameters e, G and H and variables x and y, which are functions of
the independent variable t. Variables x characterize the state of the system
and y represent external (eg control) actions. As is well known from the
literature ([85]), many real processes can be modeled by these equation
systems.

To simplify estimation of the parameters, all variables x and y are to be
observed at uniformly distributed points t1, . . . , tN and the unobservable
derivatives dxk

dt are estimated with 18.18 using operators 18.20. Numerical
representations of all the variables are thus prepared for estimation of the
system’s parameters by means of the gnostic explicit or implicit methods
described in Chapter 17.

The solution of some problems using numerical operators is incomparably more ef-
ficient than when classical tools are employed. This was demonstrated in [49] by an
example, which identified the buckling of the neutron flux in a nuclear reactor. The
simplest (so called one-group) model of the space distribution of the neutron flux is

∇2Φ(x) +B2Φ(x) = 0, (18.31)

where Φ(x) is the neutron flux at a point x, ∇2 is the Laplace’s operator and B2 is the
important physical parameter (buckling), which is to be estimated by measuring the flux
at a sufficient number of points. The standard approach is to make use of eigen-functions
of the operator∇2 and to look for B2, which ensures the best fit of the theoretical function
with the data. This theoretically correct method imposes serious difficulties in practice.
The problem is, that eigen-functions are well-known for a number of “perfect” geometrical
objects such as spheres, cylinders, cubes and parallelepipeds. However, nuclear reactors
rarely have such perfect forms. Another difficulty is connected with boundary conditions,
which are never as ideal as those used in mathematical illustrations. As it is shown in
[49], all of these problems can be resolved by using numerical operators, which convert a
system of partial differential equations 18.31 written for measuring points into a system of
linear algebraic equations. Both a “global” value (the mean value valid for the reactor as a
whole) as well as local values within zones, which differ in physical parameters (fission rate,
moderation, absorption), and that therefore contribute differently to the chain reaction
can be determined in this way.

18.5 Examples of Numerical Operators

18.5.1 Differentiating Operators

In order to examine more closely the behavior of numerical operators, let:
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1. the basis matrix X be of a polynomial type with columns tm, (t =
1, 2, . . . , N, m = 0, . . . ,M),

2. the noise be uncorrelated,
3. the covariance matrix be B with constant variance V on the main

diagonal and zeros elsewhere,
4. the relative penalty value be denoted r, and
5. the components of the numerical operator W be Wn (n = 1, 2, . . . , N).
6. the vector L define two linear operations:

(a) D1 (value of the first derivative taken at the center of the ob-
servation interval 〈1, 2, . . . , N〉, ie at the target point (N + 1)/2)
and

(b) D2 (value of the second derivative at the same point).

Under these special conditions (uncorrelated noise), the variance of the
result of the operation will be V ′ = V ∗ ∑N

n=1W
2
n . Values of this variance

together with the operators W for the operation D1, zero relative penalty
r, and for the target point (t∗) placed at the center (median point) of the
observation interval are shown in Tab. 18.1. These operators will provide
precise values, when they are applied to arbitrary linear functions (ie for
M = 2.)

M t∗ W1 W2 W3 W4 W5 W6 W7 V ′

2 1.5 -1 1 2.0
2 2.0 -0.5 0 0.5 0.5
2 2.5 -0.3 -0.1 0.1 0.3 0.2
2 3.0 -0.2 -0.1 0 0.1 0.2 1 0.1
2 3.5 -0.1429 -0.0857 -0.0286 0.0286 0.0857 0.1429 0.0571
2 4.0 -0.1057 -0.0714 -0.0357 0 0.0357 0.0714 0.1071 0.0357

Tab. 18.1 Numerical operators for the first derivative of a linear function
in the center of the observation interval.

The effect of increasing redundancy is demonstrated by the last column
of Tab. 18.1. Since a linear function is defined by two constants, an N of
at least two is necessary for the numeric operator to properly evaluate the
first derivative of a linear function. The redundancy is zero for N = 2.
Absolute values of the components of the operator W as well as the
estimate’s variance V significantly decrease with increasing N . There also
is a drawback to increasing N : the time lag of the estimate increases with
N . If this is an important consideration, the problem can be remedied by
increasing the data density.
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The shortest length of the operator W needed to estimate the second
derivative (operation D2) of a polynomial of the second order (M = 3)
is three. However, due to the effect of symmetry, operators with N ≥ 4
will also be suitable for polynomials of the third order. Examples of these
operators are shown in Tab. 18.2 for the operation D2 at the center of the
observation interval and zero penalty r.

M t∗ W1 W2 W3 W4 W5 W6 W7 V ′

2 2 1 -2 1 6
3 2.5 0.5 -0.5 -0.5 0.5 1
3 3 0.2857 -0.1429 -0.2857 -0.1429 0.2857 0.2860
3 3.5 0.1786 -0.0357 -0.1429 -0.1429 -0.0357 0.1786 0.1070
3 4 0.1190 0 -0.0714 -0.0952 -0.0714 0 0.1190 0.0476

Tab. 18.2 Numerical operators for the second derivative of quadratic and
cubic functions in the center of the observation interval.

This task is more difficult than the previous one, because precise results are
required with polynomials of up to the third order. These higher analytical
requirements result in an increased variance. For polynomials up to the
fourth and fifth order, this increase in the estimate’s variance is even more
pronounced as can be seen in Tab. 18.3.

M t∗ W1 W2 W3 W4 W5 W6 W7 V ′

4 3 -0.0833 1.3333 -2.5 1.3333 -0.0833 9.82
5 3.5 -0.1042 0.8125 -0.7083 -0.70833 0.8125 -0.1042 2.35
5 4 -0.0985 0.5076 -0.1439 -0.5303 -0.1439 0.5076 -0.0985 0.857

Tab. 18.3 Numerical operators for the second derivative of polynomials
up to the fifth order in the center of the observation interval.

18.5.2 Impact of Correlation

It can be concluded from Tabs. 18.1–3, that redundancy in numerical oper-
ators can significantly reduce the variance of the estimate: a larger operator
size = increased operator’s length = more points than necessary are con-
sidered = increased redundancy = lower analytical precision, but decreased
variance.

The results in Tabs. 18.1–3 were obtained under special conditions: zero
value of the penalty r, and for uncorrelated noise. Under more general
conditions, the noise correlated matrix has the form of the Toeplitz matrix.
This matrix reflects a stationary noise with an exponential autocovariance
function. If V is variance, then the crosscovariance of the m-th and n-th
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terms of the series is

cov(m,n) = V ∗ exp (−ϑ ∗ |m− n|) := V ∗DecrB|m−n|, (18.32)

where
DecrB := exp (−ϑ) (ϑ ≥ 0) (18.33)

denotes the constant decrement of the series.

In the case of a correlated noise, a more general formula

V ′ = W TBW (18.34)

of the estimate’s variance is used.
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The dependence of V ′ on the correlation due to the decrement DecrB
and on the penalty r is shown in Fig. 18.1 and Fig. 18.2 for N = 7 and for
polynomials up to the fifth order. The noise variance V denoted in the
graphs by the symbol V arB equals one in both cases. When the terms
of the series, to which the operator is to be applied, are 〈t1, . . . , tN〉, the
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(central) target point, for which the second derivative is to be estimated,
is t∗ = 4 in Fig. 18.1, however t∗ = 7 (the end point of the interval) has
been used for Fig. 18.2. A comparison of both graphs demonstrates, that a
change in the target point has a strong impact on the estimate’s variance.
(Choosing the central point as a target leads to minimum variance).
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This general tendency of decreasing an estimate’s variance with increas-
ing data correlation (as demonstrated by both graphs) can be easily ex-
plained: a correlated noise is subjected to an inner regularity, which causes
the noise values to be less unexpected. Unfortunately, this tendency can-
not be easily used in practice, because noise correlation is rarely under
the control of a data user. But since the estimation technique must be
chosen by the analyst, increasing the penalty from a zero value results in a
significant decrease in the estimate’s variance, especially in cases of weak
data correlation. As shown in Fig. 18.2, this effect is much stronger for the
unfavorable case of t∗ = 7.
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18.5.3 Effect of the Penalty

In both Fig. 18.1 and Fig. 18.2 the autocovariance V was equal to 1. It is
obvious from 18.19, that the effect of a non-zero penalty r will be greater
the larger the autocovariance V . This is due to the above noted effect of
the “signal-to-noise matrix ratio”XTB+X, which decreases with increasing
variance V . (This variance equals the sum of the elements on the main
diagonal of B). The dependence of D2’s variance on both V and r is shown
in Fig. 18.3.
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The lesson given by all three graphs seems to be clear: a retreat from the
strict requirement, that an estimate be unbiased, can significantly decrease
its variance. However, when a non-zero penalty r is applied, how much bias
can be expected? There are two issues, which should be considered here:

1. The dependence of the bias on the penalty.
2. Expectation of the bias.
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Once again, using the estimate of the second derivative’s value (of poly-
nomials of up to the fifth order) with the target point at the end of the
observation interval (t∗ = 7), the length of the operator N equal to 7, and
the variance of the uncorrelated noise V = 1, the first part of the question
is answered by Fig. 18.4.
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Each graph labeled Bias(tk∗) shows the dependence of the error WY −tk∗
of the estimate 18.18, when the data vector’s components Yk are exactly
tk (k = 1, . . . , N). Two further observations can be made:

1. As it was shown in Fig. 18.3, even a very small positive value for the
penalty r of the order of magnitude 0.0001 causes a large decrease in
the estimate’s variance.

2. Fig. 18.4 shows, that such a small penalty leads to a very small bias
in all functions tk.

The answer therefore is, that it is worthwhile to use a positive, but small
value for the penalty r.
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The second part of the answer is, that since the errors shown in Fig. 18.4
correspond to cases of pure polynomial data, the expectation aspect must
be considered: how frequently should such data be expected? The basis
matrix X was defined in 18.9 as the matrix square-root of the covariance
matrix of the true (information) component of the data vectors. All the ex-
amples above assumed, that X was composed of functions tk, and that the
assumption made in 18.8 was valid: the covariance matrix of the random
weights of functions tk is the identity matrix. This assumption is not quite
realistic for the covariance matrix of real data may differ. The probability
of obtaining data components of the type tk would then be lower, which
would also lower the corresponding analytical error of the estimate. The
answer to the second question therefore supports the decision to apply a
non-zero penalty value.

18.5.4 Hybrid: Gnostic Filter Plus Numeric Operator

The main gnostic characteristics of uncertainty (irrelevance and gnostic
weight) have been shown to be inherently connected with the application
of a non-Euclidean geometry. It is known from Riemannian geometry, that
under certain conditions, Riemannian metrics of curved spaces approach
the Euclidean metric valid in tangential linear spaces, but only at points,
which are sufficiently close to the tangent point. This is why irrelevance
approaches Euclidean error, when errors are sufficiently small. Under the
same conditions, the gnostic weight of a datum approaches the deviation
of square error from 1. According to the gnostic composition axiom, ir-
relevances are to be composed additively and the same holds for weights.
This is why, when uncertainty is weak, the gnostic characteristics of a sam-
ple’s uncertainty approach linear functions of the most popular statistical
characteristics, the arithmetical mean and the sample variance. The un-
certainty of the statistics of a sample decreases with an increasing sample
size; this fact can lead analysts to the false conclusion, that when a vast
volume of data is to be treated (as eg in the case of data series, where the
number of observations increases permanently), the advantages of gnostic
methods cease because of the possibility of obtaining arbitrarily precise es-
timates by increasing sample sizes. However, the opposite is true because
of the need to consider not only estimating errors, but also the timeliness
of the estimate, that will result.

Indeed, it would be unreasonable to expect, that a quantity to be mon-
itored could remain relatively constant, allowing the formation of a large
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enough data pool to permit very precise statistics to be computed. If such
a steadfast data series did exist, there would be little need to measure and
control it! The requirement to deliver warning or emergency signals within
an acceptably short time intervals requires, that time limits be established
for the collection of data with a corresponding reduction of sample sizes.
The first economic principle “Time is money” applies here because of the
possibility of losses resulting from a delay in the reception of the signal. A
second economic aspect, the cost of data, should also be considered. An in-
crease in data density can increase the size of a data sample available within
a given time interval and therefore the precision of the measurement, but
unfortunately, costs of more frequent measuring intervals ordinarily rise
faster than the value of the obtained benefit.

The conclusion is, that in practice, a lack of data (and the need for really
efficient methods to treat them) can be escaped only rarely. This justifies
the idea of the joint usage of a gnostic filter with numerical operators. An
example of the effects of such a combination is shown in Fig. 18.5.
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The simulated time series and the gnostic filter are similar to that in
Fig. 17.8, but the output of the robust filter is treated by a numerical
operator in accordance with 18.18. The operator W was obtained by using
18.19 for N = 7, a polynomial base of M = 1, uncorrelated noise with a
variance of 50, and a penalty of r = 0.0001. The value of the first derivative
(operation D1) was estimated at the central point of the moving window
of the data series (Y ). As can be seen in the figure, the hybrid system
can provide information on sudden changes in the process level with only a
small delay, and with a quality sufficient for the reliable initiation of action.
The poor quality of the data is compensated by the favorable dynamics of
the hybrid system.

The more complex example of a data series with a rapidly changing
trend is illustrated in Fig. 18.6. While the gnostic filter captures only the
broad trend reversals, the first derivative provides a timely notification,
that conditions are becoming more volatile.
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18.6 Summary

A broad family of statistical estimates, which minimize several versions of
quadratic criteria are calculated as scalar products of two vectors. The first
vector can be interpreted as a numerical operator, while the second one is
an operand. It was shown, that the vector-operator is determined by taking
into consideration the type of (linear) operation to be performed, the mean
values and covariance matrices of both the informative and uncertain data
components, and by the target point (the point, at which the value of the
estimated variable is to be evaluated). When the data model does not
change (the means and covariances are constant), the numerical operator
is a constant vector. It is therefore not necessary to recalculate it before it
is applied to a new data operand. Instead, it suffices to repeatedly apply
this “ready-made” numerical operator to the new data vectors. This mode
of operation, called “static programing,” thus reduces the estimation to the
scalar product of a constant vector (or matrix) with variable data vectors.
To obtain the best possible effect of such operations, it is necessary to
choose the operator properly.

Statistical theory offers various methods suitable for the purpose, which
can be divided into two classes based on the requirements of the user:

1. unbiased minimum-variance estimates (or BLUES—the best linear un-
biased estimates),

2. unconstrained minimum-variance estimates.

Both of these classes have their pros and cons. The former estimates are
unbiased, when they are applied to a specific class of data, but they do
not reach the minimum variance obtainable by the latter estimates, which
also can suffer from substantial mean errors. The conflicting features of
these “extreme” classes lead to the creation of a more universal technique,
the minimum-penalty estimate. By the choice of extreme values for the
penalty, both of the extreme cases can be obtained. Moreover, properly
chosen non-extreme values for the penalty can increase the advantages of
using both extreme classes. Examples show, that the resulting effect can
be very significant.

There are practical tasks, where using numerical operators is especially
useful, eg when a variable is needed, that is not directly observable, such as
the trend or acceleration of processes, where special measuring instruments
are expensive or do not even exist.

All linear estimating methods suffer from unrobustness. This is why it
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is preferable to use numerical operators jointly with a robust gnostic filter.
Such a combination is suitable even for heavy-duty data processing tasks.
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Chapter 19

Consideration of Censored Data

19.1 Censored Data

Although not stated explicitly, there has been a hidden assumption with
respect to all the data sets considered in the previous chapters: they were
made up of the exact values given (observed, measured) or values within a
relatively narrow spread of the given value. More exactly, the probability
density of a single measured datum was assumed to have one of two forms:

1. that of an extremely narrow impulse (19.1) placed at the point of the
observed datum Ak,

2. that of the gnostic kernel estimate (11.8), the location of which was
determined by the ideal (additive) datum’s value A0 with a width
defined by the scale parameter S.

The former case deals with the design of one of the empirical distribution
functions (a step function, eg WEDF 15.8–15.11, while the latter is applied
to get smooth distribution functions ELDF (15.24), EGDF (15.29), QLDF
(15.33) and QGDF (15.37). These were shortly denoted ∗∗DF. All of these
distribution functions were constructed by using either the estimating or
the quantifying gnostic kernels. The appearance of the smooth functions
depends on the form of the empirical distribution function due to the re-
quirement of the goodness-of-fit. If there are restrictions with respect to
the empirical distribution function, then these also exist and they have
an impact on how the smooth distribution functions look. It is therefore
important, that these (still hidden) assumptions be revealed:

Denote Θ(A) = dP/dA the probability density of P (A,A0, S, AL,AU)
over the finite support [AL,AU ] of an additive observed/measured data A,
given ideal data value A0 and scale parameter S. Further denote δ(A) :=

363
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R2 → R+ the Dirac’s1 (impulse) function, such that

lim
(A−, A+→ A)

∫ A+

A−
δ(A)dA = 1. (19.1)

Then the contribution of a datum Ak (the a priori weight of which is Wk)
to the density of the empirical distribution function is Θk = Wkδ(Ak). In
other words, the assumptions

(∀A)(AL < A < Ak)(Θ(A) = 0) (19.2)

and
(∀A)(Ak < A < AU)(Θ(A) = 0) (19.3)

hold to satisfy the previously accepted condition∫ AU
AL

Θ(A)dA = Wk. (19.4)

Data, which satisfy these requirements, are uncensored data. The con-
struction of a local bounded “Parzen’s” type of kernel to such data is
straightforward. However, it is not difficult to find data, for which either
one or even both of these assumptions (19.2 and 19.3) are violated. Such
data will be called censored. Three types of censored data are possible:
right-censored, left-censored and data censored from both sides, interval
data. Just as for uncensored data, the condition of 19.4 is satisfied for all
three types of censored data.

19.1.1 Right-censored Data

In practice it is possible, that not only the number Ak itself is given as
a member of the data set to be treated, but that additional information
about it is available from a knowledge of the measuring process or from
the nature of the particular datum. Such a situation can be defined as:

1. Condition 19.2 holds.
2. Instead of 19.3, statement

(∀A)(Ak ≤ A < AU)

(
Θ(A) =

Wk

AU − Ak

)
(19.5)

characterizes the nature of the event quantified by Ak. Such data Ak will
be called right-censored. Examples include:

1Paul A. M. Dirac, English physicist (1902–1984), and Nobel Prize winner for his work on quantum
mechanics.
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Survival data: Positive data Tk are the life-times of a group of objects. A
“life-time” is the span from the object’s “birth” T0 until its “death.”
The uncensored lifetime is defined completely by the number Tk, which
is fixed by the already known end of the object’s life. However, in
all the rest of the cases Tk is used to describe only the end of the
observation period, not the end of life. The object ‘lives on:’ it is
only known, that it “survived” time Tk, but there is no evidence of
its “death.” These data are to be read as “the life-time of the k-th
object is at least Tk”.

Prudence in accounting: The principle of conservatism in accounting
means being cautious or prudent and making sure, that net assets
and net income are not overstated. The entries in the corresponding
financial statements are therefore rather right-censored than uncen-
sored.

Measurements off the scale: A measured variable exceeded the maxi-
mum value of the scale of the measuring system.

Tax expense: In the real world people tend to estimate their tax obliga-
tions on the low side. This means, that tax paid (Tk) can be inter-
preted as the ’actual obligation was at least Tk.

To analyze the impact of censored data on the gnostic distribution func-
tions, it is useful to recall, that these functions are obtained so as to ensure
their best fit with the system of ME-points (15.7) related to the sample’s
ordered data. In the case of repeated data values this system has the form
of the weighted empirical distribution function (WEDF), which has been
already been examined for uncensored data. The next step is a generaliza-
tion, which will also take into account censored data.

Consider the same additive form of data Ak as in 19.1–19.5 together
with their a priori weights Wk.

The WEDF is a cumulative function determined by the integral of the
probability density. The density of all three types of censored data is
constant over a limited interval and zero outside of it. The contribution of
each individual data element to the WEDF is therefore linear in the former
and constant in the latter case. Namely, in the case of an right-censored
datum Ak (the a priori weight of which is Wk) the contribution ∆WEDFk
to the WEDF is:

(∀A < Ak)(∆WEDFk = 0) (19.6)

(∀A ≥ Ak)

(
∆WEDFk = Wk

A− Ak

AU − Ak

)
, (19.7)
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where AU is the upper bound of the data support.

Consider a simple example of the impact of an right-censored datum on
the form of the WEDF shown in Fig. 19.1.
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Fig.19.1  THE EFFECT OF CENSORED DATA
The Impact on the WEDF

UBLB

The sample is composed of ten uniformly distributed data D10 :=
〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉. If all the data were uncensored, the WEDF would
be the diagonal straight line shown in the figure (the bounds of the data
support are AL = 0 and AU = 11). If one data item (A4 = 4) is right-
censored, there is no effect for A ≤ A3, but further on, the WEDF does
not rise between A3 and A4 and its values for all A > A4 rise linearly, but
stay below the graph that represents uncensored data.

19.1.2 Left-censored Data

Left-censored data can also be encountered under various conditions. Ex-
amples:

LIFO inventory valuation in periods of rising prices: Under the LIFO
(last-in, first-out) method, the costs of the last goods purchased are
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charged against revenues as the cost of the goods sold, while the in-
ventory account is based on the costs of the oldest goods acquired.
When prices rise, the inventory is thus undervalued.

The cost of acquisition of an item of inventory can sometimes rep-
resent the upper bound of possible prices of an item in inventory such
as goods, which are out of fashion or technologically below the current
state of the art.

Expert’s underestimation eg “not worth more than Ak”.
Insufficient sensitivity: Imagine an automatic measuring system in-

stalled to check the concentration of dangerous gases. Some results
are below the detection threshold of the sensor, but they cannot be
ignored, because they represent the most desirable conditions of the
monitored system. Such measurements can be therefore treated as
left-censored data.

The selling price of a good is in most cases higher than the upper esti-
mate of the good’s true value. If its price is Tk than one can interpret
it as ’the actual value is anywhere between zero and Tk’.

The contribution of left-censored data Ak to the WEDF can be evaluated
in the following way:

(∀A ≤ Ak)

(
∆WEDFk = Wk

A− AL
Ak − AL

)
(19.8)

(∀A > Ak)(∆WEDFk = Wk). (19.9)

The effect of left-censoring of the datum A4 = 4 can be observed in
Fig. 19.1, where the other data of D10 are unchanged. The distribution
function rises faster due to the left-censoring effect than in the case of un-
censored data over the data interval [1, 4]. The effect of censoring then
vanishes after the point A5.

19.1.3 Interval Data

The judgment of members of an expert board can just as easily either
over or underestimate the value of an object. Each point would normally
represent an uncensored datum, however, estimates could be in the form
of “not less than Ak, but not more than Am.” In other words, the datum
could be of interval nature, censored from both sides. Such data are not
as rare as it would seem. Consider two nontrivial examples:
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Product’s quality: The distribution function of a parameter Q charac-
terizing the quality of comparable products from different producers
is to be calculated. There are two types of data possible:
• Measured values of Q (the uncensored data).
• Specific results of measurements of Q, values of which are not

provided, but that are only counted—due to a reliable automatic
quality control system—to surely fall within the interval [Qk, Qm].
Such data would then be accounted for as interval data.

Market prices are based on estimates of the true current value of goods.
Assume, that both parties to a deal are well informed about the market
situation. It is natural to expect, that the asking price (set by the
seller) will be more than his estimate of the true value, while the
bidder (the buyer) will try to establish the price under his estimated
true value. The bid price can thus be viewed as the lower and the
asked price as the upper bound of the interval of acceptable prices.

Three relations account for an interval datum spread from Ak to Am:

(∀A < Ak)(∆WEDFk = 0) (19.10)
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(∀A)(Ak ≤ A ≤ Am)

(
∆WEDFk = Wk

A− Ak

Am − Ak

)
(19.11)

(∀A > Am)(∆WEDFk = Wk). (19.12)

Assume, that Ak = 4 and Am = 7. Then the impact of an interval
datum A4 on the WEDF of the data sample 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 〉 is
demonstrated in Fig. 19,1: there is a displacement to the right between A3

and A4, which is followed by a linear return to the line of uncensored data.
Note, that it is not an estimate of the fourth datum, that is lower, but
that the probability of being at least 4 has declined since the measurement
could be in error on either side.

It is instructive to examine the WEDF, which results, when the whole
sample consists of censored data. As shown in Figure 19.2, when all data
from the uniformly distributed sample D10 is taken as interval data, spread
from Ak to Ak+1 (k = 1, . . . , 9) the WEDF is the same as for uncensored
data.

In contrast, when the data are all right-censored, the WEDF would
have the form of a curve running below the straight line corresponding to
uncensored data. For left-censored data, the WEDF has the opposite form,
above the straight line. The effects caused by data censoring thus can be
significant.

19.2 Censored Data from the Currency Market

A real example, taken from currency exchange trading, presents the con-
cept of censored interval data using a foreign currency electronic market
data series2. Fifty consecutive observations of the US$/DM exchange ra-
tios for both ASK and BID prices for Oct. 10, 1992 were taken for the
analysis. The probability distributions and densities of the EGDF type of
both series are shown in Fig. 19.3.

It is interesting to note, that the spread between the two ratios, mea-
sured in Fig. 19.3 as the horizontal distance between both distributions, is
close to 0.001. Since the ask and bid ratios in the series appear only in
pairs, because they correspond to actually realized transactions, assume
that the respective ratios represent the bounds of the estimated interval of

2Data HFDF93 were made available to the world scientific community by Olsen & Associates, Research
Institute for Applied Economics, Seefeldstrasse 233, CH-8008 Zurich, Switzerland, E-mail: hfdf@olsen.ch
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acceptable values of the ratio. It is then possible to analyze both uncen-
sored series as only one series of interval data. The probability distribution
and density obtained in this way are in Fig. 19.3. Two interesting conclu-
sions result from the comparison of these distributions:

1. The volatility of the data interpreted using the “interval concept” is
significantly less than that of the individual ask and bid series taken
separately.

2. The location parameters (the distribution’s median and density mode)
of the interval data are slightly lower than those of the two single
distributions.

The conclusion is, that the concept of interval data can be useful in estab-
lishing more reliable real time values for exchange ratios.
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19.3 Summary

The estimating technique of gnostic distribution functions permits addi-
tional information related to the data’s character or origin to be put to
use. This procedure distinguishes four classes of data: uncensored, right-
censored, left-censored and interval data. Censored data are distributed
over a not negligible subinterval of the data support. In spite of the fact,
that censored data are in a way more uncertain than uncensored data,
classifying data sets in this manner can increase the value of the analy-
sis by extracting a greater amount of information from the results of the
treatment.
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Part III

APPLICATIONS
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Chapter 20

Letting Data Speak for Themselves

20.1 Introduction to Part III

As promised in the Preface, Part III of this book should help the reader
become familiar with applications using gnostics. The authors have in
mind two categories of readers; both are interested in knowing, that the
methodology works. The first will want to understand why and how, and
the second, who in the most part will be practitioners, will be satisfied,
that it does work. Nevertheless, it will do no harm for practitioners to
have a feel for what is behind the algorithms and formulae which they are
going to apply.

Those of the first category who have studied chapters 1-19, already know
how the theory was developed, and can omit reading this section which is
primarily addressed to the second group. Our aim is to use simple termi-
nology and to constrain ourselves to using commonly understood notions
to express the theory’s ideas.

Gnostics is a mathematical theory of uncertain data which should be
applicable to both individual data and to small samples of such data in
order to support practical needs by robustly mining information from data
in an optimum manner. Several notions are to be emphasized here:

• Mathematical theory and its applicability,
• Uncertainty of data,
• Individual data and small samples,
• Information,
• Optimality,
• Robustness.

Mathematical theory: Historically, the initial objective of mathematics

375
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was to serve the needs of ordinary life by establishing values and quan-
tities for the barter of goods and to develop rules for measurement,
comparison, and exchange. During the solution of these problems,
it appeared, that in properly achieving this objective, mathematics
created abstract notions and found ways to use them. This process
of evolution led to the complete independence of mathematics from
its immediate practical application to everyday problems. Historical
experience proved the fruitfulness of such development, because many
of the initially completely abstract ideas and methods of mathematics
found practical applications centuries after they had been developed:
complex variables, the axiomatic approach to geometry resulting in
non-Euclidean geometries, etc.
Mathematics can be described as a building properly erected over
its foundations: definitions and axioms. “Properly” means to start
building with nonconflicting axioms and to apply to them consistent
reasoning. Generally speaking, these are the only requirements and
the value of a mathematical theory is considered to be greater, the
more mathematically interesting its outcomes are. But, when math-
ematics is used to model real processes, it must base its reasoning
on realistic assumptions, which would lead to the applicability of the
obtained results.
This is the case with gnostics. Its first axiom is based on notions
and principles of measurement theory (which developed over time in
parallel with markets). To exchange goods, it was necessary to develop
certain rules for the measurement and manipulation of quantities. The
main result of measurement theory is, that the measured or counted
objects are elements of sets having a special structure. Summarizing,
it is possible to state, that this main axiom evolved from something
very practical, the development of the exchange of goods.

Uncertainty of data: Data are numerical images of quantities. The pro-
cess of forming these images (quantification) realized under practi-
cal conditions is subjected to different disturbances which make the
images imprecise, corrupted by uncertainties. In gnostics, data un-
certainty is not interpreted as a random effect, but as the impact of
unknown real factors. The uncertainties are thus also images of real
quantities and as such they are subjected to the same regularities, as
true (undisturbed) images of quantities. Each observed datum is a
composition of these two elements and the role of the data treatment
is in the separation of these two components. Shortly: uncertainty =
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lack of knowledge.
Individual Uncertain Data: When describing the random nature of un-

certain components of data, mathematical statistics relies on the main
regularity of collective uncertainty, the Law of Large Numbers. Un-
fortunately, this approach cannot be consistently applied to individual
data and to small samples. However, many practical problems deal
with a need to treat very limited amounts of data. It is therefore nec-
essary to discover regularities, to which the individual uncertain data
are subjected. Gnostics shows, that such regularity exists and results
from the special nature of data’s structure. Everyone knows, that a
thrown stone describes a precisely defined path. Analogously, gnos-
tics derives from the first axiom the path, along which the observed
datum moves under the influence of uncertainty. The movement of
the tossed stone depends on its momentum and kinetic energy, which
is under the control of the laws of Newtonian mechanics, and which
can be described by using familiar Euclidean geometric concepts.
The movement of the uncertain data along its path, forced by changing
uncertainty, is in a way similar: the data’s error (called irrelevance,
9.6) and its weight (9.5) are linked to the changes in uncertainty.
The data’s error quantifies the size of the uncertainty and the weight
is a measure of the data’s truthfulness. The point is, that to treat
individual uncertain data, it is necessary to have a means for the
evaluation of the data’s error and weight. As shown in Part I, this
evaluation/measurement is realized by using non-Euclidean geometri-
cal concepts. The choice of geometry to be applied to some particular
data is not a decision to be made by the users of the method, the
proper geometry is determined objectively, by the data themselves.

Information: Classical information (Shannon’s) is based on a complete
probabilistic description of a message; this means, that it is inherently
connected with the statistical notion of uncertainty of mass events
and as such it cannot be used to evaluate information carried by an
individual datum. In contrast, gnostics derives a formula (10.64, which
quantifies the loss of information caused by the uncertainty of the
individual datum. The information in a small data sample can then
be obtained by the composition of information carried by the sample’s
data. No a priori statistical model of data is necessary for this to occur.
Everything needed is taken from the data themselves.

Optimality: The problem of optimality is linked to a requirement to do
things in the best possible manner. To find a mathematical solu-
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tion to this task, a criterion, which can be reasonably optimized is
needed. In many instances, the role of such a quantity is given to
the sum of squared errors. But, in this case, the problem is, that
such a solution has some undesirable features and it is not quite clear,
why squared errors and not some other function of errors should be
used. Data treatment should result in information and there is no
simple connection between squared errors and information. This is
why gnostics interprets the optimality problem as maximization of in-
formation gained from the outcome of the data treatment. Moreover,
as shown by gnostics, this optimality is really the best possible way to
treat data, because any variation from the path (along which gnostic
data treatment moves the data) would result in less information being
delivered. This type of optimality is similar to the minimum use of
fuel by a rocket or satellite, which moves by inertia along its elliptical
orbit.

Robustness: The modern expression, ’robustness of a data treatment
method’, means a reduced sensitivity to undesirable data. There can
be two different types of undesirable data. When the required in-
formation is carried by data, which are close to the central value of
the sample, the undesirable disturbances are caused by outliers, ie by
data, the values of which are far from the sample’s center. However,
the opposite may also be true: the central data may be noisy, while
the information is carried by data, which are beyond the lower and
upper boundaries of the undesirable data. Fortunately, all gnostic for-
mulae have two alternatives; one provides robustness with respect to
outliers, while the other is robust with respect to inliers. The first is
called estimating, while the latter is quantifying. The choice depends
on the goal of the task to be performed.

It can be shown, that the notions and rules of mathematical statistics
are closely connected to Euclidean geometry and to Newtonian mechanics
(see Chapters 7 and 13). As discussed in Part I (Chapter 7), there are
important linkages between gnostics and Einsteinian relativistic mechan-
ics. The importance of these ties lies in the proven possibility to support
composition rules for uncertain data by something as universally accepted
as the relativistic law of conservation of energy and momentum.

Although gnostic methodology fundamentally differs from that of statis-
tics, it does not mean, that there is an unsurmountable gap between both
approaches. The opposite is true: under the condition of gradually fading
uncertainty, gnostic formulae approach the classical statistical characteris-
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tics of uncertain data. There are two analogies to this effect:

1. Imagine a plane tangential to a curved surface at some arbitrary point.
A pattern of points on the surface can be projected on the plane to
approximately depict its features if the pattern is sufficiently close to
the point of contact. Nonlinear relations between points on the surface
are then approximated by linear relations on the plane.

2. When velocities are low, the formulae of relativistic mechanics ap-
proach those of Newtonian mechanics.

Relativistic physics is a theory, which deals with processes that have very
high velocities. In a similar sense, gnostics is a theory designed to treat
uncertain data with strong uncertainties.

It is a tedious task to extract gold from an ore, however the value ob-
tained from the gold recovers the effort expended in obtaining the refined
product. Uncertain data are another type of ore and information has the
price of gold. To obtain refined information, the data must be treated by
a tedious process as well. There are many ways to treat data, but when
a decision is made to use gnostic methods, it is necessary to be prepared
to use complex nonlinear formulae, difficult optimization procedures, and
to develop adequate efforts to thoughtfully interpret the results. Fortu-
nately, modern computer technology easily permits the rapid and efficient
manipulation of complex mathematical structures, but to serve a useful
purpose, the results obtained by these mechanical procedures must still be
interpreted by the efficient and diligent application of the human brain’s
ability to reason and draw rational conclusions from these outcomes.

20.2 Objectivity versus Subjectivity

Quantitative data are the numerical images of real quantities. There are
three stages in the quantitative recognition of these real objects:

1. measurement,
2. analysis,
3. interpretation.

The real, but unknown, measured quantity is, of course, the most objective
value, that could theoretically be obtained. However as the quantification
is undertaken, the degree of objectivity attached to each image obtained
by the observer progressively decreases due to imperfections in the process.
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Methods for measurement are developed in parallel with the progress
of technology so as to best satisfy the requirements of objectivity. Even
in fields such as economics, where technical measurement methods are
generally not applicable, there are regulations, which attempt to establish
the quantification of objects on a reasonably objective level. It can be
thought, that data produced by an objective (or an objectively oriented)
measurement process are objective, and that the deviation of such data
from their true (precise) value is due to uncertainty.

The true and uncertain components of data are—in a way—inseparable
and both are objective in nature. The true value is objective, because it de-
picts an objective quantity. In turn, the uncertainty is objective, because it
reflects objectively the existing imperfections in the measurement processes
and the impact of unidentified objective factors on this process. However,
this does not mean, that a separation of the true and uncertain value is
automatically objective. This is the task of analysis, the conclusions of
which can be both subjective and objective.

The last statement may give rise to objections: analysis comes about
through mathematics and mathematics has strict rules, which harbor no
subjectivity. While this is true, when the context is related to the consis-
tency of mathematical reasoning, derivations, proofs and operations, all the
“truths” of mathematics stem from its assumptions and these can be either
realistic or unrealistic. The problem lies in the choice of a definition for the
notion of truthfulness. Everything that results from consistent reasoning
based on a system of nonconflicting axioms/assumptions is “truthful” for
mathematicians. A similar status is also given to the idea of existence.
An object always exists unless its existence has been proved to be contra-
dictory to a truthful statement. No requirements for “realism” are posed
in mathematical assumptions. Even the notion of “real” has a different
sense in mathematics than in ordinary parlance: real numbers “really ex-
ist” in the same sense as that of imaginary or complex numbers. Such an
abstraction and its isolation from the “real world” imparts to mathematics
its exclusive creative power and its inner purity. However, there also is a
substantial drawback to “being allowed” not to be realistic: the door is
open to false judgements, which are derived from unrealistic assumptions.1

In data analysis, this danger threatens the clarity and objectivity of math-
ematical models of uncertainty and the analytical methods to be applied
to data. Some data treatment methods make use of notions, which have

1It is interesting to note in this connection, that mathematics is frequently classified as a member of
the family of natural sciences.
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a legal and precise meaning in mathematics, but when they are applied
to real objects or processes they are not always well justified. Examples:
the ideas of infinity, normality, randomness, dependence, independence,
existence, homogeneity, membership, similarity, model.

The purpose of data analysis is to support decision making with respect
to real objects and real processes. Results of data analysis are only useful
if they are realistic and objective. Since analysts are human and can have
their preferences as to methodologies as well as subjective expectations
as to the results of their analysis, their points of view can be prejudiced
and biased. In order to draw objective conclusions from an analysis, all
subjective views must be suppressed so as to accept the dominating role
of data. Data represent reality and they decide if the model resulting
from the analysis is objective. The primary rule for letting data speak for
themselves is thus not to violate data by imposing an a priori model.

It is during the third stage of data analysis, interpretation of the results,
that the importance of objectivity becomes paramount. It necessarily relies
on the subject’s (the analyst’s) interpretation. The analytical stage uses
computers, which are objective to the same degree as the assumptions,
on which the analytical methodology is based, therefore “realistic assump-
tions ⇒ objective results of analysis.” In contrast, interpretation must be
entrusted to a specialist in the discipline, who must correlate the analyt-
ical results with collateral information, as well as his/her experience, and
general know-how. The degree of objectivity in interpretation depends not
only on the skill and unbiasedness of the interpreter, but also on the capa-
bility of the analytical technology used to provide him/her with persuasive
arguments, that support these conclusions.

20.3 Realism of Notions

Because data are real, when they “speak for themselves”, they cannot
reveal something unrealistic. “Responses” to “Questions” asked of data
should therefore be free of ‘not quite realistic’ notions.

20.3.1 Infinity and zero

The primary (historical) role of mathematics was to provide quantitative
and logical models of the real world and of its processes, ie of things that
can be seen or imagined. However, the free (formal) development of mathe-
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matics soon led to the crossing of this boundary and notions of infinity and
of its “reciprocal,” zero were introduced through the concept of induction,
one of the most potent mathematical methods. These ideas appeared to
be necessary for the creation of logically closed mathematical structures,
which are necessary in mathematics, but are not always suitable for good
models of reality. A real quantity can be vast, but it is always bounded.
Some amount of money can be large, but the idea of infinity is not neces-
sary in order to visualize some larger amount; it is only sufficient to add
one cent to the previous sum. Real things are bounded by their inherent
nature. The extraordinary power of mathematical infinity lies in its ca-
pability to exceed an arbitrary quantity. The application of mathematics
to practical problems can lead to the necessity for a symbiosis of realis-
tic bounded functions defined over finite domains with their unrealistic
mathematical images defined over the infinite unbounded horizon. This
is the case in gnostics, which models distributions of real (bounded) data
by means of abstract, theoretical distribution functions defined over the
infinite domain, then transforms them back into the finite data support
prior to their use in applications.

The notion of zero is another mathematical invention. As a member of
a structure of real numbers it also displays great power: it can “destroy”
any finite number by multiplication, it reproduces itself. This remarkable
feature is generalized in algebra by designating it as an ideal2. If infinity
can be accepted as a model of “everything,” then zero models “nothing.”
It is difficult to relate these notions to anything real3. Children easily
understand the idea of a set containing a finite number of objects, but
the notion of an abstract empty set is much more difficult for them to
comprehend; try to explain how an empty set of dinosaurs differs from an
empty set of children!

This discussion becomes much more practical, when it is applied to data
analysis. There is no device, which can measure infinity. Therefore, it can
be concluded, that infinite data do not exist. Despite this, mathematical
statistics frequently use distribution functions (eg Gaussian distributions)
defined over the infinite data support. Non-zero probabilities are thus
attached to data values, which are not real. This means, that an unrealistic
model is used with the expectation of fitting real data.

2Abbreviation for ‘ideal element,’ a term used in number theory.
3An interesting contradiction: Ernst Zermelo, one of the pioneers of set theory interpreted zero this

way: “There exists a (fictitious) set, the null set, 0, that contains nothing at all.” Fictitious . . . how do
fictitious things exist?
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The finite bounds of real data have more than quantitative consequences
for modeling. They can change the nature of the model. The most pop-
ular (normal) distribution function has the well-known S-form and a bell
shaped density. However, some processes have very different distribution
functions, where the density can be sharply cut off from one or even from
both sides. A non-zero probability density is in such cases only given to a
bounded interval over the data support. The estimation of these bounds
can provide the analyst with information of fundamental importance, which
would otherwise have been lost.

Another frequent application of the notion of infinity is in connection
with the Law of Large Numbers and the Central Limit Theorem. An
unlimited increase in the sample size is acceptable in theory, but outside of
some physical applications, can rarely be achieved in practice, particularly
in economics and finance. In the analysis of mass events, the substitution of
infinity for a very large finite value leads to working mathematical models,
that result in only negligible errors. But it is a quite different situation in
the case of costly data, or when it is impossible to increase the number of
data. The mathematical trick of letting the number of data rise without
limit cannot be reasonably justified in these situations and a non-statistical
model of uncertainty has to be used.

Zero data can actually be generated by a real measuring device; even so,
they deserve special attention. The range of a measurement instrument
is bounded and the measuring range must be properly selected. The mea-
sured value should not exceed the upper bound of the range. On the other
hand, it must not be so small as to be close to the lower bound. The prob-
lem is, that the relative precision of the instrument falls with decreasing
measured value.

Another problem with zero data is its potential double meaning. Zero
data can be interpreted not only as “value below the measurement thresh-
old”, but also as “measuring instrument or communication line failure.”
Zero data have a doubtful informative value even in quantification pro-
cesses not realized by technical means. An example can be a statistical
survey based on random sampling. Observing a zero frequency of occur-
rence for an event can be interpreted not only as “non-existence of the
event”, but also as “too rare to be detected.”

Zero data value can result from additive operations on real (additive)
data. A “natural” support for additive data is therefore a bounded interval
of real (positive, negative and zero) numbers. Strictly positive (multiplica-
tive) data exclude both infinite and zero data values and their data support
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is a bounded interval of positive numbers. Infinite bounds of data supports
for distribution functions can also be used, when they correspond to data,
but their realistic interpretation should be “a very distant value” rather
than an “infinite” one.

When an assumption of bounds for the data support is accepted, a
question arises as to how these are established. The bounds can sometimes
be determined by the nature of the event under consideration. In other
cases, they must be estimated, which leads to a corresponding requirement
for the proper analytical tools.

20.3.2 Normality

The notion of normal in statistics is reserved for the well-known Gaussian
type of probability distribution. The assumption of normality is a source of
many popular statistics and tests and it is supported by the Central Limit
Theorem. The problem is, that this assumption is frequently applied to
non-limit cases, which have neither an infinite number of data nor infinite
data support. Many users of statistics rely on the statistical idea, that the
sample means can be reasonably approximated by a normal distribution
for samples of size larger then 30. It is easy to show, that this statement is
more of a superstition than a provable fact, because it does not take account
of possible outliers. The inclusion of a data item with an extremal value in
a sample can distort the distribution function of much larger samples. The
influence of large, but finite outliers can be completely eliminated in the
case of an infinite sample size. A potential objection to the possibility of
large outliers could be, that data are always bounded in practice. This is
true, but then what reason can there be for using the normal distribution
defined only over an infinite data support?

The statistical notion of normality is far from the common understand-
ing of the meaning of the word: conforming with the accepted standard or
norm; natural; usual; regular; average; ordinary or what is expected. The
Gaussian distribution is favored due to the sufficiency of its two easily es-
timated parameters, the mean and the standard deviation. However, there
is no reason to see it as a standard or norm. It can be natural, regular and
usual in one application field and unacceptable in another. Consider two
examples of the frequent misuse of the normal distribution:

1. In financial statement analysis: the number of comparable enterprises,
which can be used for statistical comparison is always low, frequently
not exceeding ten and rarely exceeding 30 or 40. Strong outliers can be
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expected even though the data are surely bounded. To be realistic, the
estimation of risks and chances associated with data values should be
based on actual distribution functions and not on an a priori assumed
model.

2. In production quality assessment: there is no reason to assume, that
an assessment of good quality is subject to a normal distribution.
The actual distribution of qualitative parameters is dependent on the
production and control technology. Infinite deviations from the mean
are impossible. Decisions as to good/bad products should be therefore
based on the actual distribution functions of the good products.

It must be concluded, that decisions on the type and parameters of distri-
bution functions should be entrusted to the data themselves.

20.3.3 Randomness, Dependence and Independence

A mathematical model of randomness is a suitable tool for the simplifi-
cation of models of mass events, where there are simple interactions, that
lead to confusing chains of causes and effects. Typical examples of such
application fields are the dynamics of gases, plasmatic states of matter
and the theory of nuclear reactors. It is inappropriate to think of this type
of randomness as chaotic, and/or maximally disordered. The opposite is
true: these dynamics result from compliance with the strict laws of Na-
ture, particularly those of mechanics, electrodynamics and nuclear physics.
The independence of many regular microscopic events thus leads to a strict
interdependence of the measurable macroscopic parameters of the environ-
ment such as temperature, pressure, concentration, distribution and flow
of mass. In the case of nuclear reactors, the macroscopic effects of micro-
scopic movements include the rate of the fission reaction and thusly the
reactor power. The “random” origin of microscopic uncertainty results in
a high degree of certainty on the macroscopic level. There are also appli-
cation fields, where the data uncertainty has nothing in common with this
(random) character of events, and where the assumption of the random
cause of a real effect would be absurd. Again using data from financial
statements: they most certainly are uncertain as it was set out in chapter
2, but an investor would not be satisfied by an explanation, that profit
fell because of random events. Each individual change in assets, liabilities,
cash flows or expenses is documented and is accounted for. As such, all
of these effects have identifiable causes and could be traced if complete
information were available. This, of course, is not the case for an observer,
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who is given only a limited access to insider information. For him the data
are uncertain, and this kind of uncertainty is due to a lack of knowledge
about the object and/or process characterized by the data.

A similar comment can be made about product quality control. It would
be hard to believe, that a defective product was shipped from the factory
randomly, or that its defects originated by a chance. Current procedures
in product quality include the systematic registration of all factors, that
influence the quality of output, so that the causes of potential defects can
be discovered immediately and even traced after a complaint surfaces.

Because of substantial differences in such situations from true random
ones, the following cautions are appropriate, when:

1. there is only one (or a small number) of possible causes for the effect
being considered,

2. the size/intensity of such disturbances or causes is substantial.

In such cases,

1. a small number of strong disturbances in a limited data sample thwarts
any hope of correctly applying Gaussian distribution functions,

2. the treatment of such data requires, that they be checked for homo-
geneity and for the presence of outliers.

The interpretation of normality as something usual, frequently occurring,
natural or ordinary suggests a ‘jeu de mots’: “it is not normal to find a
normal (Gaussian) distribution in many application fields.” Or “normal
distributions in many applications are not normal.”

In non-mass processes even the notions of independence and dependence
take on a different character. The stochastic independence of molecular col-
lisions at different space points again relates to a large number of particles
and only the average of these minute effects is of importance. However, a
strongly disturbed datum in a small data sample has a non negligible im-
pact, for which there is no compensation from a large number of opposite
effects. The dependence of a sample’s characteristics on strong distur-
bances (outliers) must be taken into account and eliminated by provisions
to increase the robustness of the data processing method in use.

The use of mathematical functions as models of dependence between
variables is limited in practice. The ordinary notion of a mathematical
function has the “one-way” nature of Argument ⇒ V alue or If ⇒ Then.
Using the cybernetic notion of a black-box or system, such a function can
be characterized by an interaction Input ⇒ System ⇒ Output. In many
real systems the chain Cause ⇒ Effect (especially in multivariate cases)
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is much more complex, because it is impossible to specify the dependency
of one variable on others, while stating, that it does not in turn influence
them. (This is eg the case of the standard formulation of the statistical
regression model with one dependent and several explanatory variables.)
Finding such an extraordinary situation in financial statements (such as
changes in assets or liabilities), which have no effect on the value of other
items would be a rarity indeed4. The feed-back cybernetic model Input
⇒ System ⇒ Output ⇒ Feed− back System ⇒ System′s Input is more
suitable with the feed-back leading from all output variables back to all
the variables in the input. The mutual independence of variables in a real
system can only be an illusion.

20.3.4 Membership and Homogeneity of a Data Sample

There are several typical reasons for creating and analyzing data samples:

1. The same quantity is repetitively measured and analyzed so as to
suppress its uncertainty or that of the measurement channel.

2. The changes in a single quantity is monitored over time by analyzing
a time series of measurements.

3. Several quantities are measured at the same time and analyzed to
obtain the cross-section (static) model of the relationship between the
variables.

4. The time series development of several quantities is measured to an-
alyze the dynamics of these objects.

In all of these cases, only a single object or a single class of objects is
to be delimited as the object of interest. Data samples, which satisfy this
requirement are classified as homogeneous. They are thought of as a single
true quantity, a class of similar true quantities or as a time series of true
quantities. The space points of variables, which represent these quantities,
form a narrow cluster or a time series of narrow clusters. Data uncertainty
increases the spread of these points (width of the clusters), but does not
change the character of the distribution functions and/or the number of
clusters. The proper distribution function of a homogeneous data sam-
ple has thus a single mode for the probability density function (only one
maximum for density functions having a “bell form” or not more than
two for other cases5). This definition can be accepted as a criterion for a

4This is not related to a single statement, but to a time series of statements of a company or to
cross-section analysis of statements of a group of comparable companies.

5There is no contradiction in this statement, because the “non-bell forms” are caused by the bounds of
the finite data support and the homogeneity is always tested with densities transformed onto the infinite
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sample’s homogeneity, however it is also theoretically based on the funda-
mental feature of the global gnostic distribution function, which reliably
signals the sample’s inhomogeneity by the occurrence of another density
maximum/maxima.

The potential inhomogeneity of a data sample gives rise to the following
issues:

• Is a given uni- or multidimensional sample homogeneous?
• If the above is affirmative, then what are the bounds of membership

of this sample, ie those distances from the sample’s minimum and
maximum values, which define the interval of values, within which
an additional data item could be included without causing the data
sample to become inhomogeneous?
• If the sample is not homogeneous at the start, then how should it be

decomposed into homogeneous sub-samples (clusters)?

A special case of inhomogeneity is that caused by the problem of an
outlier: “To be or not to be an outlier?” Or more particularly: “Is this
extremal data item a ‘legal’ member of that given data sample?”

The usual solution to the membership problem can be trivial or some-
times extraordinarily complex, but it always plays a fundamental role. In
classical set theory the problem of whether an element belongs to a set is
posed as a primitive notion, ie “everybody knows if this element belongs to
that set.” On the other hand, in the theory of fuzzy sets the notion of the
“membership function” is introduced: “nobody can decide with certainty
if this element belongs to that set, but everyone can determine the value of
the membership function, and the degree of membership of the element.”
Both these approaches are obviously subjective. A statistical solution of
this problem depends on two subjective choices: the assumed distribution
function and the selected significance of the test. In the gnostic case, the
decision on membership is objective: non-outliers are data, which are lo-
cated within the bounds of the membership interval. These bounds are
estimated by using the data.

20.3.5 Similarity, Comparability, Models

The notion of similarity as presented in elementary geometry is based on
simple rules of proportion. A more advanced concept takes two figures as
similar if they coincide after some “allowed” transformations, eg shifts and

data support, where all densities have a “bell form.”
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rotations. Similar objects can be compared and ordered: this triangle is
larger than that (similar) triangle. Comparisons and ordering need to be
made with respect to an aspect common to the objects. Similar triangles
can be ordered by their linear size as well as by their area, while eg triangles
and circles by area or perimeters. Similarity is a base for modeling. A
model has to be similar to the modeled object, but its use is reasonable
only if the model is simpler than the object. Only the most important
aspects of similarity are modeled. Modeling therefore involves a necessary
element of abstraction and introduces additional uncertainty.

The goal of data analysis is to draw as much information from the data
as possible, so that the largest number of characteristics of the object can
be recognized. An analysis is successful, when the resulting model provides
a sufficient degree of similarity to the object. This is not an easy task:

1. Real objects have many characteristics. Which of these are necessarily
decisive for the model?

2. What degree of abstraction and simplification is acceptable?
3. Since data are uncertain, how can this uncertainty be minimized in

the model?
4. How can the quality (truthfulness) of the model be evaluated?
5. Which aspects of the model can and should be used for comparison

and ordering of all of the possible models?

The required depth of the analysis will determine the significance and
the degree of simplification to be applied to the selection of the model’s
characteristics. These requirements depend in a large part on the available
resources as well as on the type of analysis to be undertaken. For example,
in financial statement analysis, judgements about a company are based
on a set of financial ratios, which are evaluated on the basis of the mean
or median value of data taken from “similar” firms in the same industry.
A formal classification of industrial activity is necessarily different from a
‘real’ classification. Multiple univariate impressions are not comparable to
the real multivariate images of an object. Simple rules of proportion can-
not lead to the real characterization of the complex state and behavior of a
firm. Primitive methods such as these yield primitive and sometimes con-
fusing results, which can only be considered as a general characterization
of a firm, not as tools for financial planning and control.

The need to protect the model against “bad” data calls for robust mod-
eling methods, which are equivalent to using a geometry of a curved space.
The best choice of geometry is the one, which results in the best fit with
“good” data. This again means, that the data should lead to the geometry
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chosen for their own treatment. Methods used in data analysis must be
data oriented, so that they:

1. can adapt the geometry of robust measurements to data,
2. are able to determine the significance of each aspect of the different

objects, and
3. can evaluate the quality of the model by ordering and comparing the

objects provided by the data.

20.3.6 Censored Data and Trimming

The common feature of censored and trimmed data is, that both suffer from
a lower informative value. The informative incompleteness of a censored
data item is objective and not a result of the action of a subject (censor).
Censored data do not have a firm value (which answers the question of how
much or how many), but rather have a limit of the type “at least”, “not
greater/more than” or an interval of values. An analysis should not neglect
such data, because they also contain information. Simple examples support
this statement: “this diagnosis gives the patient a chance of survival of not
longer than...”. Or “this painting is worth at least...” The requirement for
taking into account censored data enhances the quality of the analysis, but
the construction of the necessary algorithms can lead to difficulties.

Unlike censored data, trimming results from the subjective decision of
a person, who reserves for himself the right to declare some data as ‘bad.’
Such action can only be justified if reliable information is available exclud-
ing the chance, that the data item carries any useful information. Other-
wise trimming represents a risk of loss of information. Data are costly not
only due to the cost of measurement, but also from the potential informa-
tion, which they can carry.

There are different rules for trimming, some better than others. Con-
sider the example of a trimmed arithmetical mean. If eg 5% of the smallest
and 5% of the largest data values of a symmetrical sample are trimmed,
then if there are outliers, they will be cut off, otherwise the precision of the
estimated mean will be slightly diminished by not taking into account 10%
of the good data. But what if symmetrical trimming is applied to a non-
symmetrical data sample? Another more dangerous example of trimming
is an a priori fixed “window”—an interval containing all the acceptable val-
ues, while all other data are excluded. Such a drastic limitation of “data’s
rights” can lead to serious distortions in the results of the data treatment.
It is not the data, but rather the analysts, that speak for themselves in
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such cases. To prove, that such practice exists, it is sufficient to note
the forms of so called influence functions, nonlinear data weights of the
M-estimates, which are used in statistics for robust parameter estimation
of a linear regression. There were eg 10 such functions available in the
S-PLUS6 statistical package (version 4.5). Five of these functions apply
influence functions with sharp edges, ie points of nonexistent derivatives.
It is hard to believe, that some data values are not entitled to continu-
ous derivatives for their influence function, and that it is reasonable to
assume an infinite response to an infinitesimal change. This criticism is
not directed at Insightful, whose programmers are just including the more
commonly used routines in robust statistics.

Respect for data as the messengers of reality should be manifested by
including censored data and by refraining from using trimming and—when
trimming is really reasonable—by applying the Czech proverb: “Measure
twice, cut once.”

20.3.7 Optimality

A statement of the type “This object is the best” is an empty statement
until the criterion of optimality is specified. Optimality criteria can be
either purely formal or realistic. A formal criterion function or functional
is one, which is defined and accepted without taking into account, whether
it represents anything real.

For centuries, a popular criterion for data fitting has been the quadratic
function. If asked for a reason for this popularity, a mathematician would
probably answer, that its advantage is a comfortable numerical treatment,
because differentiation leads to a linear function. Looking for the extremum
is therefore reduced to solving a system of linear equations. Simple calcu-
lation was very important, when no computers were available. A different
point of view, offered by a physicist, would note, that in many instances,
energy is quantified by a quadratic function of such real quantities as ve-
locity, current or voltage. If these quantities were to model data errors,
then minimization of the quadratic function would minimize the errors in
the quantification of these energy sources. Such an interpretation is real-
istic. A quadratic criterion function thus has a double nature: it is both
a good formal and a good realistic criterion. However, there is a serious
problem: a quadratic error criterion implies the use of Euclidean geometry,

6S-PLUS is a registered trademark of Insightful Corp.
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which is not always applicable in data treatment because of the resulting
unrobustness of estimates.

Ordinarily, the idea of optimality is closely connected with the nature
of the application being pursued. A screwdriver is the best instrument for
setting screws, but for cleaning teeth a toothbrush is preferred. The pur-
pose of data analysis is to draw information from data, therefore a natural
measure of the performance of a data treatment is the amount of infor-
mation presented by the results. Since data are uncertain, an alternative
criterion is the minimization of uncertainty. Therefore, preferred means of
data treatment are those, which maximize information drawn from data,
or that minimize the uncertainty of the results, eg the entropy. As shown in
gnostic theory, the use of such criteria requires a non-Euclidean geometry,
but it leads to robust estimates.

There is also an optimization problem, which is different from simple
data fitting. In physics there are two formulations of the Laws of Nature.
One takes the form of second order partial differential equations, while the
other is obtainable by double integration of the equations along a suitable
(optimized) path. (Two popular examples of such formulations are: 1)
Equations of Newtonian mechanics and 2) Maxwell’s equation of the the-
ory of electromagnetism). The extraordinary importance of the integral
formulation is, that it enables the problem of the optimality of natural
processes to be posed and solved by means of calculus of variations. A
simple example of a variation principle deals with the inertial movement of
a satellite along its path. Theoretically, no energy is spent in the contin-
uation of this movement, while each variation in the path “costs” energy
from the firing of the rocket motor. The path is thus optimal in the sense,
that it minimizes the satellite’s mechanical impulse and energy. Methods
of data treatment can also be thought of as “leading” the data along a
path. As shown in Chapter 12, optimality in the case of gnostic transfor-
mations of data is based on a proof, that along the path of these changes,
information drawn from data is maximized and entropy is minimized.

20.4 Advanced Data Analysis

The foregoing has prepared the way to introduce the concept of Advanced
Data Analysis, which will be interpreted as an analysis respecting the
objectivity of data and aiming to draw out the maximum of information,
while letting the data decide the fundamental problems of their treatment.
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The basic rules of advanced data analysis include following:

1. Do not violate the data by
(a) subjecting them to unjustified a priori models or distribution func-

tions,
(b) trimming the data sample,
(c) imposing on them behavior in accordance to non-smooth func-

tions,
(d) not respecting their finiteness.

2. Make use of all available data by
(a) including censored data,
(b) including suspected outliers,
(c) including suspected inliers,
(d) excluding data only after proving their negligible impact on re-

sults.
3. Let data decide the

(a) bounds of data supports,
(b) outlier/inlier (‘membership’) problem,
(c) sample’s homogeneity,
(d) structure of inhomogeneous data samples,
(e) the metric of their space,
(f) determination of their own weights,
(g) proper use of models.

4. Do not shun the use of good non-statistical methods, when statistics
fails, or when its application is not appropriate.

5. Use distribution functions instead of point estimates for data charac-
teristics.

6. Take as similar/comparable only objects, which behave in accordance
with the same model.

7. Do not blame randomness for effects. Try to explain their causes by
using the data.

8. Prefer robust estimation and identification methods over unrobust
ones.

9. Select the desired kind of robustness (inner/outer) with respect to any
given task.

10. Apply realistic criteria (information/entropy) to optimization.
11. Respect theoretically proved optimal paths for data transformation.

Gnostics has been developed (as described in Part I and Part II of this
book) as a theoretical basis for algorithms, which satisfy the requirements
of advanced data analysis. Extensive examples of the application of gnostic
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methods are given in Part III.

20.5 Summary

Good data treatment methods should be based on a mathematical theory,
which makes precise, what is assumed and explains how a statement results
from the assumptions, which have been made. However, mathematics is an
abstract world of its own and has no obligation to use only notions, which
correspond to the non-mathematical structure of reality. Results derived
from mathematics are not necessarily applicable in practice. There exist
thus two different worlds: the real world, where Nature rules and men live
and the ideal world of mathematics. In the former, things exist such as
they are, while in the latter things are created by propositions such as: “Let
. . . be . . . .” From this point of view, the nature of data is strange, perhaps
even schizophrenic. They originate in the real world (by measurement)
as real objects and “penetrate” through the wall, which isolates the two
worlds, into mathematics and there become mathematical objects to be
analyzed. The results thus obtained must once again pass through the
barrier to be interpreted and applied in real life. This special character of
data requires, that the limitations of mathematical notions and methods
applied to data be recognized: they must be realistic. These limitations
can be summarized as rules to undergird the main idea, that data are
objective elements of data analysis. They must be allowed to speak for
themselves. These rules are presented as a requirement for any method of
advanced data analysis.



Chapter 21

Gnostic Advanced Data Analysis

The requirements for Advanced Data Analysis were set out in Chapter 20 as
a set of rules, which raise the level of data analysis over that of oversimpli-
fied manipulations of data. Primitive methods, eg univariate ratio analysis
based on point estimates of statistics accepted as the ’recommended ratio’s
values’, are popular and widely accepted in economic analysis, because:

• “everybody” understands them and is able to apply them in practice,
• becoming familiar with them is not difficult,
• instruction in these methodologies is provided in a wide range of in-

stitutions from high schools through universities,
• they are supported by many economic text books, and
• “everybody” uses them.

On the other hand, overly simplified methods, which are inadequate for
the complexity of the problems to be solved, provide more difficulties than
good solutions, because they:

• cannot really (efficiently) solve the problem,
• waste scarce information and increase the cost of the analysis by not

making use of all the information incorporated in the data,
• give rise to the unjustified illusion, that “things are under control”,
• cannot set the stage for a deeper analysis nor provide means to conduct

it,
• give their users a false sense of confidence in managing economic

propositions.

Data analysis is a substantial element of control in economics. Faulty anal-
ysis leads to inefficient control. There are a number of criteria, which can
be used for the optimization of the control function and economic criteria
are among the most important. However, one quasi-economic principle
should be avoided at all costs: economy of thought, which will seldom

395
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lead to the desired result. Those, who can subscribe to the idea, that the
economical use of information is the paramount criterion for a successful
analytical effort, should review the use of the tools, that gnostics provides
for this purpose, and which are set out in this chapter.

21.1 Weight and Irrelevance of an Individual Datum

All of the ideas and tools developed for gnostics are tied to data weight
(9.5) and irrelevance (9.6) and have a simple geometric interpretation based
on the rotation operator of the Minkowskian (9.3) or the Euclidean (9.4)
planes. As explained in Chapter 9 (9.2.2), the data weight signifies the
relative importance of each individual element of information (the datum),
while the irrelevance is a nonlinear measurement of its uncertainty/error.
A second interpretation of these parameters is developed in Chapter 10
(10.3.2):

• The deviation of the gnostic data weight from the full weight of 1.0
represents the change of entropy caused by uncertainty (10.26), which
in turn permits
• the irrelevance to represent the gradient of the entropy field (10.29 or

10.30). The significance of the entropy field is that by double inte-
gration of its sources (written as ?? and ??), the gnostic probability
and improbability of each datum becomes linearly dependent on the
irrelevance (10.42) as is seen in section 10.5.

There are two versions of data weights and irrelevances: the quantifying
and the estimating types (Chapter 9). The estimating version frequently
used in gnostics takes on a working form of 15.12, in which 15.13 is substi-
tuted.

The following rather remarkable features of data weights and irrele-
vances follow from the theory:

1. They are both derived from the realistically established Axiom 1 (5.2,
5.6 and 5.7).

2. They are both inherently connected to a certain non-Euclidean (Rie-
mannian) geometry (9.14 and 9.15).

3. Both are arguments of realistic characteristics of uncertainty, entropy
(10.26) and information (10.42).

4. Data weights and irrelevances parametrize the observed datum’s path
as it develops under the influence of uncertainty (see 12.2, where The-
orem 12 proves the extremality of this path).
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5. The variational theorems (Theorems 13 and 14) prove, that the quan-
tification and estimation, which follow this path, are extreme in the
sense, that
(a) for quantification, they maximize the entropy increase (12.26) and

information loss (12.30), and
(b) in the case of estimation they maximize the entropy decrease,

(12.27) which creates an increase in information (12.31).
The foregoing as it relates to data weights and irrelevances proves the
optimality of measuring the uncertainty of each individual datum in
this manner.

6. Theorem 5 (7.2) proves the isomorphism of a linear mapping (7.10)
of the quantifying data weights and irrelevances onto the momentum
and energy of a relativistic particle. This mapping is invariant with
respect to the Lorentz transformations, which shows, that they are
valid for all magnitudes of data uncertainty.

7. The mapping, supported by the Momentum and Energy Conservation
law of relativistic physics, leads to Axiom 2, which states, that uncer-
tain data should be composed by means of the additive composition
of data weights and irrelevances (13.13).

21.2 Gnostic Distribution Functions

21.2.1 Their Origin

Unlike other approaches to uncertainty, gnostics does not introduce the
notion of probability as an a priori given building block of the theory. In
gnostics, probability is not connected with the idea of collective or even
mass events; instead, the function 10.42 (or in an explicit form 11.7), which
manifests the features of probability, is derived in gnostics by double in-
tegration of the sources of the entropy field (10.62). This equation has a
fundamental importance, because it describes the process of the mutual
conversion of entropy into information and vice versa. These ideas are
derived from Axiom 1 (5.6 and 5.7). This explains why the probability
distribution of an individual datum also is a result of the theory and not
an assumption. The single parameter of this probability is irrelevance (see
10.42). By Axiom 2 (13.13) it is required, that the irrelevances of individ-
ual data be composed additively to obtain the irrelevance of a data sample.
However data from homogeneous functions are composed differently than
those from inhomogeneous samples: the irrelevances of an inhomogeneous
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sample are simply averaged as in 13.13 but for the case of a homogeneous
sample, the average irrelevance is normalized by the sample’s modulus
(14.8) as in 14.13. Moreover, there are two kinds of irrelevances, the esti-
mating and quantifying ones. Therefore, when composing the probability
distribution functions of individual data, four probability distribution func-
tions are possible: the

ELDF estimating local distribution function: 15.25 with its density 15.26,
EGDF estimating global distribution function: 15.29 with its density

15.30,
QLDF quantifying local distribution function: 15.33 with its density

15.34,
QGDF estimating local distribution function: 15.37 with its density 15.38.

The form of these functions is dependent on three parameters (the scale
parameter S 15.13 and the lower (LB) and upper (UB) bounds of the
data support (15.23)). The optimum values of these are to be optimized
to ensure the best godness-of-fit (section 15.1).

The differences in behavior of these functions and the proper manner of
their use is explained in Chapter 15 and summarized in Tab. 15.5 and 15.6.
All of these functions are of the type R+ ↔ (0, 1), ie they are theoretically
defined over the infinite data support R+ := (0,∞) and they are continuous
and differentiable. Since real data are bounded, they are to be transformed
onto the infinite interval using formulae 15.20 through 15.23.

As shown in Tab. 15.5, the four types of **DFs1 are robust in different
ways. This feature makes them suitable for the different kinds of applica-
tions summarized in Tab. 15.6.

21.2.2 Uses of Distribution Functions

The four kinds of distribution functions can be used for

• estimation of the probability p of each quantile z,

p = ∗ ∗DF (z), (21.1)

• estimation of the quantile Z for each probability p, so that 21.1 holds,
ie

z = ((∗ ∗DF )−1)(p), (21.2)

1The symbol ** designates either EL, EG, QL or QG.
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• estimation of the probability density d of each quantile2,

D(1) =
d(∗ ∗DF )

d ln z
, (21.3)

• cross-section filtering as will be seen in section 21.6,
• estimation of the location parameter LP (or of location parameters)

of a data sample, such thatd2(∗ ∗DF )

(d ln z)2

 (LP ) = 0, (21.4)

• estimation of higher derivatives of distributions,

D(K) =
dK(∗ ∗DF )

(d ln z)K
, (21.5)

where up to 3 K are required for the EGDF in some tasks while up
to 4 K are needed for some applications of the ELDF.

These distribution functions can be used to treat not only data, which
have numerical form but also data given as intervals (censored data) of
three types:

• right-censored data (19.6, 19.7),
• left-censored data (19.8, 19.9),
• interval data (19.10–19.12).

Censoring results from an imperfection in the data or incomplete measure-
ment. Even so, in some applications the information provided by these
data can be significant.

21.2.3 Special Applications of the EGDF

The significant inner robustness of the EGDF makes it suitable for several
important tasks:

1. robust estimation of the location parameter 21.4 (see also 16.3.1),
2. robust estimation of extreme risks and chances, ie

(a) robust estimation of probability for extreme quantiles (those clos-
est to the data support bounds LB or UB),

(b) robust estimation of quantiles for extreme probabilities (those ap-
proaching 0 or to 1),

2Densities and their derivatives are derived by dln z instead of the simple dz to ensure correspondence
of the derivatives’ form with the independent variable depicted on the logarithmic axes
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3. simultaneous robust estimation of such values of the scale parameter
Sg of the global type and of the data support bounds LB and UB,
which minimize the data fitting error,

4. robust estimation of bounds LSB and USB of the membership inter-
val of a data sample,

5. robust testing of data samples for homogeneity.

The optimal values of parameters Sg, LB and UB are found by solving
equation

fmax = max
Sg,LB,UB

N∑
m=1

f

EGDF (Zm)

EMF,m

 (21.6)

with respect to these parameters. Function f(∗) is the fidelity, ie the es-
timating data weight f(∗) := 2/((∗)2 + (∗)−2)) (15.12), points Zm are the
sample’s data (m = 1, . . . , N) and EMF,m is the weighted empirical distri-
bution function calculated by 15.8 through 15.10. This method, described
in more detail in 15.1.5, is called the maximum fidelity fit. In some applica-
tions, due to the nature of the task, one or more of these parameters may
be known. In such cases, these fixed values are used in the application of
21.6.

The test for homogeneity of a data sample (also described in 15.3.7)
consists of the determination of the number of roots Z of equation

d(EGDF )

d ln z
(Z) = 0. (21.7)

The sample is homogeneous if this equation has only one root Z on the
infinite data support R+.

The bounds LSB and USB of the membership interval have been justi-
fied by Definition 16 (15.3.7) and they can be found as values which satisfy
the inequalities

0 < LSB ≤ Zmin Zmax ≤ USB <∞, (21.8)

while they are roots of both equations 15.41 and 15.42.

The sample characteristics LB, LSB, LP , USB and UB, obtained by
the EGDF, allow any arbitrary positive number Z to be classified with
respect to its possible relation to a data sample S:

• 0 < Z ≤ LB . . . improbable value in S,
• LB < Z < LSB . . . lower outlier in S,
• LSB ≤ Z ≤ LP . . . lower or central member of S,
• LP < Z ≤ USB . . . central or upper member of S,
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• USB < Z < UB . . . upper outlier of S,
• UB < Z <∞ . . . improbable value in S.

This method of classification for data (global interval analysis) can be
transferred onto the finite data support by back transformation of the five
boundary points using the inversions of functions 15.20 through 15.23. It
is worth noting, that global interval analysis relates only to homogeneous
data samples, and that it is unique when the global scale parameter SG is
used.

21.2.4 Special Applications of the ELDF

As shown in 15.3.1, the flexibility of the ELDF (15.25) is unlimited and is
completely under the control of the user by choosing the scale parameter
S. This feature can be used in marginal cluster analysis, described in
15.3.2, which is applicable to both homogeneous and inhomogeneous data
samples and consists of repeated calculations of the ELDF with different
values of S to reveal the inner structure of the data sample. Clusters
of data manifest themselves by separate peaks in the probability density.
Parameter S decides the resolution power of the analysis and the number
of separate clusters to be shown: the smaller S, the more density peaks.
The user determines how detailed the structural information must be. The
most suitable technique is an interactive interpretation of the ELDF and
data density visible on the screen. Once the necessary S is determined,
an inhomogeneous sample can be decomposed into individual (hopefully
homogeneous) clusters by cutting off the clusters at the points of their
density’s minima.

The technique of marginal cluster analysis has an important extension.
In combination with robust modeling it can be used for robust multivariate
cluster analysis as described in section 21.8.

Just because the ELDF has unlimited flexibility does not mean, that
it is unrobust. As shown in 15.3.3, the peaks of the individual clusters
manifest a significant local robustness with respect to a datum which is
potentially added to a given data sample. The location parameter Z0 of a
cluster is the root of the equation:

d2(ELDF )

(d ln z)2
(Z0) = 0. (21.9)

With a data sample of N−1 fixed data, the parameter Z0 varies depend-
ing on the value of a free N -th data item ZX which extends the sample.
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A special value of the location parameter Z00 is defined by relations

Z00 := lim
ZX→0

(Z0) ≡ lim
ZX→∞

(Z0). (21.10)

There are four subintervals and one significant point in the interval (0,∞),
where the value of ZX may vary. If

1. 0 < ZX < ZL, parameter Z0 falls from Z00 to Z0L as ZX increases.
2. ZL ≤ ZX ≤ Z00, parameter Z0 rises from Z0L to Z00 as ZX in-

creases.
3. ZX = Z00, then Z0 = Z00.
4. Z00 < ZX ≤ ZU, parameter Z0 rises from Z00 to Z0U as ZX in-

creases,
5. ZU < ZX < ∞ parameter Z0 falls from Z0U to Z00 increasing as
ZX increases.

The points ZL, Z0L, Z00, Z0U , ZU together with the bounds of data
support are determined by the ELDF and the process is called local interval
analysis. These points are estimated using 16.33 together with the location
parameter as defined by 21.9 applied both to the original and the extended
sample. A complete description and solution of the problem is described
in 16.4.3. Classification of data by local interval analysis establishes the
following intervals:

• (LB,ZL) . . . less than typical data,
• [ZL,ZU ] . . . typical data,
• [Z0L,Z0U ] . . . tolerance interval of the location parameter Z0(ZX),
• (ZU,LU) . . . greater than typical data.

The adjective “typical” results from the reaction of Z0(ZX) to changes
in ZX: both changing in the same direction—both decreasing or both
increasing for a ZX in the typical interval as if these values for an additional
data item were “accepted” by the data of the sample. If ZX moves out
of the interval of typical data, then the changes in Z0 go in the opposite
direction, such values of the additional datum appear to be “rejected” by
the sample’s data. The tolerance interval is also worth a mention: it shows
the bounds of possible changes in Z0(ZX) when ZX changes over the
interval from zero to infinity. The tolerance interval is always a narrow
subinterval of the (finite) interval of typical data: infinite changes in ZX
result in only small bounded changes in Z0(ZX). This is a manifestation
of the high robustness of the location parameter Z0 (21.9).

Local interval analysis provides an efficient method to compare two data
samples and to determine the degree of their similarity as shown in 16.4.3.
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21.3 Robust Estimation of Scale Parameters

Scale parameters play an important role in gnostic applications. They can
be thought of as parameters that determine the curvature of the data space.
This in turn establishes the metric of the space which then controls the
degree of robustness of the algorithms. Several types of scale parameters
are used in gnostics:

• global scale parameters which ensure the best goodness-of-fit for the
EGDF in the sense of the

– minimum Kolmogorov-Smirnov statistic, SG,KS (16.3),
– minimum entropy, SG,ME (16.5),
– maximum fidelity, SG,MF (16.6), and the
– minimum mean absolute values of fitting errors, SL1 (16.7,

• global scale parameters which ensure the best goodness-of-fit for the
QGDF based on the same criteria as in the case of the EGDF,
• the local scale parameter Sloc(Z0) which fits the ELDF at the point
Z0 by satisfying equation 16.12,
• the recursive local scale parameter Srec(Z0), the recurrent version of
Sloc(Z0),
• the scale parameter SRF which ensures a required fidelity for the

ELDF’s fit to data (16.18),
• the variable scale parameter usable for heteroscedastic data (data with

varying spread) and for cluster analysis (16.2.5),
• a free scale parameter which is chosen by the user to conduct marginal

analysis.

Using a global scale parameter results in a unique form for the EGDF; it
is optimal with respect to the corresponding criterion function. The most
universal scale parameter (maximum fidelity) is SG,MF , the value of which
can be taken as a reference. To achieve the L1-optimality, the scale param-
eter SL1 can be used. Local scale parameters are applied to the ELDF. The
parameter Srf is particularly applicable to local interval analysis, the re-
sults of which depend on the scale parameter. To standardize this analysis,
the following steps are recommended:

1. Fit the data sample using the EGDF,
2. determine the mean fidelity of this fit, and
3. find Srf which ensures the same mean fidelity by fitting the ELDF,

finally
4. apply this Srf to the ELDF to conduct local interval analysis. Alter-

natively: set the required fidelity subjectively.
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Estimation of global types of scale parameters is robust with respect to
outliers because of the robustness and uniqueness of the EGDF. In the
case of the QGDF, global scale parameters are robust with respect to
central data (inliers). Local scale parameters Sloc and Srec make use of
mean data weights. They can be robust either with respect to outliers or
inliers—depending on whether estimating or quantifying weights are used.

As previously noted, the ELDF’s degree of robustness can be controlled
by changes in the scale parameter. For the EGDF and the QGDF the
scale parameter is determined uniquely. Hence, robustness is also uniquely
established in these cases.

21.4 Robust Variance, Covariance and Correlation

The notion of covariance is predominant in gnostics, and the variance and
correlation are obtained as special applications of the gnostic covariance.
Just as the other fundamental notions of gnostics, covariance is derived
from the two gnostic axioms, and it is obtained from consideration of the
different forms of the data sample’s modulus, in particular from the form
shown in 14.21. Here, covariance appears as the arithmetic mean of the
product of the individual pairs of irrelevances of the elements making up the
data sample. This—together with the role it plays in the calculations of the
modulus—justifies the name auto-covariance for this expression (14.19). Its
immediate generalization is cross-covariance (14.20). As in statistics, the
products in both types of covariances are formed by irrelevances of data
“distance” (lag) which is constant. When this distance is zero, the products
become the squares of irrelevances, and the result is the gnostic variance
(14.28). Gnostic correlations (14.29), are just as in statistics covariances
normalized by the product of the square roots of the two variances. All
gnostic covariances, variances and correlations are based on irrelevances,
of which there are two versions: quantifying and estimating. Both of them
are robust: the quantifying version with respect to central data (inliers),
and the estimating version with respect to outliers.

The relationship of these gnostic characteristic to the analogous statis-
tics results from the analysis of the limits associated with weak uncertain-
ties: very small errors. As it is shown in 14.60, in this special case, gnos-
tic covariances converge to statistical covariances. The advantage of the
gnostic characteristics lies in their more universal applicability to strongly
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dispersed data (large uncertainty/errors), in their robustness, and more
specifically, in the ability to choose between the two kinds of robustness.

All gnostic covariances are dependent on the scale parameter which de-
termines their robustness. They also are dependent on the location param-
eter of the data sample; it is possible to say, that they are “centralized”.

The availability of robust covariances opens the way to improving the
results obtained by well-known statistical methods (such as eg Principal
Component Analysis, Factor Analysis and Discriminant Analysis) all of
which make use of statistical covariance matrices. The application of gnos-
tic covariances improves these methods by making them more robust.

21.5 Robust Modeling

The robustness of a model is determined by the metric used to evaluate
modeling errors (residuals). The minimization of the sum of squared resid-
uals (the Ordinary Least Squares method) applies Euclidean geometry to
a rectilinear space. As is well-known, this results in unrobust models. The
data space has to be curved, so that error measurement is dependent on
the specific point in the space. The problem becomes how to determine
the geometry and the resulting curvature.

In gnostic applications to modeling, the geometry and curvature are
determined by the data which are treated. In order for this to be accom-
plished, gnostic criterion functions are applied to the modeling errors and
extremized by the model’s parameters. As discussed in Chapter 17, six
realistic criterion functions are available for this purpose:

1. the sources of the Q-entropy’s field (gnostic Q-variance)3,
2. the sources of the E-entropy’s field (gnostic! E-variance),
3. Q-information,
4. E-information,
5. Q-entropy (quantifying data weight),
6. E-entropy (estimating data weight).

The properties of these functions together with references to theoretical
formulae are summarized in Tab. 17.1. Models which result from the ap-
plication of quantifying criterion functions are robust with respect to the
inliers of the data samples, while applications using an estimating criterion
lead to robustness with respect to outliers.

3As has been past practice, the symbol Q- defines ‘quantifying’ and E- ‘estimating.’
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Gnostic criterion functions are applicable to both linear and non-linear
models. The special case of a linear regression model is analyzed in detail
in Chapter 17 and it shows, that the effect of using gnostic criteria is
equivalent to the application of certain non-linear filters to the dependent
variable and certain non-linear weights to the explanatory variables. The
characteristics of these filtering and weighting functions are summarized in
Tab. 17.2.

An interesting innovation to robust modeling is the application of prob-
abilities of the data instead of directly using the data themselves (17.55).
This is possible, because of the availability of robust gnostic distribution
functions for each sample. Advantages of using probabilities include the:

1. unification of the ranges of all variables in the model to (0, 1),
2. unification of the physical dimensions of the variables (all are dimen-

sionless),
3. possibility of including the effects of the finite bounds of data supports,
4. possibility of using censored data.

It is well-known, that the application of the Ordinary Least Squares method
to the linear regression problem is closely connected with the covariance
matrix of all the explanatory variables and with the cross-correlations of the
explanatory/dependent variables. When modeling in gnostic probabilities,
robust gnostic covariances are used instead of the unrobust statistical ones.
This is possible due to the linear relation which exists between probability
and irrelevance.

21.6 Robust Filtering and Prediction

The application of gnostic criterion functions to filters can lead to desirable
robustness. The following classes of gnostic filters can be distinguished:

1. filtering of one-dimensional time series,
2. cross-section filtering,
3. filtering of multidimensional time series.

Gnostic criterion functions can be used to solve the filtering task. Examples
are given in next chapters.

Cross-section filtering is a direct application of a gnostic distribution
function. Given a data sample composed of measurements made on a
selected variable in a group of comparable objects at a certain moment in
time, the data are uncertain and it is required to obtain robust estimates
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of their true values. Cross-section filtering (eg using the EGDF) consists
of the following steps:

1. the calculation of the EGDF and verification, that the objects are
really comparable (that the data sample is homogeneous as shown by
this distribution function),

2. preparation of the weighted empirical distribution function (WEDF)
using formulae 15.8–15.10 and application of the WEDF to convert
data A1 . . .AN to empirical probabilities P1 = WEDF (A1) . . .PN =
WEDF (AN),

3. use of the EGDF to find quantiles Q1 = (EGDF )−1(P1) . . .QN =
(EGDF )−1(PN)4. These quantiles are robustly filtered values of data
A1 . . .AN .

The distribution function characterizes relations between the objects as
reflected by the values of the analyzed variable. Example: a data sample is
formed from the sales of companies belonging to the same industry. These
companies are (collectively) subjected to the same external disturbances
such as changes in market conditions, taxes, interest rates, prices of energy
and raw materials etc. This results in a certain interdependence of the sales
of the enterprises which is reflected in the distribution function. But there
are also individual factors which cause deviations from the distribution
function. Cross-section filtering suppresses these individual deviations and
shows what the data would be like if they were subjected only to the
common regularity manifested by the distribution.

21.7 Robust Multidimensional Cluster Analysis

There are important practical tasks which cannot be solved unless objects
can be compared. Example: ratio analysis used to estimate the finan-
cial position of selected firms. While general guidelines exist, there are
no theoretical methods which establish values considered as “standard,”
“obligatory,” or “healthy.” The problem is, that these ratios are depen-
dent on the specifics of the industry, on the state of the whole economy, on
relations which a firm has with its sources of funding, its size and on other
factors. Moreover, one ratio cannot provide a complete view of a firm,
individual ratios are mutually dependent and deviation of one ratio from a
“standard” can be compensated by the deviations of other ratios from their
“norms”. However, for financial control as well as for investment decisions,

4The symbol (EGDF )−1 denotes the inversion of the function EGDF
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judgments are necessary and these are ordinarily based on inter-firm sim-
ilarity. Success can be expected only when the comparable are compared.
What is the meaning of the phrase, “these firms are comparable?” There
are too many aspects of similarity and comparability, which can be used.

A need for comparisons also exists in other application fields. An ex-
ample based on the famous (and surely realistic) novel, Arthur Hailey’s
“Wheels5:” “Are cars produced on Mondays comparable with cars pro-
duced on Wednesdays or Thursdays?” Or similarly: “Is production quality
of the day work shift comparable with the night shift?” And one more: “Is
the quality of this product comparable with the product of a competing
firm?”

It is not difficult to generalize all these examples: the description of
a group of objects is given by multidimensional data samples which can
be depicted as points in a multidimensional space. These points form
spatial “clouds.” The problem occurs, when there is only one compact
cloud or several, more or less separated, clouds. In other words: are the
multidimensional data samples homogeneous or inhomogeneous, formed as
a “mix” or superposition of several homogeneous samples/clusters? And
in the latter case: how should the inhomogeneous multidimensional data
sample be decomposed into homogeneous subsamples?

To solve this problem, gnostics applies the following steps:

1. conduct a robust estimation of a multidimensional model (Chapter
17),

2. calculate the modeling errors (residuals),
3. perform a marginal analysis of the sample of residuals using the ELDF

to highlight the main peak of data density,
4. identify the data which creates the main peak (main cluster),
5. extract the main data cluster and test it for homogeneity. If it is

inhomogeneous, then extract its main cluster and then analyze all the
remaining clusters by restarting the iteration from point 1 until all
the clusters have been isolated.

This procedure is based on the idea, that there exists comparabil-
ity/similarity of multidimensional objects if their behavior can be approx-
imated by the same multidimensional model.

5Garden City, N.Y., Doubleday, 1971
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21.8 Robust Ordering in a Multidimensional Space

Another view of multidimensional homogeneity can be applied in a quali-
tative sense: this object compares or does not compare to another object.
This interpretation is also important, because it is the basis for the ordering
of objects: “this object compares favorably to that object” or even “this
object is better than that object.” Ordering multidimensional objects is a
complex problem:

1. Even the existence of a well-ordered set of objects is a non-trivial
problem: tennis player A beats B who beats C who beats A. Who is
the better player?

2. A measure, a multidimensional criterion function or another evalua-
tion system is necessary to order objects in multidimensional space.

3. To minimize the impact of data uncertainty on the order, a robust
system must be used.

Gnostics can fulfill these requirements in the following way:

1. Determine the positive, desirable direction of change for each of the
variables in the model.

2. Modify the variables, so that an increase in each of them causes the
positive effect. (The modification could sometimes consist of simply
changing the sign of the variable or in using its reciprocal value.) If
there is a desirable optimum for the variable, a new variable, equal to
the negative distance to the optimum can be introduced.

3. Find the robust multidimensional model of the implicit type (17.53,
in section 17.4.1).

4. Calculate the modeling errors.
5. Order the modeling errors, then order the objects according to the

order of their errors.

In some instances, the objects to be ordered will be an inhomogeneous data
sample. In such cases, an alternative procedure can be applied:

1. Inhomogeneous ordering accepted: the summary scores of the individ-
ual clusters are calculated to get the inter-cluster order.

2. Inhomogeneous ordering rejected: multidimensional cluster analysis
performed followed by inner-cluster ordering with respect to the model
of each cluster. Inter-cluster ordering can be then realized by addi-
tional analysis of the models of clusters.

When modeling errors coincide, the final order can be established by taking
into account additional parameters of the objects (parameters, that have
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not yet been employed in the analysis).

21.9 Summary

Analytical tools which have been developed for gnostics satisfy the require-
ments resulting from the categorical principle, “Let the data speak for
themselves.” As such, they can serve as instruments for Advanced Data
Analysis in application fields where it is impossible or not economical to
make available large samples of highly precise data.



Chapter 22

Traditional Financial Statement
Analysis

It is not the authors’ intent to dwell on the mechanics of Financial State-
ment Analysis, but instead to examine areas, where often the conclusions
are not justified, and to consider pitfalls, which may not altogether be
clearly understood by the practitioner.

22.1 Current State

22.1.1 Current Usage and Potential Application

Financial statement analysis is frequently used as a method for diagnosing
the financial health of a firm. But a diagnosis should not be the goal per se,
rather it should serve as support for decision making, and in particular for
the establishment of policies, which specify the amount/intensity of actions
necessary for the improvement of a firm’s financial position, or at least for
the maintenance of its status quo. In other words, financial statement
analysis should be viewed as a necessary condition for efficient financial
control. Unfortunately, the general acceptance of such a role is overly
optimistic due to several misconceptions as to the outcome and utility of
commonly used treatments, because of:

1. A paucity of hard results in the application of this kind of financial
analysis to real problems.

2. Reliance on theories of efficient markets, which limit the motivation
of analysts to use the methodologies intended to predict market per-
formance. These issues will be taken up in chapter 25.

3. Technical difficulties in the application of advanced mathematical

411
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methods.

None of these comments or others of similar nature completely describe
the problem. Several further thoughts:

(a) Unsatisfactory outcomes often result from the application of inade-
quate methods.

(b) Unsatisfactory outcomes, when some methods are used, does not con-
demn all methods. The progress of science is continually providing
new approaches and new opportunities.

(c) Mathematical difficulty is always relative to the level of education of
the user. It is evident that an electrical engineer needs to understand
the Maxwell equations of the theory of electromagnetism in spite of
their “difficult” mathematical form (partial differential equations, no-
tions of field theory etc.). Why then do so many, who work in the
economic field, feel that it is sufficient to limit themselves to knowl-
edge of summation, subtraction and proportions in order to describe
economic processes, which are much more complex than physics?

(d) Even complex mathematical methods can result in working algorithms
that run on computers. Executing such an algorithm by pressing a
key is not more difficult than starting the calculation of a proportion.
The interpretation of results requires more thought but—as already
mentioned—economy of thought is not a very sound policy.

However, a critical view of the role of financial statement analysis as it is
currently practiced suggests that the potential for its use is not generally
recognized. Most university textbook in both accounting and financial
management do not cover the problems discussed below until a student
reaches a very advanced level. Therefore the average “technician” or the
decision maker in a typical size firm has had only a limited exposure to the
rich literature in the specialized field of financial statement analysis, which
is found in professional journals and bibliographies such as those cited in
[93] or [24].

The objective here is to bring to the attention of the reader those
methodological problems that occur and that are frequently glossed over,
and to introduce a new non-statistical robust methodology for data treat-
ment, which could improve numerical analysis in all applications. These
include those found in financial statement analysis, which also provides
a source of interesting real data. Given the shortcomings, which are dis-
cussed in the following sections, it is no wonder then that the potential
power of exact methods is used much less for decision making than are
rules of thumb.
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22.1.2 The Most Widely Used Accountancy Data

The elemental building blocks of financial analysis are the firm’s balance
sheets, income statements, cash flow statements and notices; these are
generally prepared by the firm’s accounting department using a standard
set of rules. A balance sheet can be thought of as a compilation of stocks
of various assets and liabilities at a point in time. In contrast, an income
statement describes a flow of activities over the period of time, which links
two consecutive balance sheets.

These accounting data reflect the company’s historical performance;
while there is some interest in knowing the path followed to bring the firm
up to the present, analysis from the financial manager’s (or an investor’s)
viewpoint is primarily concerned with future performance and therefore the
prediction of balance sheets and income statements (proforma) for subse-
quent periods is also necessary.

The choice of data taken from financial statements to use as inputs to
an analysis depends on the goal and depth of the desired results. The
most frequently used data are summarized in Tab. 22.1 together with their
customary symbols:

Symbol Parameter Source

ADA Accumulated Depreciation and Amortization Balance Sheet
AR Accounts Receivable Balance Sheet
CA Current Assets Balance Sheet
CF Cash Flow Statement on Cash Flows
CL Current Liability Balance Sheet
COGS Cost of Goods Sold Income Statement
DA Depreciation and Amortization Balance Sheet
DIV Dividends Income Statement
EAT Earnings After Taxes Income Statement
EBIT Earnings Before Interest and Taxes Income Statement
EBT Earnings Before Taxes Income Statement
IE Interest Expense Income Statement
INV Inventory Balance Sheet
NS Net Sales Income Statement
NSO Number of Shares Outstanding Notice
PS Share Price Financial Market
RE Retained Earnings Balance Sheet
TA Total Assets Balance Sheet
TEQ Total Common Equity Balance Sheet
TL Total Liabilities Balance Sheet

Tab. 22.1 Data most frequently used for financial statement analysis
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This is of course only a very narrow extract of potentially available data;
eg the COMPUSTAT1 tape includes 350 annual data items (as well as 178
quarterly ones).

22.1.3 The Main Techniques

The traditional treatment of accounting data includes the following tech-
niques:

1. Common Size Statements (percentage analysis): assume, that the
data are presented as matrices. One line of such a matrix contains
entries representing a selected data item corresponding to different
periods, ordered with respect to time (years or quarters).
(a) Horizontal analysis: data in each succeeding period are compared

with those of the preceding period. The changes are displayed in
per cent and/or as differences.

(b) Vertical analysis: a line is designated as the base (100%) and en-
tries on other lines are expressed as percentages of this reference.

Common Size Statements thus provide a view of changes in both the
statements’ individual entries and their inner relative structure.

2. Ratio analysis: probably the most widely used financial analysis
tool; it attempts to characterize the relation between variables as pro-
portions.

3. Sequential decomposition of ratios: the DuPont Chart’s thrust
of presenting a ratio as a product of other ratios or of their reciprocal
values or using the sum or difference of selected data entries in the
ratio’s numerator results in a multilevel pyramidal structure, that de-
picts the contributions of the many detailed ratios to the ratio at the
summit, which is generally the return on equity2.

4. Data scoring: the computation of scores based on diagnostic for-
mulae: a system designed to calculate and interpret a diagnostic
‘score’ using a weighted sum of several ratios. There are two different
approaches to the determination of the weights:
(a) a mathematical approach (eg Altman’s method (1968), revised in

[1] (1984)), or
(b) the heuristic approach.

1Compustat is a registered name of the Standard and Poors Corporation
2As shown in [14] and simplified in [64], pyramidal decomposition can also be applied to show the

sensitivity of the top ratio to variations of the partial ratios located on lower levels.
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5. Time series analysis of either raw data from the statements or
ratios to provide information on changes, trends or reversal points in
the development of the data elements.

6. Cross-section analysis: the comparison of the operating results of
one company with those of a group of comparable companies.

Percentage analysis provides only very limited information by comparing
recent results with those of past periods. Whatever judgments are made
on the value of parameters and on the state of the firm’s financial structure
are thus relative as well as subjective.

The quality of results in both time series and cross-section analysis
strongly depends on the quality of the used analytical methods. So eg
conservative unrobust methods applied under gross disturbances result in
gross distortions rather than in usable and accurate outcomes.

There is, however, a path to the mutual comparison of firms offered by
the ratio method, which—together with other procedures—deserves more
detailed consideration.

22.1.4 Basics of Ratio Analysis

A popular belief exists, that entries taken from accounting documents bear
some relationship to each other, which can be examined simply by comput-
ing ratios relating the two variables. Further, if this expected relationship
is thought to vary over some range for all or most firms of a group, then
comparing a target firm’s ratios with those of similar companies can pro-
vide some information as to whether the firm of interest has “better” or
“worse” ratios than its peers. The usual caution expressed at this point
is, that a ratio by itself provides very little information, and that in order
to draw meaningful conclusions, trends over time must be examined, both
for the firm, as well as for the set of comparables3.

A very large number of possible pairs of data can be chosen from the
350 variables found in Compustat, but only a small number of ratios have
useful economic interpretation. There are five principal categories of ratios,
that are ordinarily used to examine the financial position of a firm:

1. profitability (return),
2. liquidity,
3. activity (turnover),

3Among others, industry ratios are published by Robert Morris Associates, Dun & Bradstreet, and
the Federal Trade Commission.
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Aspect Examples of Ratios
of Analysis Ratio Formula

Profitability: Return on Assets ROA := EBIT/TAa

Return on Equityb ROE := EBIT/TEQ
Net Margin MGN := EAT/NS

Liquidity: Current Ratio CA/CL
Quick or Acid (CA− INV )/CL
Working Capital to Total Assets RWC := (CA− CL)/TA

Activity: Total Assets Turnover TATO := NS/TA
Accounts Receivable Turnover ARTO := NS/AR
Inventory Turnoverc COGS/INV
Inventory Turnover SALES/INV

Financial Structure: Liability Ratio TL/TA
Financial Leverage TA/TEQ
Times Interest Earned EBIT/IE

Tab. 22.2 Examples of Popular Ratios

aTaken before interest and taxes for both ROA & ROE to emphasize the
business nature of the measure.

bBoth ROA and ROE can also be evaluated by using EBT or EAT .
There is a need in applications to consider the definition of the earnings.

cpreferred formulation

4. financial structure/leverage,
5. market position.

While the first four groups represent the view “from inside” the firm, the
last one is a result of viewing the firm from “outside,” by the market.
The most popular financial ratios reflecting the view “from inside” are
summarized in Tab. 22.2.

The analyst will choose the ratios to use with respect to the goal of
the analysis. However, his/her choice is limited by the availability of data,
which is determined by the analyst’s relations with the firm. Many useful
ratios require more detailed information than can be found in published
financial statements. This is not only because a firm will not disclose all the
necessary data, but also due to the time factor: many figures change daily,
while the financial statements of publicly held companies are generally
published four time a year and with a sensible delay.

The “inner” ratios are thus computed from an “outside view,” and are
complemented by several typical ratios, which reflect the market valuation
of the firm:

• Earnings per share (EPS): Net income minus senior claims4 on earn-

4Eg preferred stocks.
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ings divided by the weighted average number of common stock shares.
• Price-earnings ratio (P/E): Market price of a share of the company’s

stock divided by earnings per share.
• Dividend yield: Dividend (annualized) per common share divided by

market price per common share.
• Book value per share: Common stockholder’s equity divided by the

number of common shares outstanding at the end of the period.
• Dividend payout ratio: Dividend per common share divided by net

income minus preferred dividends.
• Total return (TR): Current share price minus lagged share price +

dividend per share all divided by the lagged share price.

A more detailed explanation together with a discussion of the limitations
of ratio analysis can be found in the literature (eg [15], [93] and [64]).

22.1.5 ‘Trivial’ Ratio Analysis

The popular and seemingly transparent idea of simplifying the modeling
of a firm’s financial affairs to a small set of “standard” ratios has led to an
evisceration of financial statement analysis by reducing it to the application
of several simplistic rules/myths:

1. Accountancy provides a true and fair view of the financial position
of a firm. It is therefore sufficient to take data from the financial
statements as they are to use them as input for the analysis.

2. The relationship between two financial parameters of a firm can be
accurately modeled by their ratio.

3. Two firms of different size have approximately equal ratios for analo-
gous parameters.

4. Two companies in the same industry are comparable in economic
terms.

5. There are ‘standard’ financial ratios (or ‘benchmarks’) for these ‘com-
parable’ firms.

6. These ‘standards’ can be obtained as the means or the medians over
the industry.

7. The ‘analytical’ portion of the analysis reduces to a discussion of the
deviations of individual ratios from the ‘standards.’

These ideas can be contested on a number of grounds:

1. As discussed in Chapter 2, the provision of a true and fair view is
more of a lofty ideal of accountancy rather than a reality. There are
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serious obstacles to the use of raw accounting data without having
made a number of adjustments to represent a more accurate cash
flow picture of the target’s operations. In order to undertake this
task, it is necessary to understand both the assumptions underlying
the preparation of the relevant statements as well as to be comfortable
with the major rules and principles governing the preparation of these
documents. For a review of these issues, see Rees [93]. It also must be
understood, that there is no way to completely remove the uncertainty
(the unexplained components) from the data. Therefore the employed
analytical methodology must be capable of dealing with uncertain
data.

2. A ratio is a good model only, when the relation really represents a
direct proportionality in the variables; this happens rarely. As math-
ematical models, ratios suffer from several serious problems (small
denominator, problem of the sign, etc.)

3. The equivalence of ratios requires, that financial variables be linearly
dependent on a firm’s size with a zero intercept.

4. The notion, that there could be ‘standard’ ratios, is illusory since the
value of the ratios is subjected to the impact of a large number of
internal as well as external factors. This can be easily confirmed by
the wide spread of ratios in seemingly similar firms.

5. Information gained from a set of ratios taken from single point esti-
mate (eg mean, median or trimmed mean) is insufficient to judge the
actual behavior of the data based on their symmetry, possible bounds,
homogeneity and/or inner structure, expected values, outliers, char-
acter and size of the spread, etc.

6. The results of such an oversimplified, fuzzy and incomplete data anal-
ysis cannot be used for serious decision making.

This trivial approach is frequently used as a means for “window dressing”
in annual reports rather than as a basis for financial control.

An important caution is to avoid blindly using ‘rules of thumb’ to eval-
uate ratios. There may be (and in many cases there probably are) valid
reasons for serious deviations from what could be thought of as the norm,
eg liquidity measures for a large public company with easy access to money
markets and established sources of standby credit would be significantly
lower than for a small rapidly growing company, which has recently gone
through an IPO (Initial Public Offering) and has therefore not yet es-
tablished a track record. Another point to keep in mind is, that many
companies do not operate within a single industry; the ‘comparable group’
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is then a weighted average of the various business segments in which they
operate.

Moreover, an entire industry group’s performance may be substandard,
so that average ratios really reflect poor measures. Of course, it is also
useful to keep in mind, that a mean value is nothing to brag about, there
are as many firms with better numbers as there are with worse ones!

22.1.6 ‘Comfortable’ Diagnostic Formulae

There is a method from mathematical statistics, discriminant analysis,
which, under precisely defined statistical assumptions, establishes a multi-
variate space for a surface of a given type. In the special case of a hyper-
plane the procedure is called linear discriminant analysis. The discrimi-
nant surface becomes linear iff two independent multidimensional Gaussian
populations are to be separated. To calculate the discriminating hyper-
plane, the covariance matrices of both populations are required. When
this approach is used to predict financial distress, many users know it as
Altman’s method due to the pioneering work of Edward I. Altman over the
period 1968 through 1984 ([1]). Altman’s application separated two data
sets composed of:

A Five financial ratios (Rn,1 := (CA − CL)/TA, Rn,2 := RE/TA,
Rn,3 := EBIT/TA, Rn,4 := NSO ∗ PS/TL and Rn,5 := NS/TA
(see Tab.,22.1), taken from the financial statements of the n-th com-
pany, n = 1, . . . N) of N comparable companies, which had exhibited
good financial characteristics over the past several years.

B The same ratios for M companies, which developed symptoms of finan-
cial distress over the same time period.

As shown in [1], the application of linear discriminant analysis to these
data resulted in the following model:

Zk = 0.717∗Rk,1+0.847∗Rk,2+3.107∗Rk,3+0.420∗Rk,4+0.998∗Rk,5, (22.1)

that by an experimentally established rule a k-th tested firm with Zk > 2.9
could be considered as being in a good financial condition, while a Zk < 1.2
would signal a danger of financial distress. Values of Zk between these
thresholds would be considered as a ‘grey’ zone with an undetermined
result for the test.

This method is well justified theoretically and can work in practice, but
only under the following conditions:
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1. The data are really mutually independent and belong to a multivariate
normal distribution.

2. A sufficient amount of data of both types is available.
3. All the companies represented by the data are really comparable in

economic terms with the tested firm.
4. The coefficients of the discriminating formula 22.1 are recalculated for

data relevant to the time period of interest.

A critical review of these conditions leads to the conclusion, that from a
practical standpoint, the utility of this method is very limited. However,
the simplicity of calculation and the seeming transparency of equation 22.1
is tempting enough to motivate its unwitting application with consequent
undesirable developments:

• It is unfortunate, that many economists use the model 22.1 without
reference to some or all of these constraints under the impression, that
a ‘scientifically justified’ method is being used.
• There are ample examples in the literature, which describe modifica-

tions of the Altman formula proposed by authors, who refer to ‘expe-
rience,’ ‘praxis,’ ‘heuristics’ and ‘it can be shown that’, which result
in different weighting coefficients and a different choice of ratios.

This kind of ‘willy-nilly’ black box pseudo-analysis leads to a lack of ap-
preciation for and degrades the respect, which properly applied financial
statement analysis can engender.

22.2 More Problems in Ratio Analysis

Several techniques mentioned above are based on the use of ratios. Ratios
of good quality are thus a necessary condition for acceptable results from
these methods. Therefore, those factors, which have an impact on the
quality of ratios, require more detailed consideration.

22.2.1 The Size Problem with Ratios

The definition of a company’s size may be based on total assets, sales,
shareholders’ equity, etc. These parameters are therefore size-dependent
. . . parameterized by the size criterion used. When a group of companies
(an industry, for instance) is being examined, the range of these characteris-
tics is generally fairly wide, the parameters of “large” companies exceeding
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those of “small” ones by several orders of magnitude. The intent of ra-
tio analysis is to permit firms to be compared independently of their size,
therefore if the size of a company is measured by its total assets, sales,
shareholders’ equity or other quantitative parameters, then the expecta-
tion is, that the relationship between these values is linear with respect to
size. Under these circumstances, the basic underlying assumptions are:

1. all quantitative parameters of a company are proportional to a size
parameter,

2. the value of a selected ratio for any pair of comparable companies is
equal.

Denoting the size parameter for the k−th company by ξk, a pair of line
items from the financial statements of the k−th company can be written
in a general case as functions Nk(ξk) and Dk(ξk). The former assumption
can be thus written as

Nk(ξk) ≡ ξk ∗ nk Dk(ξk) ≡ ξk ∗ dk, (22.2)

where nk and dk are arbitrarily chosen size-independent parameters. If
relation 22.2 holds, then the ratio

Nk(ξk)

Dk(ξk)
≡ nk
dk

‘ (22.3)

really does not depend on the size because the size factor cancels out.

Under the second assumption a comparison of the p−th and r−th com-
pany then has the form

np
dp
≡ nr
dr
. (22.4)

It should be noted, that these conditions, in Euclidean geometry, define
similar right triangles with sides n and d . In another geometry the condi-
tions for similarity could be different. Put another way, using ratio analysis,
a comparison of the economic processes of two enterprises appears to be
mathematically equivalent to the comparison of two similar triangles. Why
should this be true, and why should Euclidean geometry be chosen as the
medium of comparison from the many other geometries which exist?

Assumption 22.2 is not sustainable because it imposes two conditions:

1. Both numerator N(ξ) and denominator D(ξk) of the ratio are linear
functions of the size ξ.

2. The intercept (constant term) of each of the linear functions is zero.
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There is neither theoretical support nor experimental justification for these
statements. To illustrate, data taken from 55 companies included in the
U.S. chemical industry (excerpted from financial statements for the fiscal
year ending Jan. 1, 1996) have been taken to evaluate the Net Working
Capital to Total Assets ratio

RWC =
CA − CL

TA
, (22.5)

which is frequently used as a rough measure of a firm’s liquidity and also
plays an important role as a control tool in financial management. If the
assumptions 22.2 and 22.4 were true then the ratios (22.5) for each of these
companies should be equal. Upon verification, it is seen, that these values
are spread over the broad interval from 0.0031 to 0.536.

In the sections that follow, the implications of the mathematics of ra-
tio analysis will be clarified, and the necessity for always examining the
behavior of a ratio’s trend over time should become starkly evident.

22.2.2 Non-zero Denominator

Even grade school children are aware, that division by zero is undefined.
It is possible, that this trivial rule may be inadvertently violated by naive
users of ratio analysis. Taking return on equity as an example (ROE), the
value may not always be positive (if there have been cumulative losses).
On occasion, this comes about, because equity is no longer positive. The
owners of a firm are not generally pleased under these circumstances, but
this state does occur from time to time. Mathematically, the case of equity
close to zero or even exactly zero leads to unintended consequences for
the meaning of the ratio’s value. An example can be found in the set
of chemical companies, that is being examined. One company (Comp.X)
reported total equity of $18.6M on Jan. 1, 1996. Several earnings measures
are also shown in Tab. 22.3 along with values of the corresponding ROEs
expressed as a percent (ROE = 100 ∗ Earnings/Equity).

The notation is as generally accepted:

EBIT ... earnings before interests and taxes,

EBT ... earnings before taxes,

EAT ... earnings after taxes,

TEQ ... total common equity.
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Numerator Denominator 100*Ratio (%)
Name Value Name Value ROE (%)

EBIT 136.3 TEQ 18.6 732.8
EBT 115.5 TEQ 18.6 621.0
EAT 7.16 TEQ 18.6 38.5

Tab. 22.3 Example of misinterpretation of ROE ratios, Comp.X
for 1995. (Values are in $M).

Looking only at the ROE values, one could easily mistakenly evaluate
Comp.X’s activity in 1995 as having been extraordinarily successful. An
ROE based on EAT of 38.5%! Reality is more pessimistic: the favorable
ROE values came not from a large profit, but were due to a very small
value of equity. Indeed, the firm reported total assets (TA) of $588 M.
Taken together with the equity, financial leverage (TA/TEQ) was an ex-
traordinarily high 31.6. Such a high value would be surprising even if the
company were a bank. With only slightly less equity, 0, instead of the ac-
tual $18.6 M, all three ROE’s would take on infinite values. Even though
division by zero is prohibited—as we see—division by “small” numbers
should also be avoided due to the unrealistic values that result. However,
what is a “small” number? The methodology of ratio analysis does not give
a clue; statistics has instruments to test hypotheses on outlying data val-
ues, but such tests are based on an even more questionable premises about
the data’s probability distribution, which in practice is rarely known a
priori. Moreover, statistical tests are subjective—the value of the statisti-
cal significance of the test must be chosen by the analyst; it is therefore
possible, that the same hypothesis, tested on the same data might not be
rejected at some significance level, while it would be at others.

Division by “small” numbers can also cause another difficulty with ra-
tios: the problem of the sign. The denominator may change its sign, when
passing from positive values through zero to negative ones. The denomi-
nator’s sign change causes the ratio’s sign to change and can lead to other
problems as seen in Tab. 22.4 for another chemical company (Comp.Y),
which reported total equity of $-96.4 M as of 1 January 1996.

Numerator Denominator 100*Ratio (%)
Name Value ($M) Name Value (MM$) ROE (%)

EBIT 218.6 TEQ -96.4 -226.6
EBT -9.34 TEQ -96.4 9.69
EAT -22.5 TEQ -96.4 23.3

Tab. 22.4 Example of misinterpretation of ROE ratios,
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Comp.Y in 1995.

A before tax return on equity of -226.6% can under no circumstance be
looked upon favorably, but the (in this case) corresponding ROE of 23.3%
ordinarily would reflect a very successful year, until it was recognized, that
this return was produced by the division of two negative values, both equity
and earnings!

These examples reveal another source of data uncertainty: not only
from a lack of information, but also due to a methodology, which is not
suitable to the data to be analyzed. Under certain circumstances, a better
representation of the relationship under study may be obtained from the
ratio’s reciprocal as shown in the following subsection. However, once again
the reader is cautioned, that the results must be theoretically acceptable
to have any economic interpretation.

22.2.3 The Ratio or its Reciprocal?

The foregoing examples are so trivial, that the spurious results would have
been recognized as such and thus ignored during a “manual” analysis. But
what about a computer treating the data automatically? Is it easy to
establish the ‘thresholds’ for ‘bad’ data?

Non-trivial problems arise, when the P/E (Price Earnings) ratio is used.
The P/E ratio is a popular tool, which purports to state how many times
current earnings an investor would be willing to pay for a share of a com-
pany’s stock. While the concept has merit, the measure does not precisely
provide the desired information. Earnings are at best a current measure
although it is more likely, that they represent the profit of a past period;
they do indeed ‘belong’ to the shareholders, in the sense, that their pro-
portional ownership entitles them to a claim on their share. On the other
hand, stock price by definition is the present value of all expected future
cash flows. The P/E is sometimes expressed with respect to the expected
value of the next period’s earnings; while this is conceptually more accu-
rate, to be completely faithful to the idea, the denominator should be the
present value of the next period’s earnings. But these are not known, they
must be predicted introducing yet another source of error.

Therefore, not only do the general comments in the previous section
apply, but new problems are also introduced. Moreover, the stock price is
a strictly positive quantity, while earnings may be positive, zero or even
negative. A meticulous analyst might remedy the situation by ignoring the
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negative and “too large” values of a P/E ratio5. But even so, how are the
bounds of “too large” values of the ratio established? If an industry ratio is
based on the frequently used arithmetic average of the ratios of a group of
companies, how badly is it distorted by the inclusion of such inappropriate
values?

Suppose the Earnings/Price ratio were used instead. Define the follow-
ing ratio:

E/P% = 100 ∗ EPS
PS

, (22.6)

where EPS is once again earnings per share and PS is the stock price.
Using data on the same 55 chemical companies, we find, that the range of
E/P% is much smaller [−21.0, 14.7], while the P/E ratios ranged between
[−62.1, 64.7]. When choosing a ratio, it should be taken into account, that
the volatility of a ratio may be more or less favorable than that of its
reciprocal.

The E/P% ratio is sometimes used by financial analysts as an estimate
of the return, which should be received from an investment in a stock.
The simple idea is, that one invests PS; then the rate of return should
provide E/P% to the investor in payment for the use of his or her funds.
Using the E/P% as an opportunity rate, then the return on investments of
various risks can be compared. While some of the strictly mathematical
problems of ratios are alleviated by using the E/P%, there remain some
serious interpretation difficulties from the finance point of view. While
the same timing problems, that were discussed with the P/E exist, even
if these are properly corrected, the E/P formula represents a perpetuity,
and therefore only provides the correct return if the firm does not grow
and therefore pays out as current return (dividend) 100% of its earnings
each year forever. Most companies retain some of their earnings in order
to grow: to buy new plant and equipment, fund research for new products,
promote its existing product line, etc. Since, as noted above, stock price
depends on expectations of future earnings, these retentions play a major
role in the growth component of stock price and return. Therefore only in
the no growth scenario does the ratio represent a real return and can it be
legitimately used as a ‘cost of equity capital,’ ‘required return’ or ‘discount
rate’ for the firm’s cash flows.

Instead of a tangible return, then, E/P% is more of the form of a Return
on Investment (ROI) and should be understood to be such except in the

5In hindsight, should some of the P/E’s of ‘new economy’ stocks of the late 90’s have been rejected
as too high? The lessons from the ‘go-go’ market of the early 70’s seem to have been ignored.
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narrowly defined case noted above. Nevertheless, since the formulation is
often characterized as a real return, it should be kept in mind, that at least
three different ‘returns’ can be envisaged: define E0 and P0 as the current
values of earnings and stock price, then:

• (E0/P0)% is the ‘return’, that is expected, if earnings remain un-
changed over the next period and if the investment continues to be
held. This is the most commonly used variant and its advantage is,
that both values are known with certainty even though its importance
from a theoretical perspective is dubious.
• (E(t+1)/P0)%: a better idea from the theoretical point of view (and it

frequently is seen in the financial press), but to be completely faithful,
the present value of E(t+1) should be used. Having to estimate the next
period’s earnings introduces uncertainty (as well as picking a proper
discount rate if the present value is used).
• (E0/P(t−1))%: can be taken as the investor’s ROI over the past pe-

riod. The values are known, and it is a solid historical return on the
investor’s stake. But it says nothing about future expectations.

To express a true return, the cash flows accruing to an investor must be
measured over a set period of time. Therefore, the (total) return is then
the profit (excess of proceeds over the beginning period price), which could
be realized on selling a share of stock plus any dividend received over the
intervening period. Expressed in mathematical terms:

TR :=
PS(t+1) − PSt +Div

PSt
(22.7)

Put another way, the return given the risk of the investment is the familiar
dividend growth model first proposed by Myron Gordon [28], for which
the return required to persuade a rational individual to invest is: Ke =
Div1
PS + g or in its more usual form: PS = Div1

Ke−g , where:

• Ke represents the cost of equity capital, the return that is required
given the risk of the investment.
• Div1 is the dividend expected over the next period,
• PS is the current stock price, and
• g is the expected capital gains yield (PS(t+1)−PS(t)

PS(t) ) attributable to the

investment of the retained portion of the owners’ funds.

If one can assume, that the risk has remained constant over a period of
time, then the changes in PS can be explained as reactions to the ex-post
changes in dividend yield and the changes in growth, which have occurred
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over that time6.

A more useful interpretation for the E/P% ratio might be the return,
which the company earns given the average market price of its stock. But
using it under these circumstances, its ‘hybrid’ nature must be emphasized:
the firm generates the earnings, a portion of which, the dividend, is paid
out, while the rest is retained for growth . . . to generate future dividends
and other cash flows, which may or may not materialize. The stock price,
on the other hand, is set by the stockholders, given their expectations of
the firm’s future growth and earnings potential. So, the measure is neither
a measure of current return to the stockholder, nor an indication of the
firm’s capability to efficiently employ its assets or its invested capital, and
neither party has ‘control’ over the value, which E/P%’s may assume7.

It will be shown in Chapters 24 and 25, that there exist serious prob-
lems in using ratios such as P/E or E/P% rooted in a different origin of
quantities E and P . Earnings are internal (from the point of view of
the firm’s) evaluation of its performance, while share price is an external
appreciation established by the market. The former is calculated following
strict regulations, documented and mostly audited, while the latter results
from the “free game” of market forces. The volatility of market valuations
can therefore substantially exceed that of the earnings.

22.2.4 The ‘Standard’ Values of Ratios

Assume, that r̃ is an estimate of the ratio r consisting of a set of K couplets
of parameters N and D. Let us consider the model

Ñk = r̃ ∗Dk (22.8)

for all k = 1, ..., K instead of trivial individual “model” (ratios)

Nk =
Nk

Dk
∗Dk. (22.9)

Both of these relations can be interpreted geometrically, each individually
as a point (Nk, Dk) in a plane with coordinates (D,N). These points have
a radius vector, the slope of which is αk, determined by tan (α) = Nk/Dk.
In the case of the model 22.8, the tangent is equal to r̃.

6Another caution here, if the model is used to estimate the share price, then g is the perpetual growth
rate, a very difficult value to estimate.

7Of course, the same comment applies to the P/E ratio as well.
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The quality of the model r̃ depends on the manner by which it was
estimated: the better the method, the better the representation of the data
by model 22.8. Using the same 55 chemical companies, then if the initial
assumptions of the ratio method were true, all 55 points representing the
value of the relative working capital ratio should lie on a single straight line
from the origin (the slope of the radius vector of each point would coincide).
As is obvious from Fig. 22.1, reality is quite the opposite! The two red
arrows point to the slopes, which correspond to the smallest (0.0031) and
largest (0.536) ratio. The vectors of each of the remaining points all lie
within the sector bounded by the red arrows.
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The most popular and perhaps the most primitive method, which can
be used to estimate the model r̃, is that of the arithmetical mean,

r̃1 ≡ r̄ =
K∑
k=1

rk, (22.10)

where rk is the k−th firm’s ratio. This model, denoted Model 1, and
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represented by the green line in Fig. 22.1 provides a value for the mean:
r̄ = 0.170. Other alternative models, which could be used include:

r̃2 = Median(rk) (k = 1, .., K) (22.11)

and

r̃3 =

∑K
k=1Nk∑K
k=1Dk

. (22.12)

The second model is the median of the ratios, e.g. the middle of the ordered
values. The third model is obtained by consolidating (summing up) all of
the individual data to form one very large enterprise, which represents
the entire industry. The fourth model estimates the ratio by using the
popular Ordinary Least Squares (OLS) method, which is available on most
spreadsheet and commonly used statistical packages. Here, the model is:
WCk = K0 + K1 ∗ TAk, where K0 is the constant and K1 is the slope of
the line.

These values are shown on Fig. 22.1 for the given data as:

1. r̃1 = 0.170 (the green line),
2. r̃2 = 0.142 (the blue line),
3. r̃3 = 0.108 (the brown line).
4. With the OLS model, the equation is WC = 202.7 + 0.0613 ∗TA (the

magenta line):
(a) The model’s statistical quality measured by the R2 is only 0.379,

which indicates, that it explains only a small portion of variance.
(b) Moreover, the intercept (the constant K0) is non-zero. This is

counter to the previously noted assumption of the necessity for a
zero intercept.

Model 1 was obtained by computing the arithmetical average of the indi-
vidual ratios, and it has the steepest slope of all the models. The outcome
demonstrates a typical result for this method, because the arithmetical
mean is very sensitive to large addends, which leads to non-robustness
with respect to outliers. Model 4, obtained by the OLS method in this
instance, has the smallest slope. It also manifests a strong non-robustness,
but this time with respect to so called influential points. This is caused by
the point representing company DD, which has the largest value of total
assets, but also the least working capital. It is located in the graph’s lower
right corner. The median (model 2, blue line) is statistically the most ro-
bust of the models tested, but it does not explain the widely spread data
very well. The “consolidated” model 3 (brown line) is strongly influenced
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especially by the respective values of the large companies. Again, company
DD has a major impact on the value of r̃3.

Conclusions drawn from the preceding example as illustrated by
Fig. 22.1 are as follows:

1. Real data do not support the assumptions inferred by the ratio anal-
ysis method. A financial ratio calculated for a group of companies in
the same industry is not necessarily the same for each firm. On the
contrary, the ratios may differ significantly.

2. None of four popular methods for estimating a “typical” ratio value
provides a suitable explanation of the data’s behavior.

By using the logarithms of the variable values in an effort to improve
the above results, the large collection of points representing the smaller
companies, which are crowded around the origin in Fig. 22.1 should be
“diluted.” It is once again noted, that if assumptions 22.2 and 22.4 are
true, then the ratios 22.5 calculated over all 55 companies should have the
same value and the points representing the ratios should all lie on a single
strictly horizontal straight line in Fig. 22.2.

(The TA−independence of the ratio would imply the
log(TA)−independence.) Just as in the case of Fig. 22.1, the real
picture provided by Fig. 22.2 is much more complicated than what is
assumed by the ratio method:

• The values of ratios RWC do not lie on a horizontal straight line, but
they are spread over a broad interval, which reflects the presence of a
strong data uncertainty.
• The fact, that the values of the ratio are split into two au-

tonomous clusters (the main—lower, of 49 companies, green—and the
peripheral—upper, red, four companies) infers a strong inhomogeneity
in the sample.
• The form of the clusters does not support the idea of

log(TA)−independence and the significant dependencies can be mod-
eled by two decreasing straight lines.
• There can be individual outliers, which belong in neither cluster (such

as LRI with 0.5 in the magenta circle of Fig. 22.2).

The strong data uncertainty observed in Fig. 22.2 motivates a question as
to the sources of instability of the ratios. Gnostics rejects the “statisti-
cal” interpretation of the random nature of data “disturbances.” Instead,
gnostics states, that the data uncertainty is due to a lack of information.
With additional information, data uncertainty would be less, and the re-
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sult would be a better explanation of the data’s behavior. The economic
characteristics of a company cannot be described by considering a number
of individual parameters independently, because the mathematical repre-
sentation of the firm is a multivariate complex. Each of its parameters
is influenced by others and changing the value of a parameter is likely to
induce changes in the value of others. This said, then changes in a param-
eter can be explained by the changing values of other parameters, which
is possible only when multivariate modeling is employed.

Clearly, it is illusory to think, that there may be a single “recommended
value” for a ratio r̃, which can be used as a “standard” for making a
judgement about the financial health of a company. This position is further
supported by examining the conditions, under which point estimates can
be used.
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22.2.5 Sufficiency of Point Estimates

Another important, but hidden assumption of naive ratio analysis is, that
only two statistics, the arithmetical mean and the standard deviation are
needed to describe the characteristics of a collection of data. Such an as-
sumption is only justified for a very narrow choice of special probability
distributions, the most popular and better known of which is the normal
(Gaussian) distribution. For this distribution, these two statistics are
sufficient estimates (eg they provide a “good” approximation to the true
distribution). However, as it has been repeatedly stressed, there is no rea-
son to expect, that data taken from financial statements will fit this model.
A quick look at Fig. 22.2 reveals, that these data plot in two separate clus-
ters as if they belong to two data sets rather than only one; the distribution
is far from that of a normal form. A look at the components of the ratio
under consideration further demonstrates the general insufficiency of using
point estimates of the location parameter to explain simple financial data.
Several types of location parameters for the three variables (RWC, CA
and CL), which are related through 22.5, are shown in Tab. 22.5 together
with the robust means and lower and upper bounds of data support, which
have been estimated by gnostic methods see Chapter 16).

Variable Location parameter Bounds
name A-mean Mode Median R-mean LB UB

CA/TA 0.404 0.369 0.388 0.402 0.099 1.37
CL/TA 0.233 0.233 0.234 0.234 0.073 0.43
(CA− CL)/TA 0.171 0.113 0.142 0.163 -0.02 ∞

Table 22.5: Point Estimates of Location Parameters

Notation:
CA/TA . . . the relative value of the current assets,
CL/TA . . . the relative value of the current liabilities,
(CA− CL)/TA . . . the relative value of the working capital,
A-mean . . . the arithmetic mean,
Mode ... the location of the maximum of the probability density,
Median ... the quantile of 50% probability,
R-mean ... the robustly estimated mean of the data,
LB ... the lower bound of the data support,
UB ... the upper bound of the data support.

The data in Tab. 22.5 suggest several observations. The variables are
neither normally nor lognormally distributed because of the finite bounds
of their domains. In the case of a normal distribution, the data support
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would be (−∞,∞) and (0,∞) in the lognormal case.

Symmetry is another typical feature of both normal and lognormal dis-
tributions; all three location parameters must converge to the same value.
The coincidence of all four location parameters for CL/TA shows, that
the distribution of this variable is symmetrical; however, for the others,
the differences between the several types of location parameters reveal a
substantial asymmetry in their respective distributions. Hence, the idea
of the universal normality of the data distribution must be rejected. It
appears obvious, that the characterization of a data distribution by means
of a single or some few point estimates is difficult or even impossible.

The main problem of point estimates is, that they only characterize the
sample with respect to one aspect. This can be good information only
when the data distribution is known a priori (before obtaining the data)
and if the distribution is of a “suitable” type. For other distributions,
point estimates rarely say anything useful. This statement is supported by
the point estimates of ratios CA/TA and (CA−CL)/TA in Tab. 22.5 and
even more impressively by the results summarized in Tab. 22.6.

Characteristics Year Mode Median R-mean A-mean MSQE

EPS 1988 0.71 1.19 1.59 1.79 1.93
Stock Price 1995 16.3 15.7 18.6 19.6 15.2

Total Return 1991 0.26 0.37 0.44 0.44 0.37
Dividends paid 1988 0.16 0.69 0.34 0.62 0.56 0.69

Tab. 22.6 Examples of point estimates

Trying to use the differences between individual point estimates is not
an acceptable method for obtaining an idea of the form of the sample’s
distribution. The case of dividends paid is especially unsuited to this pur-
pose. The density distribution of this characteristics—as will be shown in
the next chapter—contains two dominating clusters of data. The maxima
of their respective densities are 0.16 and 0.69 as shown in Tab. 22.6. The
arithmetic mean 0.557—a value in between the clusters, in the density’s
valley provides no useful information. Another serious problem with the
use of the arithmetic mean is related to high values of mean square errors
(MSQE): the ratios of AM/MSQE are so small, that a potential hypoth-
esis of a non-zero value of the mean AM must be rejected from the point
of view of statistics. But could this “hard zero” value for EPS be accepted
by economists?
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22.2.6 Economic Comparability

To make a judgement about the financial condition of a firm, its economic
parameters are compared with those of other similar firms. The difficulty
lies in choosing a group of firms, which are truly alike. Just because a num-
ber of companies are assigned, the same Standard Industry Classification
(SIC) code provides no assurance, that each of these will have the same
internal structure or employ the same operating policies. The following
are some of the more important features among numerous characteristics,
which could be used to differentiate between industry and sub-industry
groupings:

• The breadth of products or services offered, which influence the total
market exposure of the firm, since few of the sectors of the market
behave in the same way or in a synchronous manner.
• The type of inputs used (raw material, energy, prefabricated goods,

union or non-union labor, etc.).
• The technology employed: assembly line, large automated machinery,

labor intensive processes, retail operation, etc.
• The company’s image and reputation, and relative position in its mar-

kets.
• Size: not only in terms of relative dominance in market share, but

a large established company has access to resources not available to
others. Further a firm with a substantial international presence can
advantageously employ the resources available to any of its compo-
nents to dampen other local economic problems asynchronously.
• The existence of strong industry lobbies to assist in obtaining better

operating conditions as well as other comparative advantages over
both local and international competitors.
• Geographic location determines the distances from sources of raw ma-

terials, availability and cost of transport facilities, etc.
• Corporate laws and Market Regulation can provide comparative ad-

vantages to operating in certain countries or states.
• Links to the Financial Sector: in those countries, where banks are not

prohibited from owning other types of firms, advantageous sources of
non-competitive financing may exist.

These points are obviously just a few among those that could be men-
tioned, but they demonstrate, that there is really only a very small chance
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of finding a group of firms anywhere that are rigorously comparable to
each other. It is, however, possible to use another approach: to begin the
analysis with a group of companies primarily chosen by applying some for-
mal criteria: industry membership, technology, etc., but leaving the final
choice of firms really comparable to a robust modeling technique, which
provides this information as an outcome of the analysis, rather than having
it imposed as an a priori assumption.

22.2.7 Opportunities and Risks

One of the main goals of a free market environment is to provide oppor-
tunities to all of the potential participants, who are ready to bear the cor-
responding risks. Opportunities and risks form an inseparable couplet—
there are no opportunities without accepting a risk. Moreover, the greater
the opportunity, the greater the risk. Both components can be measured
by assessing the probability of success associated with the project, eg by
the formal quantification of opportunities versus risks. One can clearly
recognize the difference between the two following statements:

1. “Take this opportunity, it has a good chance of success with only a
modest risk.”

2. “This opportunity has a 90% chance of yielding five million dollars,
but there is also a 10% probability of losing fifty million.”

The first statement is fuzzy and the corresponding decision must be based
on a subjective understanding of what constitutes a good opportunity and
a modest risk. The quantification of both the amount of the gain or pos-
sible loss, and an assessment the likelihood of either of these outcomes is
missing. Whatever progress made in the development of the craft of finan-
cial analysis, it does not yet include any methodology, which can evaluate
probability by any means other than subjective inference. Indeed, to in-
fer probability from data, one must work with data distribution functions,
but the necessary tools to estimate these structures are not available in the
“simple” financial statement analysis framework, which has been discussed
thus far. We have been left trying to solve complex problems with in-
adequately simple methods. The following chapters will demonstrate,
that gnostic methods are well suited to deal with the complexity of the
real problems of economic analyses.



436CHAPTER 22. TRADITIONAL FINANCIAL STATEMENT ANALYSIS

22.2.8 Feed-back Effects

A firm is a complex multidimensional system influenced by many uncon-
trolled factors. There are a large number of inputs only partially control-
lable by the management. All the variables of this system are mutually
dependent and there are different feed-backs, which cause changes in out-
put variables to be reflected back to the system’s input without any inter-
vention by management. This complicates the control function, because
actions taken by management result not only in the required reactions of
the systems, but also in undesirable changes. Officers in all armies know
and respect the old principle “No command can be given without commu-
nication.” With respect to a firm this same principle has to be interpreted
as “There can be no financial management without financial information.”
But the financial information must be extracted from the firm’s financial
data and the databases of other firms by means of financial statement
analysis. Ideally, the value of financial statement analysis should be rec-
ognizable from the impacts of analytical findings on the efficiency of the
firm. The chain of causes and effects should be: past and recent data →
financial statement analysis → recommendations for control → financial
control based on the recommendations → increased efficiency of the firm
→ better new data. A desirable side effect should be: a rising importance
of the role of the financial statement analysis in decision making.

22.3 Summary

Financial statement analysis has the potential to be a source of vital in-
formation for the efficient financial control of a firm. However, there are a
number of obstacles to the fulfillment of this positive role: the conservatism
of analysts, the attempt to solve complex problems by using inadequate
and simple methods, an insufficient level of knowledge of the theoretical
background of the employed methods, ignorance of the limitations of meth-
ods, that can provide satisfactory results, underestimation of the results of
thorough analyzes, and most importantly, not using the results of financial
statement analysis for management’s real decision making and financial
control, ie not closing the feed-back loop: firm’s current data → financial
statement analysis → financial control.

The solution to this problem is to set aside the current inadequate
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methodology, to begin to learn more progressive and effective analytical
methods, and to follow through and apply these to financial control.
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Chapter 23

Advanced Fin. Statement Analysis I.

As described in Chapter 21, there are three levels of gnostic data analysis:

1. Marginal (one-dimensional) analysis based mainly on the application
of distribution functions.

2. Pair analysis: examination of relations between two variables by
means of correlation coefficients.

3. Multidimensional analysis of models characterizing the mutual depen-
dence of several variables.

This chapter provides examples of marginal and pair analysis from financial
statement data, while the multidimensional problems will be taken up in
Chapter 24.

23.1 More on Distribution Functions

Four types of gnostic distribution functions (ELDF, EGDF, QGDF and
QLDF) were introduced rather formally in Chapter 15 as outcomes of the
mathematical theory. Their features were also studied using mathematical
language. However, before beginning to run applications, it is important
to master the notion of distribution functions on a level, such that their
use for data treatment becomes just as natural as using a knife to cut
bread. To assist a user in gaining this necessary familiarity, a series of
examples has been prepared to illustrate the use of this not yet sufficiently
understood tool.

Figure 23.1 recasts the same relative working capital data shown in
Fig. 22.2, but after some simple manipulations.

Imagine, that all the data points in Fig. 22.2 are horizontally projected
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from their position within the chart onto the left vertical (Y ) axis labeled
‘Relative Value of the Working Capital’ and marked by small circles. Now
rotate the chart clockwise by through 270o to construct a histogram over
the markers. This results in Fig. 23.1, which is a simple way1 of getting a
rough view of the density of the data (the blue line). The previously noted
clusters A and B are once again highlighted in green and red. While the
use of “discrete windows” in the histogram provides a general idea of the
density, it is only approximate. The shape of the data is better represented
using a smooth EGDF density function2 (the red curve). The density curve
illustrates the EGDF’s robustness to peripheral outliers and clusters—it
preserves its unimodality in spite of cluster B. This can be interpreted as

1The histogram consists of rectangles with a width of 0.05 and heights proportional to the number of
data falling within this interval. The total surface is normalized to equal 1.

2As set out in Chapter 15, gnostics makes available several kinds of smooth data distribution functions
along with their densities. Only the estimation functions will be discussed here, therefore it is sufficient
to distinguish between the global (EGDF) and the local (ELDF) functions.
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the rejection of a possible hypothesis, that cluster B causes the sample to
be inhomogeneous. The EGDF’s density function confirms, that all the
data belong to the data set, and that the sample is homogeneous.

The red line in Fig. 23.2 shows the global probability distribution of the
Chemical Industry’s Relative Working Capital Ratio, while the magenta
line plots its density3.
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The blue step function is the empirical distribution function (EDF),
which describes the underlying data. The greater separation on the right
side between the smooth and step functions is due to the high (B) cluster:
although it does not contradict the assumption of homogeneity, its data
differ from that in the main cluster. The form of the EGDF in Fig. 23.2
leads to several observations:

1. The distribution function cannot be approximated by a normal (Gaus-
sian) distribution function: Unlike a normal distribution,

3Note, that the scale used for the probability density is different from that used in Figure 23.1.
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(a) the density is non-zero only over the bounded data support (for
data values exceeding the lower bound LB=-0.0127).

(b) the form of the density function is far from symmetrical with
respect to the mode (‘central’ value).

2. Although an occurrence of strongly negative working capital (less than
the LB) is not expected, the possibility of zero or slightly negative
working capital is not excluded.

3. Different kinds of point estimates of the mean value of the working
capital are widely different: the
• mode of the density function (the location of its maximum, the

most frequent value) is 0.105,
• robust mean of the data (data values weighted by the probability

density) is 0.139,
• median of the distribution function (the quantile for a probability

0.5) is 0.140,
• sample median is 0.142,
• arithmetical mean is 0.170,
• geometrical mean is 0.406.

The large values of the arithmetic mean and especially of the geometric
mean are due to the high data cluster.

4. The slow decay of the density curve with rising working capital shows,
that the number of companies, which maintain large working capital
(high liquidity) exceeds the number of companies, which can operate
with a low liquidity.

Each of the point estimates provides only a limited information on the
data sample and it would be difficult to obtain an idea of data behavior even
by considering all these point characteristics. Unlike this, the distribution
function visualizes the data samples and enables not only these, but all
others data characteristics (including probabilities) to be obtained.

Applying the local distribution function (ELDF) will provide a closer
look at the inner structure of the data sample. This is shown in Fig. 23.3.

Recall, that the amount of detail revealed by the local function is con-
trolled by the value chosen for the scale parameter (S). Two values are
used here:

1. The magenta curve (ELDF3), calculated for S = 0.82, brings out the
three principal clusters, which were revealed in a preliminary way by
the EGDF. The bounds of these clusters are now seen to be determined
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by the local minima of the magenta density function: the interval of
values RWC < 0.031 belongs to the low cluster, while the interval
RWC > 0.39 highlights the high cluster leaving the broad main cluster
to cover the interval between the two peripheral ones. (The previous
cluster A has now been split into two subclusters, low and main.)

2. The blue curve (LDF7) with S = 0.33 shows, that the sample has
seven clusters:
• The previous low cluster is now a single outlier and a cluster,

which includes three companies.
• The upper cluster contains five firms.
• The ratios representing the remaining firms are all incorporated

in the main cluster, which now displays four small “bumps” that
could be further expanded if greater detail were desired.

Identification of firms belonging to each of the clusters results from the
analysis, too.
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The previously shown density of the EGDF is superimposed in red for com-
parison. All three densities are normalized in the sense, that the integral
of the area under the curve is 1.

The probability distributions in Fig. 23.4 reveal much smaller differences
between the three cases than the densities: the probability of finding ratios
ofRWC from roughly 0.05 through 0.23 will differ only slightly under either
of the three scenarios.
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For the remainder of the interval, the value of the probability or quantile
read from the EGDF will represent a filtered quantity or the value, which
would be obtained, were all the data to behave with the same regularity.

A general methodological conclusion can be drawn from the comparison
of Figs. 23.3 and 23.4: Distribution functions are suitable for the estimation
of probabilities for given quantiles or quantiles for given probabilities (as
well as for the estimation of several types of data bounds), but the density
functions are more useful for the analysis of a sample’s structure and its
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homogeneity/inhomogeneity.

23.1.1 Distribution Functions as Semi-invariants

One radio station in Great Britain frequently uses a weather forecast of
this type: “The weather tomorrow will be much the same as today’s.”
Experience has shown, that this prediction is not less efficient than that
obtained by means of satellites, computers and meteorological theories.
The explanation is simple: the weather in the UK is fairly consistent (some
say bad). The reason for this quasi-regularity is the stabilizing effect of the
Gulf Stream. To predict, this regularity—an invariant—is used.

The best invariants are mathematical formulations of Laws of Nature.
So, eg, equations based on the Energy and Momentum Conservation Law
enable the paths of satellites to be predicted with a high precision. In
statistics, the natural Law of Large Numbers leads to the Gaussian dis-
tribution. Unlike what is found in mechanics, the regularity expressed by
this distribution function is not a basis for the prediction of individual
events, but only the reliable prediction of mass events is possible. The
Law of Nature formulated by the two gnostic axioms leads to optimized
distribution functions of individual uncertainty and—due to the compo-
sition law—to the distribution functions of data samples, which are not
necessarily large. Therefore, there are two sources of regularity for gnostic
distribution functions:

1. Laws of Nature, on which the gnostic axioms and the gnostic technol-
ogy for the construction of distribution functions are based.

2. Laws of Nature, which control the processes, from which data orig-
inate, and which “feed” the data by providing information (about
them).

The former regularity is completely invariant, independent of any particu-
lar data. The latter regularity should be invariant, when the process that
produces the data is unchanged. In such a case, the distribution func-
tions of data samples obtained under ‘unchanged’ conditions should also
be unchanged. But this requirement must be relaxed, because both the
processes and the observed data are subjected to uncertainties. Therefore
the need for a precise replication of distribution functions is tempered to
require only an acceptable degree in their similarity. On the other hand, if
the source of the data changes its state, then the data treatment process
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should no longer produce invariant results. It is for this reason, that the
heading above is labeled semi-invariant (in the sense, that the features of
the data processing tools are ‘conditionally invariant’).

Figure 23.5 illustrates such a situation by demonstrating the regularity
and repeatability of the probability distribution functions EGDF of the
Total Asset Turnover (TATO) ratio taken for 50 companies in the US
Chemical Industry.
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The seven lines each represent annual data over the period 1985–1991.
The distributions form a narrow band and so support the thesis of a strong
underlying regularity that is only slightly disturbed by events specific to
any one year. The activity of each company, measured by its TATO,
depends on internal factors such as changing market position, assortment
of goods produced, development of technology, etc. As seen in the data,
the ratio (TATO) of each company changes every year. But, in spite of
these individual changes, the distribution functions for the industry as a
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whole are very similar. The regularity and repeatability of the process has
thus been demonstrated.

The similarity of distribution functions can be viewed in more detail by
using the corresponding density curves, which are more sensitive to differ-
ences between the forms of the probability distributions. This is shown in
Fig. 23.6.
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The densities are proportional to the reciprocal of the scale parameter
1/S (see 15.30). The scale parameter increases with the spread, which
causes the maxima of the densities to be dependent on the spread of the
data: the narrower the spread, the higher the maximal point in the figure
and the steeper the probability distribution in Fig. 23.5.

The positions of the maximal densities (one of the location parameters
characterizing a ‘central’ value) in Fig. 23.6 are close each to other: the
‘central’ (most frequently occurring) values of the TATO were only slightly
changed over the time interval 1985–1991. Moreover, the heights of all
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the density curves (the spreads of TATO values) are also similar, which
illustrates the small spread in the distributions’ slopes. To highlight the
changes in the curves and trace the process, the densities’ maxima are
marked by yellow circles connected by a black line. The path of the maxima
follows an elliptic movement with a dominating vertical component: the
main changes occurred in the spread of the data rather than in the locations
of the densities’ maxima (‘means’ of the TATO). Moreover, the path
traced by the maxima is smooth, which indicates, that the changes in the
curves were caused by real changes in the process.

A careful look at the density curves reveals small ‘bumps’ (additional
small maxima) close to the left extremities of several curves. As has al-
ready been seen, such effects are caused by inhomogeneity in the data and
are due to lower outliers: TATO = 0.317 in 1986, again in 1987 with 0.467,
0.528 in 1988, and again in 1989 (0.437) and in 1991 (0.332). In each of
these cases there was only one outlier, the other data were significantly
larger: the second smallest TATO ratio in 1987 through 1990 was associ-
ated with only one company (0.739, 0.754, 0.709 and 0.724) and belonged
to the homogeneous main cluster. The repeated presence of a company
as a lower outlier should be surely explained by the specific nature of the
company’s industrial activity. The reader should note, that neither of these
inhomogeneities affected the overall similarity of the distribution functions.

This shows, that the distribution functions manifest a high robustness
with respect to uncertainties in the data. However, a question arises at
this point as to whether this robustness in the distribution functions might
be an obstacle in detecting real changes in the informative content of the
data. This problem is given more detailed consideration below.

23.2 Direct Application of Distributions

23.2.1 Sensitivity of Distribution Functions to Information

There are two mutually contradictory requirements to an efficient data
treatment process: it should be robust with respect to uncertainty, while
being sensitive to information carried by the data. The former requirement
translates to: “a reduced sensitivity to data is desirable”, while the latter
means, that “a greater sensitivity to data is desirable.” The objective of
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this section is to demonstrate, that gnostic distribution functions are a
suitable tool to resolve this seemingly ‘schizophrenic’ problem.

As demonstrated in the previous chapter, the amount of information
inferred from the popular P/E measure or its reciprocal, E/P is limited.
But, these measures can still be useful to illustrate the gain in information,
that can be obtained from the data by using gnostic procedures. In Chapter
22, both the ratios were illustrated by point estimates and it was shown,
that the spread of the former measure was substantially larger than that of
the latter version. More details can be obtained by expanding the analysis
to use distribution functions.

Fig. 23.7 plots the gnostic global probability, density, and empirical dis-
tribution functions for these ratios (PS/EPS in red; EPS/PS in green)4.
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Expressing the latter in percent, so that the same horizontal scale fits
both ratios, the values of Price/EPS are seen to be spread over a re-

4The data are for the US Chemical Industry for 1995.
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markably broader interval than those of EPS/Price%: the P/E is much
more volatile than its reciprocal. The most frequently expected value (the
probability density’s maximum) for the EPS/Price% reflects a “return”
of 5.68%. Before attempting to venture an economic interpretation of this
result it will be useful to examine the time development of the data.

The global probability density functions of the E/P% were calculated for
each of the fourteen years, 1985 through 1999, and their medians (quantiles
of probability 0.5, robust location parameters) were estimated together
with the quantiles corresponding to probabilities 0.05, 0.1, 0.2, 0.8, 0.9 and
.95. The values for these quantiles are shown in Fig. 23.8A, each connected
by a straight line.
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As an example of the interpretation of these graphs, the pink mark on
the light blue line denoted Prob(E/P%) = 0.2 for 1996 lies on the horizontal
scale line of 3.44%. This means, that in 1996, 20% of the companies had an
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E/P% ratio equal to or less than 3.4%5. The dark blue line thus connects
the robust medians of the quantiles, ie points for which Prob(E/P%) = 0.5
holds. The vertical distance between the quantile of Prob(E/P%)=0.9,
which equals 10.0% in 1996, and the quantile of Prob(E/P%)=0.1 of 0.7%)
can be taken as a measure of the volatility of the variable E/P%. Therefore
the volatility in 1996 was 10.0 − 0.7 = 9.3%. This measure has a simple
interpretation: it corresponds to the range of values of the volatility of
E/P% of 80% of the companies in the US Chemical Industry in 1996. The
time development of the range of volatility is depicted in Fig. 23.9.
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It rose eratically until 1991; then sharply decreased to rise again after
1994. The figure shows the development of volatility for the 90% (red)
and the 10% (blue) quantiles using two scales (the absolute range and its
relative value with respect to the median.

5Only the 50 companies forming the main homogeneous cluster of the data samples were taken into
account for the estimation of these graphs. The values of E/P% are thus robust mean values not influenced
by outliers.
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This technique of using “quantile lines” provides an analyst with con-
densed easily readable information with respect to the development of com-
plex processes. Further examples are given in Figs.23.8B and 23.8C:
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There has been recent interest in using EBITDA (Earnings before In-
terest and Taxes plus Depreciation and Amortization) to estimate cash
flow as a predictor of a company’s expected performance and its ability to
service debt6. Such a variable as EBITDA could be used to introduce a
useful ratio, TLTO (Total Liability Turnover):

TLTO :=
EBIT +DA

TL
, (23.1)

where TL stands for Total Liability. This measure provides a useful
insight into the “fitness” of the industry as illustrated in Fig. 23.8B: there
were three periods of substantial acceleration in the total liability turnover

6See for instance: “Putting EBITDA In Perspective,” Moody’s Investors Service, June 2000.
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for the “better” half of the US Chemical Industry (1986-1988, 1991-1993
and 1995-1997). A noteworthy asymmetry of the distribution functions of
TLTO can also be observed in this graph: the probability density (the
density of quantile lines) above the red median line is much smaller than
below the median, which signifies, that large values of TLTO are expected
more often than small ones.

Determining the causes of the acceleration in TLTO is not trivial.
Fig. 23.8C shows, that the behavior of the TLTO curves in Fig. 23.8B over
the period 1986-1991 were in a close correspondence to the development of
the Earnings per Share (Fig.23.8C) over the same period.
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This could be explained as “better earnings↔ faster TLTO.” However,
the period of improving earnings (1993-1995 in Fig. 23.8C) lags the period
of accelerated TLTO by two years. A simple hypothesis does not work; it
is necessary to look for further factors, which influence both ratios.

It is obvious from Figs. 23.8 and 23.9, that—unlike the nearly constant
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distributions of the TATO’s in Figs. 23.5 and 23.6—the distributions of
the E/P% ratio manifest different behavior in both their mean values and
their spreads, showing a large fall of the median in 1989 below the nearly
smooth drift level. To show, that this picture corresponds to economic
reality, the E/P%’s median has been plotted in Fig. 23.10 (blue line) with
the risk free rate (3 month T-Bill rate denoted 3MTBR, red line).
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The 3MTBR reflects the activity of the whole US economy, while the
E/P% relates only to the results of the chemical industry. These graphs
thus compare the “returns” of the Chemical Industry with the risk free
rate of interest. It would be unusual for both curves to coincide exactly,
because they each express different things, however, what is surprising is
the similarity of the nearly synchronous behavior of both processes, with
the difference between the two ‘rates of interest’ exceeding two percent
only once, in 1989.

The results presented in Figs. 23.7 through 23.10 allow a return to the
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problem of the economic interpretation of the ratio E/P%. This ratio—
as well as its more popular reciprocal P/E—suffers from its already noted
“hybrid” nature: the earnings E referring to the past and price P reflecting
the expectations of future performance. However, a number of conclusions
can be drawn from the results that have been summarized above:

1. The volatility of the P/E is substantially greater than that of the
E/P% (Fig. 23.7), therefore the mathematical structure of the rela-
tionship between these two variables can be more accurately depicted
through the use of the latter ratio instead of the more popular P/E.

2. The E/P% ratio, determined as the median of the distribution function
of the main homogeneous cluster can be interpreted as the expected
mean return on an investment of P in shares of the companies making
up the cluster if no significant change in performance occurs. The role
of this ratio with respect to the group of comparable companies tracks
along with the role played by risk free rate 3MTBR as an economy
wide indicator (Fig. 23.10).

3. The distribution functions of the ratio E/P% allow the quantiles of
E/P% to be robustly estimated and attached to the probabilities
shown in (Fig. 23.8) so as to give an economic interpretation even
during volatile periods.

4. The application of these quantiles leads to the robust characterization
of the ranges of the ratio (Fig. 23.9), so that they can be used to make
judgments as to the volatility of the returns.

5. The different time aspects of the E/P% ratio’s numerator and de-
nominator do not appear to impose any difficulty in arriving at an
economic interpretation of the trend of the time series. See Fig. 23.10
and compare with the path traced by the three month T-Bill rate.

It can be thus concluded, that gnostic distribution functions—while ro-
bustly suppressing the data’s uncertainties—sensitively and reliably reflect
real changes in the objects, from which the data are produced.

23.2.2 Bounded Data Supports

The concept of bounded data supports was illustrated in Figs. 23.5 and
23.6 using the estimation of the distribution functions EGDF of the Total
Asset Turnover ratio for the time period 1986–1991 (TATO, see Tab. 22.2).
It leads to following conclusions:
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1. The smallest observed value in the sample of TATO′s was 0.308, the
largest, 2.485.

2. The estimated lower bound LB of the data support was not breached
until 1986, when the value of 0.299 was reached.

3. The estimated upper bound UB of the data support was never over
2.485 until it reached 11.64 in 1985.

The data supports were thus always bounded and the probability, that a
chemical company would operate with a value of TATO outside the interval
[0.299, 11.64], was zero during this time period. An attempt to apply a
normal or lognormal distribution could in no way describe this behavior.

This illustration shows, that the existence of finite bounds for data sup-
port together with a particular form for the data sample can substantially
change the nature of the distribution function. The probability density can
be very far from the popular bell curve of the normal distribution function.
Consider two further examples:

1. Financial Leverage defined as ratio TA/TEQ (total assets to total
equity) is a measure of the ability of a company to increase its capital
through the use of borrowed funds, and therefore to increase the return
from its own equity by using long-term liabilities. The probability
distribution EGDF and density of this ratio are shown in Fig. 23.11
for 13 companies of the US Household Product Industry in 1993.
The data support is bounded at LB = 1.10 and UB = 3.15 and
the distribution is close to uniform with probability increasing nearly
linearly and with the density sharply rising from the LB and sharply
falling to the UB. A more detailed insight into the data structure is
offered by the ELDF (Fig. 23.12), which explains the unusual form of
the global view of Fig. 23.11 as an interaction between two tendencies:

(a) The sharp bounds of the density function infer, that there are
leverage ‘norms’ in this industry, and that financial leverage is
kept between two strict bounds, neither too low nor too high.

(b) Financial management policies are adapted to take advantage of
the companies’ strengths allowing large firms to employ liabilities
to an extent, which would be risky for the firms in the lower cluster
in Fig. 23.12.

2. The relative value of the working capital (RWC) introduced by 22.5
is a measure of the company’s liquidity, its ability to cover its short-
term liabilities. The data sample of these ratios evaluated for the
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same Houshold Product Industry sector for the same period is so in-
homogeneous, that a distribution function of the EGDF-type does not
exist. Its ELDF distribution is shown in Fig. 23.13 (red line) together
with the EDF (Empirical Distribution Function, 15.1, the blue step
function of the type used in statistics).
There again are finite bounds for the data support (LB = −0.0465 and
UB = 0.475). The negative value of LB says, that a negative liquidity
ratio can be encountered even in such a well-established industry, but
its probability of occurrence is only about 0.115. Once more, the
form of both continuous functions in this figure has no resemblance
to the normal curves. The probability has two sharply rising sections
(close to the LB and the UB) and the density function therefore has
a U-shape.

The bounds of data support can have a strong impact on the shapes of the
distribution functions and their densities, and they should not be neglected
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Fig. 23.12: FINANCIAL LEVERAGE, TA/TEQ
US Household Products Industry, 1993

in the analysis. In practice, densities can range over a broad scale of
forms from concave through uniform to convex. It is obvious, that neither
information on the data support’s bounds nor on the form of probability
distributions and densities can be obtained from the point estimates of the
usually employed statistical methodology.

23.2.3 Example of a Hard Data Bound

All data bounds illustrated in Figs. 23.11–23.13 were estimated from data.
In the terms defined in Chapter 15 they can be characterized as soft. The
existence of such bounds should be recognized by experienced economists,
but their values are a priori unknown. Soft bounds are not fixed, so that eg
the distributions of the same kind of financial ratios for different groups of
firms can differ. Hard bounds of data support are unlike the latter and are
determined ‘once forever’ by the nature of the quantities to be investigated.
They are fixed and known even without having to look at the real data.
As such, they represent important a priori information, which has to be
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Fig. 23.13: RELATIVE WORKING CAPITAL
US Household Products Industry, 1993

used in constructing algorithms for these distribution functions.

In Fig. 23.14, the distribution function of the ratio RD/TA (Research
and Development Expenses divided by the Total Assets) is shown as an
example of a hard data bound.

Twelve out of forty seven companies in the US Chemical Industry in
1998 reported zero expenses of this type. Thus a zero value for this ra-
tio is probable. On the other hand, it is obvious, that negative expenses
do not exist, which means, that the data support for RD/TA is a semi-
closed interval. The red line in Fig. 23.14 shows the EGDF calculated for
the data available, while the existence of the hard low bound is ignored.
Non-zero probabilities are unrealistically attached to negative RD/TA’s
by this distribution function. Moreover, this EGDF does not satisfactorily
explain the data, the empirical distribution of which is drawn in Fig. 23.14
with square boxes. The remedy is simple: the subsample of zero RD/TA is
qualitatively different from that of non-zero values, the former has a simple
discrete distribution function, while the latter can be characterized by a
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continuous EGDF designed over an open data support. Both distributions
are combined and shown in Fig. 23.14 by the green line. If a closer expla-
nation of data is required, the ELDF can be obtained by the analogous
combination shown by the blue line.

A lesson is learned here: if one has a priori information (such as a
particular type of probability distribution function) it is not necessary to
estimate a gnostic distribution function. However, if such sure information
as the existence of hard data bounds is available, it is not reasonable to
ignore it.

23.2.4 Heteroscedastic samples

The complexity of economic processes makes it unrealistic to accept sim-
plifying assumptions such as stationarity, ergodicity, normality, etc., which
are so welcome in theoretical studies. Specifically, there is no certainty, that
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the spread of economic data is constant (or—using statistical language—
that the data are homoscedastic). Experience shows rather the opposite.
As already discussed in Chapter 16, data spread is characterized in gnostics
by the scale parameter S. Its value can be estimated by, among others,
the technique described in 16.2.2 (the local scale parameter). It is useful
to get a feel for the real effect of having variability in the spread of local
data.

The E/P% (earnings price) ratio can serve as an example as illustrated
by Fig. 23.15.
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The bold blue line is the EGDF optimized under the assumption of a
constant scale parameter and the other blue line is its density. The red lines
are distributions using variable scale parameters obtained by two steps:

1. The dependence of the local scale parameter SL(Z0) on the location
(Z) in the sample was estimated by solutions of 16.17.
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2. To ensure optimality of the fit, the best weight Sw was found by using
variable scale parameters obtained as Sw ∗ SL(Z0).

As Fig. 23.14 shows, the effect of variability in the scale parameter is not
negligible. The density curve is sharper than that of the constant S, doc-
umenting the steeper rise of probability in the central part of the data
support, while the probability of the peripheral data values is larger.

Important questions arise: are the red curves in Fig. 23.14 in a way ‘bet-
ter’ than the blue ones? And if so, then more generally: is it always better
to consider the data ‘heteroscedastic’ and to use variable scale parameters?
To keep the principle ‘Let data speak for themselves’ and to extend the ex-
perience, a comparison of 16 financial ratios has been made and the quality
of data fit was measured by several indicators, two of which are the most
important, the relative information quality (InfQ) and the mean absolute
probability error (MAPE), each determined in the following way:

1. Denote points on the Weighted Empirical Distribution Function given
by the data En and probabilities from the EGDF for the same data
Dn by P (Dn). The multiplicative evaluation of the quality of the
approximation of the WEDF by the EGDF at the data point Dn is
determined by the ratio rn = En/P (Dn). The additive characteriza-
tion of the fitting error is dn = En − P (Dn).

2. Calculate the estimating irrelevances hn = (qn− 1/qn)/(qn + 1/qn) for
qn = r2/Sn

n (see 9.11) using the (constant or local) scale parameter Sn.
The probability of rn is then (1− hn)/2 (10.60) and its informational
evaluation is In = −pn ∗ ln(n) − (1 − pn) ∗ ln(1 − pn) (10.56), the
maximum of which is

√
(1/2). The relative information in rn is

therefore In/
√

(1/2). The relative information quality (InfQ) of the
fit is the arithmetic mean of these quantities determined for all the
sample’s data.

3. The mean absolute probability error MAPE is simply
∑N
n=1 dn
N , where

N is the number of data.

Using these measures one can get a positive answer to the first question:
the application of a variable scale parameter to the ratio RD/TA is better
than using a constant parameter in the sense, that a higher information
quality InfQ and a smaller probability fitting error MAPE are obtained.
The answer to the question of the general applicability of this concept is
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more sophisticated: it depends on the nature of the data to be analyzed.
So eg from the 16 types of financial ratios of the US Chemical Industry in
1998, which were considered (see table 23.4), only in 8 cases did the usage
of a variable S lead to an improvement in the information quality of the
EGDF, while in 5 cases the quality was worse and in 3 cases practically
the same. The additive error MAPE decreased in 5 cases, increased in 5
cases and in 6 cases remained practically unchanged. However, as shown
in table 23.1, some of the improvement noted were not negligible.

The conclusion is obvious: some data are homoscedastic, while others
are heteroscedastic and the difference can be substantial. Which model
should be chosen in any particular case? Let the data decide: try both
methods and retain the better result.

Scale Ratios

parameter RD/TA TL/TA DA/TA EPS PS E/P%

Relative Information Quality (InfQ)

Fixed 0.946 0.895 0.929 0.940 0.968 0.910

Variable 0.965 0.982 0.964 0.979 0.983 0.963

Mean Absolute Probability Error (MAPE)

Fixed 0.043 0.037 0.037 0.031 0.025 0.037

Variable 0.031 0.023 0.034 0.021 0.024 0.028

Tab. 23.1: Effects of variability in the scale parameter
(‘heteroscedasticity’)

The four examples in Fig. 23.16 show the extent of the changes in the
variable S.

There is the typical U-shape of the curve S(Z0) with the minimum over
the points corresponding to the center of the data support. The curve
can be nearly symmetrical (such as for CA/TA) or asymmetrical (like
EAT/TA, the right end of which is much higher than the left one). The
relative ‘depth’ of the curves is different for different ratios: changes in
the EGDF’s curvature can be more or less pronounced depending on the
nature of the data.

23.2.5 Marginal Analysis

The term Marginal Analysis is interpreted in gnostics as the application of
local distribution functions ELDF to a uni-variate data sample for the pur-
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pose of decomposing it into individual subsamples/clusters. Such a decom-
position helps to reveal the inner structure of the data sample. Marginal
analyzes can be used to examine both cross-sections as well as time series
of cross-sections to yield information on the development of the samples’
inner structure.

A practical example of marginal analysis was given in Fig. 23.13, where
a sample of RWC ratios appears to consist of one cluster of companies
with high RWC concentrated close to the bound UB and another one
of companies, which operated with low RWC found near the lower bound
LB. The point separating these clusters is near the distribution’s median
(RWC = 0.23).

The labels in Figs. 23.12 and 23.13 locate the companies within the
individual clusters. A comparison between both decompositions offers in-
teresting conclusions:

1. Both companies H12 and H13 are members of the high cluster of



23.2. DIRECT APPLICATION OF DISTRIBUTIONS 465

financial leverage TA/TEQs and of the low cluster of RWCs. Both
these facts infer, that these companies are stable enough to operate
with a high level of liabilities and low liquidity. This can be explained
by taking into account other data such as the size factor: Sales of H12
and h11 were respectively 56.3% and 13.2% of the sales of the whole
industry; they thus represented a market concentration of 69.5%. On
the other hand, their total equity was only 57.7% of the total of the
industry’s book value, while total debt was 77.3% of the collective
figures. This situation as reflected by the graphs deserves a comment
in the style of George Orwell7 “All companies are equal, but some are
more equal than others!”

2. A company’s size is not always the decisive factor: the relatively small
H10 with only 1.89% of the industry’s sales also had a low RWC and
high TA/TEQ like the giant H12. A more detailed analysis would be
necessary to decide if these ‘abnormalities’ signal something positive or
negative. A first guess might be, that it is ‘operating on the edge’ and
is about to sink. A historical analysis of the data would be required
to provide more clues, but the condition could also result from sound
management and astute financial policies.

3. There were also other ratio combinations in both of the extremal clus-
ters, for example:
(a) High RWC and high TA/TEQ (H13).
(b) High RWC and low TA/TEQ (H3,H1, H4)8.

A financial manager seeking to learn, what level of financial leverage or
liquidity ratio is ‘normal’, must recognize, that the ‘norms’ are different for
different classes of firms. The first question to be answered must be that
of comparability: does my company compare with H12 or is it more like
the rest of the industry?

Another example of marginal analysis is seen in the development of
dividends per share in the US Chemical Industry over the time period
1986–1998. Probability densities of the ELDF-type are shown in Fig. 23.17.

An examination of the time sequence of the curves gives the impression
of an animated cartoon: the curves change their forms in a continuous
movement, while preserving their basic bi-modal features. This permits the

7“All animals are equal, but pigs are more equal.”(Orwell: The Animal Farm, New York, Harcourt,
Brace & Co., 1946)

8Both of these make sense, and are probably due to managerial preference: in the first case, keeping
some cash or securities sourced from long term liabilities, in the second, being rather risk averse and
ready to respond quickly to changing market conditions. Again, more information is needed, but the
ratio analysis suggests, where to look.
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companies to be split into two main clusters (L and H) representing those
with dividends, that are lower/higher than the intra-peak minimum9. The
trend in these maxima and of the valley separating them can be followed
in Table 23.2:

The most frequent dividend levels in each group rose monotonically over
the time period 1986–1998. Both prominent peaks in Fig. 23.17 move from
left to right with the passage of time. To show this movement in more
detail, the points of maxima are marked by yellow ellipses in Fig. 23.18
along with arrows to emphasize the development.

The height of the maxima again follows the changing spread (maximum
up ⇔ spread down).

These results suggest the following conclusions:

9Generally speaking, young growing companies pay little or no dividends. Firms, which have estab-
lished themselves, and which wish to signal their ‘arrival’, but that also need to use internal funding for
growth, balance the payment of dividends with their need for retentions, while mature enterprises with
solid access to external funding sources are able to payout a higher proportion of their earnings.
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Year Typical Dividends

Max. of L Sep. point Max. H

1986 0.14 0.34 0.56

1988 0.16 0.36 0.69

1990 0.20 0.47 0.85

1992 0.27 0.56 0.91

1994 0.30 0.67 0.98

1996 0.37 0.77 1.05

1998 0.42 0.64 1.05

Tab. 23.2 Typical Density Points for Dividends Paid
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1. The dividend policy of the industry is similar to that of other industrial
groupings and falls into three categories:
(a) No dividends.
(b) A compromise between dividends and retentions (the lower cluster

in Fig. 23.17).
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(c) High payout (the upper cluster in Fig. 23.17).
2. The membership of firms in a particular group tended to persist over

a long time period.
3. Over time, the changes in the observed structure were continuous and

consisted only of a systematic increase in payout.

As a comparison, the development of the dividend yield (dividend paid
divided by the share price) was analyzed in a similar way. All dividend pay-
ing firms fell into only one cluster with the maxima of probability density
drifting in 1986–1998 over the interval from 0.018 to 0.03210.

23.2.6 Homogeneity of Data

The idea of homogeneity of a data sample is closely connected with Axiom
2, the data composition axiom, which states, that a single (equivalent) da-
tum for a data sample is obtained by averaging the gnostic weights and
the irrelevances of the sample’s data. However, gnostic data weights are
cosines and irrelevances are sines and their averages must be normalized
by the sample modulus (14.4) to obtain the equivalent (14.3). This nor-
malization is the necessary condition for obtaining a true equivalent, but it
is not sufficient. Although the equivalent (normalized) weight can always
be calculated (for all data samples), it will not always be a true equivalent.
This can be demonstrated through an analysis of the equivalent’s relation-
ship to the probability density of the distribution function EGDF (15.29),
which is obtained by a normalized average of irrelevances. Each distribu-
tion function must be—by definition—non-decreasing, ie its density must
be non-negative everywhere. As mentioned in Chapter 14, this condition
holds only when the data of the sample are not spread too widely. In other
words, an EGDF does not exist for all data samples. With an increasing
spread of data, the EGDF’s density inescapably falls to local negative val-
ues. It is a continuous and unlimitedly differentiable function, therefore its
local decline can take place only on an interval between two density max-
ima. This implies, that (negative density) ⇐⇒ (non-existent EGDF) and
(negative density)⇐ (at least two density’s maxima) hold. The converse of
this statement is not true, because there can be two density maxima with
a much smaller data spread, when a positive segment of the EGDF passes
through a maximum and starts decreasing. At such a point, the EGDF’s
density passes through a local maximum, which does not necessarily co-

10During this same time period, the (monthly) average dividend yield on the S&P Index ranged between
0.015 and 0.038.
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incide with the global maximum. At the “critical” point, which discrimi-
nates between one-maximum and two-maxima density forms, the density
function has an inflection point. Such points are mathematically defined
and—if they exist—can be calculated. Data samples with a one-maximum
(unimodal) density function are taken in gnostics as homogeneous. The
requirement for a unimodal density is of course much stronger than the
condition for the density’s nonnegativity. This means, that EGDF can be
applied to tests of homogeneity based on a strict condition of unimodality.

This idea of homogeneity has a vivid interpretation. If it is assumed,
that the distribution of uncertainties about a true value is unimodal, then
the appearance of a bimodal distribution of observed uncertain data shows
the existence of two true values. Multimodal distributions thus belong to
mixtures from two or more data sources of possibly different nature. The
analyst’s task in such cases is similar to that of a dog, who has to choose
between pursuing two or even several rabbits.

The important characteristics of a data sample only make good sense
and can be properly estimated, when the sample is homogeneous. Homoge-
neous samples are therefore preferred for most analyzes. Unimodality can
be tested easily to establish homogeneity or the lack thereof in a sample
by calculating and checking the EGDF and its density. An inhomoge-
neous data sample consists of at least one homogeneous cluster (subsam-
ple) plus one or more other clusters of data. The process of isolating the
homogeneous “kernel” (cluster) of a data sample of a general type includes
following steps:

1. Calculation of the unique EGDF of the given sample by estimating its
scale parameter of the global type (SG,MF ) simultaneously with the
bounds (LB and UB) of the data support by means of optimizing the
fit of WEDF (Weighted Empirical Distribution Function) by EGDF.

2. Calculation of the EGDF’s density defined over the infinite data sup-
port.

3. Establishing the number Nmax of this density’s maxima.
4. If Nmax = 1 then STOP (the sample is homogeneous), else continue.
5. Find the largest of the maxima (determine the main cluster denoted

M).
6. Find the density’s minima on both sides of the main cluster.
7. Take the data from the interval between the minima to contain the

members of the M-cluster, the data located under the lower minimum
as the L-cluster and that found over the higher minimum for the U-
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cluster.
8. Iterate by applying operation 1 to the M-cluster.

This process is repeated until the homogeneity test is affirmative. The
sample’s data are thusly classified as belonging to one of three categories:
Main (M), Lower (L) and Upper (U). It is useful to have a look at a practical
example of such a classification applied to financial statement analysis.

23.2.7 An Example of Homogeneity

As a demonstration of a test for homogeneity, 16 financial ratios and other
financial characteristics of 47 companies of the US Chemical Industry
have been calculated and analyzed for 1988. The companies are listed
in Tab. 23.3 by their ticker symbols and the ratios taken for analysis are
tagged by a number, which is explained in Tab. 23.4. The symbols used
for the ratios are in the form of N/D (read ‘N divided by D’), where
N is the numerator and D the denominator of the ratio. The N and D
components are identified in the same manner as in Tab. 22.1. Symbols
L, M and U represent membership respectively in the Lower, Main and
Upper clusters.

The companies shown in Tab. 23.2 all have at least one ratio out of the
main cluster.

Before interpreting the results of the clustering, it should be made clear,
that being assigned to the cluster L does not always mean, that the firm
is considered ‘to be worse than the others.’ The economic meaning of
the placement depends on the interpretation of the parameter which is
considered. The same situation applies to the cluster U. To be ‘low’ in
current liabilities is not always bad and to work with a ‘high’ financial
leverage is not always good. In many cases ratios do have an optimum
interval of values, but it does not always coincide with ‘what the majority
does.’ (An everyday example: is it a good idea to spend as large a portion
of one’s “free” time watching TV as the majority of society is reported to
do? This introduces the problem of how to interpret membership in the
main cluster (M), which is closely connected with a notion of normality.
To examine this problem, it is necessary to recall the notions of the data
sample’s bounds (LSB and USB) introduced in 15.3.7.

In gnostics, the word “normal” bears no relation to its statistical mean-
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Comp. Number of the Ratio in Tab. 23.4
Tick 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 M U M M M M M M M M U M M M M M
T2 M M M M M M M M M U U M M M M M
T5 M M M M M M M M M U M M M M M M
T7 M M M M M M M M U M U M M M M U
T8 M M M M M M M M M U M M M M M M
T10 M M M M U M M M M U U U M M M M
T11 M U M M M M M M M M M M M M M M
T13 M M M M M M M M M M M M M M M U
T17 M M M M M M M M U M M M M M M U
T19 M M M M M M M M M M U M M M M M
T20 M M M M M M M M U M L M M M M L
T22 M M M M M M M M M M M M U M M M
T25 M M M M M M M M M U M M M M M M
T28 M M M M M M M M M U U M M M M M
T31 U M M M M U M M M M U M U M M M
T33 M M M M M M M M M U M M M M M M
T34 M M M M M M M M M U M M M M M M
T35 M M M M M M M M M M M M U M M M
T37 M M M M M M M M M U U M M M M M
T39 M M M M M M M M M U U M M M M M
T40 U M M M M M M M M M M M U M M M
T42 M M M M M M M M M M M M U M M M
T43 M M M M M M M M M M M M M M M L
T44 M M M M M M M M M U U M M M M M
T46 U M U M M M M U M M M M U M M M
T57 M M M M M M M M M M M M M U M M

Tab. 23.3 Clustering by homogeneity of data
(US Chemical Industry, 1998). Ticks: see Tab. 23.7.

Identification of Financial Measures Cluster size
No. Name Symbol L M U

1 Rel.Current Assets CA/TA 0 44 3
2 Rel.Current Liabilities CL/TA 0 45 2
3 Total Assets Turnover TATO 0 46 1
4 Rel.Deprec.& Amort. DA/TA 0 47 0
5 Rel.Capital Expenses CX/TA 0 47 0
6 Rel.Retained Earnings RE/TA 0 46 1
7 Rel.Research & Devel. RD/TA 0 47 0
8 Return on Assets ROA 0 46 1
9 1/(Financial Leverage) TL/TA 0 44 3
10 Accum.Depr.& Amort. ADA/TA 0 36 11
11 Earnings per Share EPS 1 36 10
12 Stock Price PS 0 46 1
13 Rel.Working Capital RWC 0 41 6
14 Dividend Yield DIV/PS 0 46 1
15 Total Return TOTR 0 47 0
16 Earnings/Price Ratio E/P 2 42 3

Tab. 23.4: Numbers, names and occurrence of financial ratios in Tab. 23.2
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ing, which addresses Gaussian distribution functions. The gnostic defini-
tion of normality states that:

Definition: Normal data D of a homogeneous sample are those, which
satisfy the relation LSB ≤ D ≤ USB, where LSB and USB are the
bounds of the sample (membership bounds).

In other words, ‘to be a member of the (homogeneous) main cluster
M’ means ‘to have a normal value.’ This is close to the sense, which
the word takes in common language (usual, ordinary, what is expected,
conforming to an accepted standard). And again, ‘being normal’ does not
automatically mean ’to be good’ or ‘to be bad.’ Such an evaluation must
be based on other information.

The gnostic interpretation thus takes as normal all the members of the
main, homogeneous cluster of the data sample. A preference for such a
concept lies in the following:

Universality: A main cluster can be found in all data samples. In a
homogeneous sample the main cluster contains the whole sample, all
data are normal. For inhomogeneous samples the main cluster can
always be found by the application of gnostic algorithms. Normality is
a characteristic of all types of distribution functions, not just another
name for the Gaussian type.

Objectivity: As shown in Chapter 15, parameters LSB and USB are
determined uniquely from the data without any intervention or a sub-
jective choice (such as the significance level of statistical tests) made
by the analyst.

Robustness: Parameters LSB and USB are estimated by the EGDF,
which is robust, and are therefore also robust.

Predictive power: Parameters LSB and USB are solutions to the mem-
bership problem; they delimit an interval of values, in which a datum
must lie to be a member of the homogeneous cluster (the main cluster),
ie to be normal. This interval relates not only to data already existing
in the sample, but also to possible future data, which originate from
the same source.

There also is a danger of misinterpreting the outcomes of this procedure
(which also applies to any other methods) of marginal analysis: the lim-
itations of univariate information. Any parameter of a multidimensional
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object can be classified as being ‘abnormal’ from the univariate point of
view, but this abnormality can be compensated by the abnormality of
another parameter and it can thus disappear, when a multidimensional
approach is used. Another flaw in this classification scheme is, that it is
very rough: to know, that an object is normal, does not imply optimality
in its position, it can be located near the center of the main cluster as well
as close to its low or high boundary value. Finer measures must be applied
to evaluate the object’s position among its normal, comparable neighbors.

While this step of marginal analysis of ratios has these and other
limitations, it can still yield some useful information.

As can be seen in Tab. 23.4, there were only four ratios, which appeared
to be homogeneous (DA/TA, CX/TA, RD/TA and TR). The com-
portment of all the tested enterprises was comparable from these points
of view, with no apparent ‘excesses.’ The ‘silver medal’ was shared by
TATO, RE/TA, ROA, PS and DIV/PS with only one excessive case.
The ‘bronze medal’ belonged to CL/TA with two excessive cases. The
Earnings per Share (EPS) ratio was at the other end of the ‘ladder’ with
only 36 members in the M-cluster, 1 substandard (L) and 10 in the high
cluster. The strong inhomogeneity of EPS can be explained by the fact,
that this ratio has no directly interpretable economic meaning for a cross-
section analysis and comparison. Because the number of shares in each
company is different, the value of EPS is not useful in making relative
comparisons of real economic performance between firms. This is also true
for an analysis of a single firm, when prior earnings are not restated after
there has been a significant change in shares outstanding.

A rough indication of the relative performance of individual companies
can be drawn from Tab. 23.3. Only 21 companies (44.7%) had all of their 16
ratios in the M-cluster. These ‘completely normal’ companies are omitted
from Tab. 23.3. The membership pattern of twelve others put all but one
of their ratios in M (11 in U and 1 in L). Thirty three companies out of 47
can be thus considered as completely or nearly ‘standard’ for their industry
and thus comparable to each other.

23.2.8 “Normal” Values for Financial Ratios

The important problem of establishing the ‘right’ (‘sound’, ’standard’, ‘rec-
ommended’, ‘desirable’, ‘proper’) values for financial ratios and other finan-
cial parameters was discussed in Chapter 22. The use of the arithmetical
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mean of industry ratios was rejected because of the bad robustness of this
statistic. Some analysts use the sample median as a more robust statistic,
but it ignores the form of the data distribution. A British company ([34])
periodically publishes a national compilation of three statistics for 16 prin-
cipal financial ratios for 206 industries: the median and the lower and upper
quartiles. A quartile is the median of half of an ordered sample, the three
statistics are therefore denoted as quantiles Q1, Q2 and Q3. A knowledge
of all three quantiles provides certain information about the distribution’s
symmetry and allows four classes of values of a ratio R to be distinguished:
R ≤ Q1, Q1 < R ≤ Q2, Q2 < R ≤ Q3 and Q3 < R. These reviews could
provide more useful information if they were completed by the minimum
(Min) and the maximum (Max) values for the ratios observed over the time
period considered. In such a case two other categories could be introduced
(R < Min and Max < R) to make the bounds of the categories ‘the lower
quarter’ and ‘the upper quarter’ more precise. A financial manager seeing,
that ‘his’ ratio appears to be of an ‘not yet observed’ value, would have
thus a motivation for contemplation. Of course, if he would use the bounds
LSB and USB, a sharper signal were be given: ‘your ratio is abnormal’
in the sense of membership11

To compare the two kinds of bounds, Tab. 23.5 was prepared for the
same set from the US Chemical Industry for 1998 used above along with
Tab. 23.6. The sample quantiles presented in this table are order
statistics obtained directly from samples of all the ratios. Without the
minimal and maximal values, they allow a firm’s ratio to be classified only
with respect to one of the four broad intervals. This does not lead to any
desired ‘recommended’ or ‘sound’ values of ratios, but only states, that
‘your ratio is less than that of 50%, but it is exceeded by 25% of your
competitors’, which says nothing about the ‘normality’ of the ratio.

A more complete and reliable set of information can be obtained through
the following steps:

1. Determine the main clusters (‘M’ as in Tab. 23.3) for all the ratios by
isolating the comparable firms in the data sample.

2. Determine the minimal and the maximal values of the ratios belonging
to the main cluster.

3. Calculate the EGDFs of the main cluster.
4. Estimate the membership bounds (the lower and upper bounds of the

homogeneous samples, LSB and USB) of the main clusters using the

11The sample’s bounds are mostly wider than the interval of observed data [min, max].
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EGDFs.

To complete the comparison with the traditional analysis presented
above, the robust gnostic quantiles of the EGDF were computed for proba-
bilities of 0.25, 0.5 and 0.75 along with the LSB and USB, which show the
value of the ratios separating the clusters L,M and U in Tab. 23.3. These
results are shown below in Table 23.6.

Some of the ratios are positive by definition. However, numerical es-
timation of their LSB can result in a slightly negative value, because the
procedure ’knows’ only the data and extrapolates their distribution. In
such cases zero values of LSB were assigned in Tab. 23.612.

Several observations can be directly drawn from the last two tables:

• The sample estimates of quartiles are theoretically robust with re-
spect to outliers. But a comparison of the tables does not confirm
this expectation: there are large differences between the quartiles
determined by the two methods, eg Q1(EPS) = 0.960 vice 0.754,
Q3(ADA/TA) = 0.475 vice 0.355, Q3(EPS) = 2.040 vice 1.613 etc.

12A better alternative can be the application of the ‘hard bound’ approach already discussed above.

Ratio Min Q1 Q2 Q3 Max

CA/TA 0.213 0.319 0.374 0.472 0.712

CL/TA 0.099 0.191 0.236 0.287 0.448

TATO 0.368 0.890 1.017 1.306 2.035

DA/TA 0.015 0.036 0.049 0.059 0.084

CX/TA 0.000 0.033 0.049 0.069 0.114

RE/TA -0.147 0.129 0.273 0.471 1.052

RD/TA 0.000 0.003 0.024 0.036 0.071

EAT/TA -0.071 0.026 0.056 0.084 0.309

TL/TA 0.151 0.532 0.638 0.702 0.966

ADA/TA 0.053 0.274 0.320 0.475 0.703

EPS -1.950 0.960 1.380 2.040 5.830

PS 5.625 19.844 28.625 41.250 90.94

RWC -0.062 0.064 0.113 0.221 0.513

DIV/PS 0.000 0.0113 0.0203 0.0323 0.0703

TOTR -0.805 -0.254 -0.095 0.026 0.320

EP -0.124 0.042 0.056 0.069 0.151

Tab. 23.5: Ranges and sample quantiles of financial ratios, US Chemical
Industry, 1998
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Ratio LSB Q1 Q2 Q3 USB
CA/TA 0.115 0.299 0.372 0.449 0.749
CL/TA 0.044 0.185 0.231 0.277 0.456
TATO 0.000 0.841 1.047 1.254 2.123
DA/TA 0.000 0.037 0.048 0.058 0.084
CX/TA 0.000 0.030 0.049 0.068 0.138
RE/TA -0.398 0.129 0.271 0.422 1.082
RD/TA 0.000 0.004 0.020 0.039 0.087
EAT/TA -0.701 0.030 0.058 0.085 0.192
TL/TA 0.142 0.501 0.615 0.715 1.059
ADA/TA 0.053 0.230 0.296 0.355 0.569
EPS -7.939 0.754 1.216 1.613 2.744
PS 0.000 19.52 28.56 38.34 85.15
RWC -0.208 0.056 0.111 0.166 0.406
DIV/PS 0.000 0.012 0.021 0.031 0.045
TOTR -4.066 -0.287 -0.114 0.036 0.550
EP -0.033 0.037 0.055 0.071 0.107

Tab. 23.6: Quantiles and membership bounds of measures estimated by
distribution functions EGDF for the homogeneous main cluster M

The figures in Tab. 23.6 were obtained after the outliers had been
eliminated by creating a homogeneous sample. The sample estimates
of quartiles in Tab. 23.5 are therefore unreliable due to distortion by
outliers.
• The quartiles do not provide useful bounds for the classification of

acceptable values for the ratios, because 25% of them are lower than
Q1 and 25% exceed Q3. There does not appear to be a valid reason
for such large portions of the data to be designated as being ‘excessive’
or ’unusual.’ Tab. 23.6 shows, how far the sample bounds LSB and
USB can extend from Q1 and Q3. The sharp selectivity of the sample
bounds used to delimit normal values was demonstrated in Tab. 23.3
and in Tab. 23.4.

The role of sample bounds to establish normal values for ratios can thus
be played by LSB and USB with theoretically justified and realistic out-
comes. It can be seen from Tab. 23.4, that splitting the data into three
clusters (L, M and U) by using the sample bounds LSB and USB de-
pends on the form of the sample’s distribution function. The result can
be a very restrictive choice of ‘normal’ values as in the case of AAD/TA
or EPS (with only 76.6% normal data), or an extremely tolerant classifi-
cation as for DA/TA, CX/TA, RD/TA and TOTR (with no abnormal
data). This is a sharp contradiction to the current practice applied eg in
production quality assessment, where a product is accepted as ‘normal’
if its qualitative parameter ε lies within a tolerance interval bounded eg
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by probabilities Pr{ε} = 0.03 and Pr{ε} = 0.97. Assume, that there is
a sample of 100 products to be tested. Also assume, that the probabil-
ity distribution of the parameter for this sample has been estimated; the
distribution will—as a rule—differ from the ‘normal’ distribution in the
statistical sense. Such a difference can be interpreted in at least two ways:
It is caused by the

1. random sampling effect,
2. presence of the ‘abnormal’ products.

There is no reason to throw out 6 percent of the product in the former
case, because all of them may be normal. Nor does the latter case provide
a reliable base to justify the loss of 6 per cent, because the probability
distribution of the ‘abnormal’ products is unknown and it can have many
different forms depending on the causes of the abnormality. The use of
such an approach to establish normality bounds for financial ratios is not
less problematic. There is no ‘fundamental’ set of events, nor is there an
(infinite) population, the distribution of which could be used as a reference.
Further, there is no reason to expect, that a given (fixed) portion (eg 94%)
of all firms performs well (’normally’), while the rest do not. A decision
as to whether all firms behave in a comparable (‘normal’) way should
be based on an analysis of a particular data sample. This is entrusted
to the homogeneity test in gnostics. The percentage of normal data is
then an objective outcome and not a subjective a priori assumption of the
analysis. The same can be said with respect to the classification (M/L/U)
for individual data.

23.2.9 Marginal Rating

Financial ratios are numbers and—as such—they can be ordered by their
values. Order number Nm,n of a ratio Rm,n (of the m-th kind) of an n-th
company can be used as rough information on the financial position viewed
with respect to that ratio. Some ratios—eg as return on assets—have a
monotonic nature ‘the larger the better.’ In such a simple case the ‘worse’
firm is the first firm and the ’best’ is the last one. The ’average’ position
is near the median. However, many other ratios have a more complicated
character: too small a value as well as one too large is unfavorable. The
‘best’ position is then somewhere near median and the performance can be
measured by the absolute difference of the firm’s order and the median’s
order. However, knowledge of the orders does not quantify the distance,
and does not answer the question ‘how far is ratio Rm,x from the ratio Rm,y.’
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Distribution functions of ratios are more suitable for this purpose: they
establish the same order (because distribution functions are monotonic),
but enable distances between positions to be quantified. Examples are
shown in Tab. 23.7.

Let Rm,n be a financial ratio’s value of the n-th kind presented by the
m-th firm. Entry Pm,n in Tab. 23.7 reads ‘the probability of not exceed-
ing Rm,n is Pm,n.’ This relates to the first four columns, which characterize
liquidity (RWC), activity (TATO), return on assets (ROA) and the recip-
rocal value of the financial leverage (TL/TA). Value P1,1 = 0.18 thus says,
that only 18% of companies of the US Chemical Industry were expected
to have RWC less or equal to AKZOY’s, while 82% exceeded AKZOY’s
value. It is to be noted, that the probabilities were estimated by means
of the local distribution function ELDF, because a part of the sample was
inhomogeneous.

Once the ratios have been computed and ordered, the probabilities
from Table 23.7 allow the meaning of the notion ‘the smallest’ or ‘the
largest’ to be quantified. It is seen, for example, that the company GRA
has the smallest ROA(−0.0712) and SIAL the smallest TL/TA(0.1511),
WDFC the largest ROA(0.3085) and SHLM an RWC of 0.5131. Note,
that after using probabilities, these extremal values are not equivalent:
exceeding the largest ROA can be expected only in 1.06% of cases, while
exceeding the largest RWC can occur much more frequently, 3.08% of
the time. Similarly, not exceeding the smallest ROA (−0.0712) is to be
expected in 1.46%, while results less or equal to the TL/TA can appear
in 3.66% of cases. The probability of an excessive value for a ratio is
important in estimating certain losses and chances. A spread of estimates
in the range 1:3 is not negligible.

Probabilities also enable the spread of individual ratios to be quantified.
For example consider the probabilities of RWC: the order number for
LI’s value of 0.0969 is 17 and for ARG (0.0974) is 19. The appearance of
a ratio between these values can be expected in only 0.14% of all cases.
However, the distance between order number 40 (CEM with 0.264) and
order number 42 (IFF with 0.414) is given a probability 0.113, which
corresponds to an occurrence in 11.3% of cases. The same two-step
movement along a sequence of ordered values and the exactly measured
spreads differ by a large order of magnitude. These results show, that the
marginal distribution functions of ratios are a more suitable instrument
for making a judgment about ratios than is the marginal ordering the
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same ratios.

Table 23.7 further provides a perspective as to the trends in a firm’s op-
erational policies. Retained Earnings and Accumulated Depreciation and
Amortization represent the past, TATO, ROA, Depreciation & Amortiza-
tion Expense and Total Return mirror the present, and Capital Expendi-
tures and R&D give an idea of the firm’s expectations of the future. All
these ratios can be evaluated using the ‘the larger the better’ principle.
The same is valid for their probabilities, because these are monotonously
increasing functions. Therefore the following composite indicators have
been constructed and are seen in the last three columns of the table:

• (Pr{RE/TA}+ Pr{AAD/TA})/2 (past position),
• (Pr{TATO} + Pr{DA/TA} + Pr{ROA} + Pr{TOTR})/4 (recent

position),
• (Pr{CX/TA}+ Pr{RD/TA})/2 (future position),

where Pr{Ratio} denotes the probability of the Ratio.

The figures shown in the columns of the table can be used not only
to make a judgment about the order of firms, but also to get an idea of
their development through time. The following three-point patterns can
be discerned in the table:

• A continuing high level: T15 with 0.70/0.72/0.69.
• A continuing low level: T26 with 0.33/0.36/0.33.
• Sustained long-term advance: T1 with 0.41/0.59/0.76 and T30 with

0.24/0.32/0.66.
• Sustained long-term decline: T31 with 0.67/0.54/0.27.
• Current peak: T42 with 0.28/0.47/0.19 or T11 with 0.47/0.62/0.48.
• Current trough: T21 with 0.47/0.09/0.45.
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PROBABILITIES OF BASIC TIME ASPECT
RATIOS

TICKER RWC TATO ROA TL/TA Past Present Future

T1 0.18 0.50 0.44 0.85 0.41 0.59 0.76
T2 0.25 0.15 0.61 0.53 0.60 0.56 0.44
T3 0.40 0.37 0.29 0.67 0.25 0.37 0.43
T4 0.30 0.88 0.80 0.46 0.72 0.78 0.68
T5 0.24 0.37 0.57 0.46 0.70 0.59 0.59
T6 0.78 0.18 0.24 0.13 0.62 0.33 0.73
T7 0.54 0.69 0.85 0.94 0.31 0.58 0.18
T8 0.03 0.14 0.86 0.52 0.60 0.46 0.70
T9 0.72 0.42 0.27 0.59 0.52 0.31 0.68
T10 0.25 0.24 0.47 0.61 0.86 0.47 0.72
T11 0.20 0.81 0.55 0.61 0.47 0.62 0.48
T12 0.32 0.70 0.91 0.33 0.55 0.85 0.73
T13 0.68 0.37 0.56 0.83 0.72 0.50 0.78
T14 0.74 0.74 0.52 0.66 0.31 0.55 0.31
T15 0.68 0.88 0.67 0.57 0.70 0.72 0.69
T16 0.59 0.70 0.20 0.58 0.36 0.48 0.26
T17 0.40 0.71 0.69 0.95 0.42 0.60 0.18
T18 0.84 0.17 0.39 0.25 0.30 0.37 0.23
T19 0.55 0.39 0.46 0.48 0.33 0.39 0.55
T20 0.08 0.10 0.01 0.95 0.28 0.10 0.44
T21 0.10 0.02 0.14 0.91 0.47 0.09 0.45
T22 0.89 0.46 0.95 0.11 0.68 0.54 0.80
T23 0.75 0.75 0.48 0.37 0.48 0.51 0.47
T24 0.40 0.63 0.52 0.59 0.24 0.46 0.51
T25 0.77 0.44 0.38 0.33 0.65 0.43 0.55
T26 0.64 0.80 0.22 0.56 0.33 0.36 0.33
T27 0.14 0.37 0.15 0.82 0.56 0.42 0.86
T28 0.52 0.51 0.68 0.41 0.67 0.61 0.61
T29 0.42 0.62 0.23 0.49 0.34 0.51 0.64
T30 0.49 0.07 0.08 0.64 0.24 0.32 0.66
T31 0.93 0.95 0.48 0.30 0.67 0.54 0.27
T32 0.33 0.41 0.25 0.53 0.55 0.45 0.43
T33 0.53 0.36 0.43 0.28 0.75 0.38 0.42
T34 0.37 0.34 0.12 0.64 0.66 0.35 0.58
T35 0.94 0.55 0.38 0.33 0.53 0.50 0.48
T36 0.57 0.27 0.58 0.20 0.60 0.60 0.69
T37 0.41 0.47 0.82 0.46 0.85 0.63 0.36
T38 0.23 0.82 0.67 0.32 0.48 0.71 0.34
T39 0.45 0.47 0.88 0.39 0.70 0.72 0.54
T40 0.97 0.93 0.72 0.13 0.34 0.60 0.19
T41 0.43 0.64 0.57 0.40 0.20 0.57 0.22
T42 0.91 0.29 0.86 0.04 0.28 0.47 0.19
T43 0.45 0.53 0.09 0.59 0.09 0.35 0.34
T44 0.28 0.24 0.47 0.57 0.79 0.50 0.77
T45 0.67 0.80 0.73 0.40 0.49 0.68 0.67
T46 0.96 0.98 0.99 0.06 0.44 0.70 0.21
T47 0.17 0.29 0.26 0.67 0.41 0.29 0.34

Tab. 23.7: Basic financial ratios and time aspects of US Chemical Industry, 1998 evaluated by
means of probabilities
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Investors are especially interested in the evaluation of prospects. There-
fore the relationship of the columns Present and Future can be useful
in this respect. An optimistic outlook is given for CEM (0.33/0.73) or
MIL (0.42/0.86) and pessimistic ones can be seen for WDFC (0.70/0.21),
SHLM (0.60/0.19), GGC (0.60/0.18) or CNK (0.58/0.18). Because the
effect of both capital expenditures and research and development have
long term trends, it is difficult to evaluate the accuracy of such estimates
using data for a limited period of time.

Although such results can be helpful, their one-sided character as well as
the subjectivity of weighting the ratios in terms of the time aspect can be
improved only by using multivariate modeling. This topic will be examined
in the next chapter.

23.2.10 Interval Analysis

The technique of interval analysis was described in Chapter 16 in con-
nection with the examination of local distribution functions (ELDF). The
procedure consists of the calculation of five characteristic values for a ho-
mogeneous data sample:

• AL . . . The lower bound of the interval of typical data.

• A0L . . . The lower bound of the tolerance interval of the location pa-
rameter.

• A0 . . . The location parameter (the location of the probability den-
sity’s maximum).

• A0U . . . The upper bound of the tolerance interval of the location
parameter.

• AU . . . The upper bound of the interval of typical data.

This notation is for additive data. In the case of multiplicative data
these bounds will be designated as ZL, Z0L, Z0, Z0U and ZU .

Recall, how these parameters were defined: Assume, that a data sample
of additive data A is homogeneous (or has been made homogeneous). Let
N be its size. Let scale parameter S be chosen so, that the ELDF’s density
be uni-modal. Let A0 be the location parameter defined as the quantile of
ELDF’s density maximum for this sample. Let Ax be another datum added
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to the sample. Let A0(A,Ax) be the location parameter of the extended
sample of N + 1 data. Fig. 16.4 shows, how A0 reacts to changes in Ax:
There are three cases of equivalence A0 = A0 (A fixed):

1. for Ax = A0,

2. for Ax → −∞,

3. for Ax →∞.

The location parameter of the extended sample thus coincides with that
of the original sample, when the additional datum is equal to it or if it is
extremely far from all the data of the original sample. As seen in Fig. 16.4,
there are three ways, that the function A0(A,A§) can behave depending
on the value of Ax. It can:

fall when Ax increases from −∞ to AL,

rise when Ax increases from AL to AU ,

fall when Ax increases from AU to ∞.

Only the central portion of this range of values can be accepted as typical
behavior—with an increasing location parameter given an increasing value
for the additional data item. The reaction of the location parameter (in
the first and third sections), when the extra datum lies beyond the upper
and lower bounds is ‘strange’, ‘unnatural.’ It gives the impression, that
the original data of the sample ‘defend’ the original sample against an
encroaching ‘stranger,’ by ‘pushing’ it away. This is why only the interval
[AL,AU ] can be called the typical interval of data.

There are two other important points in the curve A0(A,Ax):

1. A0L = A0(A,AL),

2. A0U = A0(A,AU).

To get a feel for the significance of these points, it is sufficient to consider
the arithmetical mean of the extended sample, when Ax approaches −∞ or
∞. In the former case, as a location parameter it reaches −∞ and in the
latter case∞. In contrast, changes in the location parameter A0(A,Ax) are
bounded by AL (minimum) and AU (maximum) for any arbitrary value of
Ax. This interval is called the tolerance interval of the location parameter
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A0 and it shows, that this location parameter is robust with respect to
an outlier.

Fig. 23.19 shows how these characteristics evolve in the case of ROA
(Return on Assets) defined as EAT/TA (Earnings after Tax divided by
Total Assets).
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The location parameter A0 (blue line) traces two waves with maxima in
1988 and 1995 and a global minimum in 1993. (Similar waves were observed
in the probability distributions of E/P% in Figure 23.8. The bounds of the
typical interval (the lower—green—and the upper—red) follow the value
of the median with some local deviations caused by the varying spread of
data.

An analogous example related to multiplicative data (TATO, Total As-
set Turnover) is in Fig. 23.20.

It shows, that this ratio is more conservative than the ROA. The curves
in both pictures demonstrate the meaning of the statement ‘this ratio has



484 CHAPTER 23. ADVANCED FIN. STATEMENT ANALYSIS I.

����

����

��

����

����

����

�	�
� �	��� �	�	� �		�� �		�� �		
� �		��
���

��

���

��

���

��

����������������������������� ����� 
���!"�#�$�%��&'()*�+

��, �����-�!��

��--�����-�!��

�� .�����-�!��

�,�� .���-�!��

a typical value’ in a precisely defined gnostic interpretation. So eg, in 1998
the typical EAT/TA was between AL = 0.028 and AU = 0.093, while ‘the
most typical’ (A0) was 0.059. The typical values of TATO in 1998 were be-
tween 0.786 and 1.229 with the most frequently expected value Z0 = 1.000.

The narrow band of A0L and A0U (Z0L and Z0U) shows how robust
the A0 (Z0) is with respect to the extension of the sample by another da-
tum with an arbitrary value: the location parameter changes only slightly.

An important practical application of interval analysis is to compare
samples and to determine their degree of similarity. This is also described
in Chapter 16. Using these criteria, most of the annual changes in the
ratios can be classified as due to ‘typical’ similarity of the samples (ie
typical intervals in subsequent years overlap) and in some cases (TATO
1986/1987, 1989/1990, 1996/1997 and EAT/TA 1985/1986, 1990/1991)
are all ‘within tolerance’ (with overlapping tolerance intervals). Such a
compilation of the similarity of characteristics could be especially useful,
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when ratios of different industries are to be compared.

It is instructive to examine in more detail examples of the role played
by interval bounds and to compare them with the sample bounds (LSB,
USB), which establish the interval of ‘normal’ values as well as with the
bounds of data support LB and UB (Tab. 23.8 and Tab. 23.9):

LB Min LSB AL A0L A0 A0U AU USB Max UB

-1.468 -0.071 -0.071 0.028 0.057 0.059 0.061 0.093 0.192 0.309 0.195

Tab. 23.8 Summary of characteristic points of the additive data sample
EAT/TA (ROA) for 1998

As shown in Tab. 23.4, the sample of ROA (EAT/TA) ratios was
slightly inhomogeneous with 46 items classified as M (normal) and with
1 in U, an outlier (WDFC). This is why the interval [LSB,USB] is within
the span of the interval [Min,Max]. In contrast, the interval LSB,USB
is wider than [Min,Max] in the case of the homogeneous sample of mul-
tiplicative data TATO (Tab. 23.9).

Both tables demonstrate, that typical intervals are substantially nar-
rower than the interval of normality (‘membership’ interval). This result
shows, that for a ratio to be classified as ‘typical’ is a stricter requirement
than ‘to be normal.’

LB LSB Min ZL Z0L Z0 Z0U ZU Max USB UB

0 0 0.368 0.786 0.984 1.000 1.018 1.229 2.035 2.123 2.136

Tab. 23.9 Summary of characteristic points of the multiplicative data sample
TATO for 1998

Interval analysis together with sample bounds and bounds of data sup-
port enable several classes of data within a sample to be distinguished:
subnormal, normal but subtypical, lower typical, upper typical, normal
but above typical and above normal. However, data values smaller than
LB and larger than UB are improbable, ie unexpected.

23.2.11 Effect of Censored Data

As discussed in Chapter 19, some data can suffer from incomplete defi-
nition by being given either one-sided bounds, which limit the inclusion
of possible data values, or some other indefinite intervals rather than spe-
cific numbers. Such statements are of the type ‘at least X’ (right-censored
data) or ‘not larger than X’ (left-censored data) or even ‘exceeding X1, but
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less than X2 (interval data). To show, that even such ‘second-rate’ data
can provide useful information, an example using income tax is instructive.
To eliminate the size comparability problem, the ratio of tax expenses to
net sales is introduced. The brown line in Fig. 23.21 is the probability
distribution EGDF of this ratio (‘relative tax expenses,’ ie tax expenses
divided by sales), which is calculated for the homogeneous ‘main cluster’
of companies in the US Chemical Industry, which consists of 36 firms.
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Fig. 23.21: RELATIVE TAX EXPENSES
US Chemical Industry 1998

This distribution reflects actual values of the relative tax burden as
presented in their financial statements for 1999. Since no one wishes to
pay more tax than is required, the firm’s accountants do their best to
ensure, that all legal loopholes are utilized, so that only the minimum tax
consistent with the ‘fair play’ rules of accounting is paid. In this context,
tax paid can be thought of as the upper bound of real tax obligation.
Assuming, that the all of the considered ratios of relative tax expenses are
left-censored, the distribution function of the thusly interpreted ratios is
shown in Fig. 23.21 (red line). The “philosophy” of this approach could be
called “dreams of the taxpayer”, who pays only the minimum possible and
never more than the official duty. However, their might be the opposite
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point of view, that of the state department believing (“dreaming”), that
the taxpayers take their civil duties as serious, as to pay “as much as
possible and never less than the legal duty. Several observations can be
based on this graph:

1. The effect of this type of ‘censoring’ is not negligible. The median of
‘true’ values of relative tax expenses can be as low as 0.0201 (when
the taxpayer’s dream would prevail) or as high as 0.0444, when the
official optimism became reality. (Robust median 0.0316 corresponds
to the officially declared and paid values.

2. The probability, that tax expense in the Chemical Industry exceed
9.7% of net sales is practically zero. This limiting value is not influ-
enced by the censoring. However, the mean value of the right-censored
ratios (0.0471) exceeds that of those uncensored (0.0331) because of
a higher concentration of large values close to the maximum.

3. Some companies reported negative tax expenses (due to losses or
carry-forwards from previous years), but these were excluded as caus-
ing inhomogeneity. As seen in Fig. 23.21, the probability of negative
taxes were therefore zero even for the left-censored data.

This illustration shows, that using the technique of censored data provides
some interesting interpretations, and that it can be used to estimate effects,
which cannot be quantified by any other method.

23.3 Robust Correlation Coefficients

23.3.1 The Need for Robust Correlations

Correlation coefficients are parameters, which characterize the degree of
‘similarity’ of two data samples, say, A and B13. As such they are closely
related to bilinear approximations of relations between a pair of variables.

It is assumed, that data form a sequence or series of pairs 〈ak, bk〉, where
ak ∈ A, bk ∈ B, k = 1, 2, . . .. Typically, the application of correlation coef-
ficients is a preliminary stage of multidimensional modeling to select those
variables, which have the strongest relation to the dependent variable. The
strength of the relationship is quantified by the absolute value of the cor-
relation coefficient of the explanatory/dependent variable. The stronger
the correlations, the higher the quality of the model. When using data

13In geometric terms, the classical correlation coefficient is the cosine of the angle between two multi-
dimensional vectors A and B
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contaminated by uncertainties, which include outliers, additional require-
ments exist: the methodology for estimating correlation coefficients should
be robust. An example based on financial statement data illustrates the
importance of robustness in the estimation of correlation coefficients.

Four ratios were created from data taken from the financial statements
of 43 companies in the US Chemical Industry for 1998:

1. ROA = EAT/TA. . . Return on Assets (Earnings After Tax divided
by Total Assets),

2. EPS = EAT/SO. . . Earnings per Share (Earnings After Tax divided
by the number of common shares outstanding),

3. DIV . . . common dividends paid per share,
4. PS. . . market price of a share.

There is no doubt, that these ratios are interdependent, but the require-
ment is to evaluate the degree of such mutual dependence by using cor-
relation coefficients. The data surely contain uncertainties, therefore the
usual Pearson’s (unrobust) method will not be useful and robust estimation
methods are desirable.

The initial attempt uses the oldest robust statistical methodology of
trimming: a specific percentage of the ordered data is cut off from both
sides of the ordered series. The results obtained by using the program
for trimmed estimation of correlation coefficients available in the S-PLUS
package ([103]) are shown in Fig. 23.22.

It is obvious, that by choosing different level of trimming, very different
estimates can be obtained. There are two other robust estimates of cor-
relation coefficients available in S-PLUS, Kendall’s and Spearman’s rank
correlation methods. These were also applied to the correlations between
the four ratios; the results of all three statistical approaches are summa-
rized in Tab. 23.10 and they are compared with both the unrobust and
the gnostic estimates. The values obtained by trimming are presented as
an interval of the outcomes given for different levels of trimming from zero
through 0.45. The classical (Pearson’s) correlation coefficients are a special
case of trimmed values, for zero trimming.

The table suggests the following observations:

1. The critical value for the classical (Pearson) estimates at the signifi-
cance level of 0.01 is 0.371. Therefore, Pearson estimates 0.418 and
0.645 are highly significant, but as can be seen from the robust esti-
mates, they are unacceptable because of their corruption by outliers.

2. The strong influence of outliers is demonstrated by the broad range
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of trimmed estimates. It is obvious, that practically any desired value
can be obtained by choosing a particular level of trim.

3. The critical value for the Spearman’s robust estimate at the signif-
icance level of 0.01 is 0.380. Both pairs of variables (ROA,EPS)
and (DIV,EPS) can therefore be considered as correlated, while
(PS,EP ) is not. However, neither the unrobust Pearson nor the ro-
bust Kendall estimates correspond to the robust Spearman estimates.

4. There is no contradiction between Spearman and gnostic estimates.

The last observation confirms the validity of the theoretically justified gnos-
tic estimates of correlation coefficients. Recall, that in Chapter 14 it was
shown, that gnostic correlation coefficients are inherently connected to the
gnostic probability distribution functions. Indeed, irrelevance h is the sim-
ple linear function 2 ∗ p− 1 of the probability p (see 10.60). Irrelevance is
therefore the deviation of the probability from its “neutral” value of 1/2.
The gnostic correlation coefficient is the cosine of the angle between the
vectors of irrelevances (14.20). It is thus a bi-linear function of probabil-
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Correlated Method

Variables Trimming Pearson Kendall Spearman Gnostic

(ROA,EPS) [0.421, 0.896] 0.418 0.482 0.668 0.640

(DIV,EPS) [−0.252, 0.645] 0.645 0.295 0.401 0.401

(PS,EPS) [−0.667, 0.098] -0.049 -0.114 -0.146 -0.140

Tab. 23.10: Comparison of unrobust (Pearson’s) and robust estimates
of correlations between four financial ratios (1998)

ities of ‘synchronous’ occurrence of observed data. Gnostic distribution
functions are robust, hence gnostic correlation are robust as well.

23.3.2 Inertia in Financial Ratios

Auto-correlation functions of time series can be obtained as sequences of
correlation coefficients estimated for different time lags between the ele-
ments of the series. The form of an auto-correlation function reveals the
basic features of the mechanism, which generates the data. One such fea-
ture is inertia, which limits the probability of rapid changes in the observed
variable. In cases involving financial data, inertia can be influenced by pol-
icy decisions such as those that establish long term strategies for financial
control, such as eg the maintenance of research & development investment
or dividend payout at a constant level. Fig. 23.23 demonstrates, that this
effect really exists and evaluates it for the principal financial ratios.

The ratios are plotted on the vertical axis and the length of the columns
corresponds to the gnostic estimates of correlation coefficients between the
ratio’s value in 1997 and 1998. The strongest correlations (Research &
Development, Dividends Paid, Retained Earnings, Accumulated Depre-
ciation & Amortization) can be explained by the continual influence of
management policies. In other cases such as Total Asset Turnover, Finan-
cial Leverage, etc. the “inertia” limiting rapid change is not only based on
management’s decisions, but also caused by external factors, which con-
strain the ability of managers to intervene. In any case, substantial inertia
and ‘conservatism’ exists in 12 of the 16 financial parameters. The more
random (and unexpected) behavior of EPS, ROA, E/P% and TR can be
explained especially by their strong uncertainty, which is—in the case of
TR—even amplified by using the stock price change.

As might be expected (and will be seen), strong autocorrelation favor
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useful predictions.

23.3.3 Correlations of Financial Ratios

A positive/negative correlation coefficient in some variables u and v means,
that an increase/decrease in u was ‘frequently’ accompanied by an in-
crease/decrease in v. The opposite also holds, because the correlation
coefficient is a symmetric function of both variables. Such tendencies to
similar/opposite behavior can be caused by different situations:

1. random coincidence,
2. one-sided causal relation: variable u is an effect caused by v (or the

converse),
3. multilateral causal relation: both u and v are effects of some other

related causes.

The probability of random correlation decreases with the number of pairs
considered, and it is therefore rare. However cases of both No.2 and 3 can
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be seen in practice and it is not easy to distinguish, which of the two occurs
in any particular case. Variables, which have a deterministic or stochastic
functional relationship are correlated, but the opposite is not necessarily
true. This is the reason, that a significant correlation does not necessarily
imply a causal relation14.

In complex systems such as the economics of a firm, the interactions
between financial ratios are surely subjected to multidimensional models
and cannot be thought of as pairs of isolated one-sided cause-effect rela-
tions. The identification of multidimensional models is therefore the best
way to reveal the structure of interactions between variables of a complex
system. Even so, some information can be obtained by an analysis of the
correlation structure and as an example we return to the ratios for the US
Chemical Industry for 1998.

The most significant correlations between the sixteen ratios for 1998 are
worth being discussed further15 The largest non-diagonal element of the
16x16 correlation matrix, (0.754), is for CA/TA and RWC. This can be
easily explained, because RWC equals the difference between CA/TA and
CL/TA.

A less trivial correlation is that of TATO with CA/TA (0.512): the
shorter the production cycle—the greater the need for current assets. The
strong negative correlation (-0.584) between financial leverage TL/TA and
the liquidity measure RWC is not surprising: firms, which have a sound
financial base can afford to operate with high financial leverage and low
liquidity. However, a large amount of total debt can be accompanied by
decreasing return (increasing interest expense): there is a strong negative
correlation (-0.426) between TL/TA and ROA.

14There is an extensive literature on this subject, for instance, see:

1. “Commercial Crises and Sunspots,” Jevons (1888) revisited in Sheehan & Grieves, Southern Eco-
nomic Journal, V48, Jan. 1982, pp. 775-777: Using data from 1889 to 1979, the U.S. economy has
a significant impact on sunspots, but the reverse is not true.

2. “Econometrics – Alchemy of Science?” David Hendry, Economica, V47,Nov. 1980, pp. 387-406:
Rainfall in Great Britain is a good predictor of inflation.

3. “Spurious Regressions in Econometrics,” C.W.J. Grainger & P. Newbold, Journal of Econometrics,
V2, July 1974, pp. 111-120. Nonsense regressions due to autocorrelation problems.

4. In Scandinavia, statisticians once found a close correlation between the number of births and the
presence of storks in Scandinavia. While this condition was not accepted as a proof, that babies
are brought by storks, the idea still lingers in today’s childrens’ literature.

The lesson is, that while the numbers relate a mathematically sound result, the analyst must ensure that
the relationship being tested has a sound practical connection.

15The correlation coefficients cited here have been determined by gnostic formulae.
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All three ratios, which characterize future planning (CX/TA, RE/TA
and RD/TA) are positively correlated: 0.377 (CX/TA with RE/TA),
0.385 (CX/TA with RD/TA) and 0.438 (RE/TA and RD/TA). On the
other hand, high debt is not favorable for a forward-looking strategy: the
correlation of TL/TA with RE/TA is negative (-0.313), but dividends
paid reflects this strategy positively (correlation coefficient of DIV with
RE/TA is 0.411 and with RD/TA 0.405) (dividends are a demonstration
of management’s positive expectations for the future). High correlations
between EPS and EAT/TA (0.621) and EP (0.526) are a consequence of
the definition of these ratios, they all are functions of the same variable
(earnings).

It is also interesting to see, how the individual financial ratios are
correlated with stock prices and to compare these correlations: PS with
DIV (0.636), PS with EPS (0.579), PS with RD/TA (0.340), PS
with EAT/TA (0.333), PS with ADA/TA (0.326), PS with RE/TA
(0.293) and PS with TL/TA (-0.272). These figures help to get a grip
on how the market “weighs” the individual characteristics of the firm’s
financial position. A high correlation (0.533) between PS and TR can
give some analysts a preference for TR (total return) over other indicators:
their point of view is close to the market’s. Somewhat surprising is the
practically negligible correlation (-0.044) between the liquidity measure
RWC and PS, and only 0.055 with TR. This is also due to the definition
of RWC as CA/TA − CL/TA and the high positive correlations of
PS and TR with both CA/TA and CL/TA. The positive evaluation
of sufficient current assets seems to be straightforward, but the case of
CL/TA is different. However, these ‘strange’ correlations—together with
the positive correlation (0.344) of CL/TA with RD/TA, TATO (0.229),
EPS (0.225) and DIV (0.218)—signal, that the minimization of current
liabilities is not a really sound idea.

The cross-correlations between the most fundamental ratios are shown
below in Tab. 23.11:

23.3.4 Causal Interactions of Financial Ratios

In all these illustrations, the strong correlations referred only to ‘parallel’
or ‘synchronous’ changes in variables without consideration of the causal
aspects. The cause must always precede the effect. There is no symme-
try in correlation coefficients with respect to time. The non-zero correla-
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tion coefficient of a sequence 〈u(t, 1), . . . , u(t, N)〉 and a previous sequence
〈v(t+d, 1), . . . , v(t+d,N)〉 with a positive d can be interpreted as a causal
effect of u onto v, but not the converse. If a ratio’s values R1(1997) taken
from the 1997 data are strongly correlated with a ratio R2(1998) then it is
possible, that a causal effect could contribute to the correlation coefficient
cor(R1(1997), R2(1998)) but not to cor(R1(1998), R2(1997)). When these
coefficients are equal, then the correlation must be assigned to the impact
of other variables (cross-correlations). An example is the strong correlation
(0.631) of DIV (1997) with PS(1998) and nearly the same (0.619) correla-
tion of PS(1997) with DIV (1998). Neither conclusion: ‘high share prices
were caused by good dividends’ nor ‘high dividends were caused by high
stock prices’ would be appropriate. These values would be rather char-
acterized by ‘good firms pay high dividends and are well priced by stock
market’, while the classification ‘good firm’ is based on an appreciation
of other operating characteristics. But the correlation matrices of the 16
ratios considered for 1997 with their values in 1998 (and the matrix of
‘opposite’ correlations) offers examples of noticeable causal effects:

• cor(EPS(1997), DIV (1998)) = 0.658 vice
cor(DIV (1997), EPS(1998)) = 0.320:
‘high EPS this year will increase dividends next year’,
• cor(EPS(1997), PS(1998)) = 0.520 vice

cor(PS(1997), EPS(1998)) = 0.347:
‘high EPS this year will increase PS next year’,
• cor(TL/TA(1997), PS(1998)) = −0.330 vice

cor(PS(1997), TL/TA(1998)) = −0.021:
’high debt this year will decrease PS next year’,
• cor(PS(1997), E/P%(1998)) = −0.356 vice

cor(E/P%(1997), PS(1998)) = 0.021:
’high stock prices this year will cause low E/P% next year’,
• cor(EAT/TA(1997), DIV (1998)) = 0.357 vice

cor(DIV (1997), EAT/TA(1998)) = 0.099:

Ratio RWC TATO EAT/TA TL/TA TOTR PS

RWC 1.000 0.325 0.192 -0.584 0.055 -0.044
TATO 0.325 1.000 0.393 -0.185 0.266 -0.110
EAT/TA 0.192 0.393 1.000 -0.426 0.473 0.333
TL/TA -0.584 -0.185 -0.426 1.000 -0.308 -0.272
TOTR 0.055 0.266 0.473 -0.308 1.000 0.533
PS -0.044 -0.110 0.333 -0.272 0.533 1.000

Tab. 23.11: Robust correlation matrix of fundamental ratios
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’high ROA this year will raise dividends next year’.

The asymmetric behavior of these figures shows, that some causal effects
can be identified by an analysis of covariances. It should be noted, that
using this method, the already discussed ‘strange’ positive correlations of
CL/TA with ‘favorable’ ratios cannot be explained by the effect of a single
ratio. The strongest (1997,1998) correlation of CL/TA(0.850) occurred
with the last year’s value saying ‘it is difficult to change current liabilities
in a short time interval, there is a substantial inertia in this variable.’ The
complexity of the multidimensional cause/effect structure manifests itself
in this case. The conclusion, which results from this and other similar
experiences is, that the relations between elements of financial statements
and financial ratios must be examined in a multidimensional mode (which
is the subject of the next chapter).

23.4 Summary

Marginal analysis of data based on the application of gnostic distribution
functions to financial data is a way to obtain a broad selection of useful
information:

• A rich choice of universally applicable distribution functions, which
are derived without a need for subjective a priori assumptions possess
predictive power due to the objective reflection of the regularities in
the data. These provide a robust quantification of the risks of various
strategies provided directly by the data.
• robust estimates of bounds of data supports as the expected range of

potential data, which could originate from the source, which generated
the given sample,
• robust measures for the location and spread of the data sample,
• objective testing of data for homogeneity with a unique outcome de-

termined only by the data,
• procedures to extract the main homogeneous cluster from an inho-

mogeneous data sample and to accomplish a robust marginal cluster
analysis,
• robust estimation of sample bounds (ie of the ‘membership’ interval

of data values potentially acceptable as belonging to the given homo-
geneous data sample). This can be used as a range for ‘normal’ data
defined by a given data sample,
• robust estimation of the bounds of ‘typical’ data, in a subinterval of
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the membership interval and to compare the degree of similarity of
data samples,
• evaluation of effects caused by incomplete definition of data (effects

of censoring),
• taking into account the possible heteroscedasticity of data,
• robust estimation of correlation coefficients with applications to:

– reveal and quantify the interdependence of observed variables,
– evaluate the inertia in characterizing processes,
– analyze possible causal effects between variables.



Chapter 24

Advanced Fin. Statement Analysis II

Three modifications of the regression problem together with the expected
effects resulting from the choice of the approach were described in Chapter
17:

1. robust explicit modeling,
2. robust implicit modeling,
3. robust probabilistic models.

This chapter will examine the outcomes of these methods using real data.

24.1 Objective (Mathematical) Rating

There is no doubt, that economists understand the notion, and the practi-
cal significance, of rating various quantities. But as frequently happens, the
popularity of an idea is no guarantee of the clarity of its sense. Economic
literature is replete with statements, that fundamental analysis, making use
of both quantitative and qualitative information, rather than mathemat-
ical procedures should be used as a basis for rating, relegating numerical
analyzes to the margin. This point of view defines rating more as an art
than as a scientifically based technology. Judging art is, of course, highly
subjective; on the other hand, the generally accepted notion of rating is “a
measurement of how popular or good something is” ([80]). Measurement
is a typical technical procedure, which tends toward maximum objectivity.
The problem of measuring economic objects or processes is, that—unlike in
physics—there is no instrument or “rule” available. The much touted hope,
that statistics would somehow find a solution has not been corroborated
in practice. Mathematical gnostics offers new ways to process uncertain
data; it then makes sense to try to use gnostic instruments for this pur-

497
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pose. The objective is not to reject fundamental analysis, but to combine it
with mathematical methods to attain a much broader and more objective
solution.

The complexity of economic measurement includes (among other things)
the necessity to take into account many factors, therefore multivariate mea-
surement techniques must be applied. The first problem to be examined is
the manner, in which objects defined over a multidimensional space could
be ordered.

24.1.1 Multivariate Ordering of Objects

Mathematics has shown, that a universally applicable method of ordering
in a multivariate space does not exist. Take eg two points X and Y in
the M -dimensional linear space RM . The location of these points within
the space is uniquely defined by their coordinates. But to reveal other
important features related to these positions requires, that additional in-
struments be defined: elemental relations between the points are needed.
Three of these can be formulated as questions:

1. Is X equivalent to Y ? Formally: does the relation X ' Y hold?
2. Does X precede Y ? Formally: does the relation X ≺ Y hold?
3. How far is X from Y ? Formally: which geometry is to be applied to

measure the distance between the two points?

A mapping is needed to answer these questions: a criterion function, CrF :
RM → R1, which establishes the rules for ordering:

(∀X, Y ∈ RM)(x = CrF (X), y = CrF (Y ), (x, y ∈ R1)) (24.1)

((X ' Y ) ⇐⇒ (x = y))

and

(∀X, Y ∈ RM)(x = CrF (X), y = CrF (Y ), (x, y ∈ R1)) (24.2)

((X ≺ Y ) ⇐⇒ (x < y)).

Denoting DM(X, Y ) the distance between M -dimensional objects X, Y
and DG,1(x, y) the distance between real numbers x and y measured using
a univariate geometry G, the definition of the former distance may have
the form

(∀X, Y ∈ RM)(x = CrF (X), y = CrF (Y ), (x, y ∈ R1)) (24.3)

(DM(X, Y ) := DG,1(x, y)).
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The problem has thus been reduced to a (seemingly) elemental mathemat-
ical task: to chose a proper function CrF and a suitable geometry G. The
real complexity of the situation arises, when ‘a proper’ is understood as
‘the best’ and ‘suitable’ as ‘the natural’. Something can be ‘the best’ only
in a certain sense, but how can the preference of ‘senses’ be established?
And as to geometry: according to Riemann’s point of view, the choice of
geometry (of the metric) should be determined by something objective, eg
by a Law of Nature. Are there any reasonable answers to these questions?

The problem is far from a purely academic discussion. Taking an exam-
ple from financial statement analysis: X and Y are sets of several financial
ratios from two companies. Are the financial/operational characteristics of
the companies equivalent? If not, then which company’s position is better?
How far are they apart?

Other important problems of this type exist, eg the overall quality of a
car. In this case the X and Y are sets of decision parameters for cars such
as power, acceleration, mileage, weight, reliability, maximum speed, safety,
and price among others. Are two cars equivalent? Or which of the cars is
better? How much better is one car than another?

It has been said, that “the invisible hand” of the free market auto-
matically takes over all the ‘duties’ of functions CrF and DG,1(x, y) by
establishing market prices eg for shares. “Two shares are equivalent if
their price/earnings (P/E) ratios are equal.” “A share is better if its P/E
ratio is lower.” But there is a ‘Catch 22’ here: A share is better than
that of another equivalent company if its P/E is lower. If P/E’s are
equal does growth or economic potential play a role too? Or are all these
things already imbedded in the numbers by the ‘invisible hand?’ The use
of the Price/Earnings ratio as if it were all encompassing in this respect is
paradoxical:

1. Low P/E stocks are thought to be ‘cheap’, while those with a very
high ratio are believed to be overpriced for the earnings being deliv-
ered. Therefore the investor is hoping, that the P/E of his shares will
increase substantially. This, however, requires that earnings remain
relatively modest, while the stock price increases. Is this realistic? If
earnings double, the price must rise by a greater proportion for the
ratio to increase. Does this happen? Of course! Not only for those,
that are bid up because of excellent potential, but also those related
to them by some sort of ‘kinship.’ Look at all the speculative bubbles
over time; but when they burst, prices come tumbling down fast and
far, the ‘good’ along with the ‘dogs.’
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2. If a stock is purchased, because its P/E is attractive and the price is
up by a small amount, the P/E will likely increase. Is its quality now
a worse than before, does it now have greater risk?

3. Low P/E shares can have low earnings and consequently low prices,
because they are not expected to perform well and are therefore fully
priced. On the other hand, some low P/E stocks could be ‘stars’ if
only they were noticed and properly valued. How can one differentiate
between them?

4. For stocks actively followed by analysts, the P/E reflects the market’s
recognition (and the current psychology), but it doesn’t measure, what
the investor receives.

5. Alternatively, the Total Return (TR) is shareholder-oriented, but in-
fers the firm’s performance characteristics only indirectly through the
change in stock price.

This latter alternative, which takes into account all the gain brought by a
stock, the TR, reflects both approaches and might serve as a better barom-
eter. “Hence, the order of preferential financial positions is determined by
the order of Total Returns.” The “distance between the financial position
of two firms is measured by the difference in their Total Returns.”

Although they are reasonable and thus usable, both of these approaches
suffer from drawbacks:

1. Both PE and TR are very volatile, especially when quarterly data are
used.

2. They combine two different views, that “from the inside” (by employ-
ing accounting data such as earnings or dividends) with the view “from
the outside” (by using stock prices). Stock prices, in an indirect way
also show how the market reflects the accountancy data. However, the
current financial position of firms over the corresponding time periods
is more stable than the evaluation by the market at the same time.
A combination of the “inner” valuation with the “outer” one can lead
to unnecessarily high volatility as shown by the examples below.

3. They do not reveal the “mechanism”, by which the market’s evalua-
tion is established, nor how the weights to be given to the individual
elements of the financial statements are obtained.

4. The uncertainties in their values (and risks connected with their ap-
plication) are not explicit, they are ‘hidden’ in the price component.

These problems can be solved by using multidimensional models, along
with cross-section and time-series processing.
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24.1.2 Cross-section Ordering and MD-rating

The frequently used term industry composite measure is not generally suit-
able for detailed economic analyzes of the type considered here:

1. It ordinarily denotes a point estimate (a single number), but the
advanced analysis uses more complex characteristics to describe
economic behavior (distribution functions, multidimensional models
etc.).

2. The term ‘industry’ implies the idea, that all firms in such a set are
comparable. The advanced analysis shows, that an industry can be
inhomogeneous in the sense, that economically incomparable firms are
included, while comparable firms exist in different industries and are
not taken into account.

3. The term ’composite’ can be interpreted as the use of some elemental
statistical techniques (point estimates) such as weighted arithmetic
means or sample quantiles to summarize the characteristics of the
firms. The advanced analysis makes use of more sophisticated meth-
ods.

Instead, a more flexible notion of cross-section analysis will be applied
and illustrated through the use of financial statement analysis: Take a
multidimensional set of elements from financial statements of different firms
defining their state of accounting at a given point in time along with a set
of market indicators at the same moment. The ‘cross-section’ is the data
set and the ‘analysis’ is an application of the advanced methods to the
set. There are no a priori assumptions on the homogeneity of the set
nor on comparability of the firms; decisions with respect to these features
should be internal to the analysis. The choice of members for the set
to be analyzed is therefore arbitrary, based on intuitive expectations, on
hypotheses, additional information etc. Three variants of an analysis of
this type will be distinguished by applying different points of view:

1. Inner: Only financial statement data for the firms, which form the
cross-section, are analyzed to evaluate the financial position of firms.

2. External: Only market indicators are used for valuation.
3. Both internal and external: Both financial statement and market

data are employed.

The subject of this section is only one of the tasks of the cross-section
analysis, namely the ordering of multidimensional objects based on a real
criterion function. Specifically, the method will be illustrated by ordering
the financial statements of firms based on several ratios made up from
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their respective statements. The results of this ordering will be called the
MD-rating.

Consider once more the basic financial ratios, the relative current as-
sets CA/TA, relative current liabilities CL/TA, total asset turnover
TATO := NS/TA1, financial leverage TL/TA and return on assets (be-
fore tax and interest) ROA := EBIT/TA. The initial aim is to obtain an
inner ordering, without taking into account the market’s evaluation.

To examine the reliability of such an approach, this method will be
applied not to a single cross-section, but to a time series of 44 cross-sections
formed by quarterly data from two US industries covering the period from
the second quarter of 1990 (90Q2) through the first quarter of 2001 (1Q1).
The order number of a firm at a point in time quantifies its position in the
cross-section. It is thus a relative rating with respect to the other firms.
The time series of a single firm’s order numbers represents a record of its
relative financial history over the period analyzed. To obtain a continuous
record of this type, only those firms, which had complete data in all the 44
cross-sections were included, leading to the retention of 88 firms (of which
30 belonged to the US Chemical Industry and 58 to several segments of the
High-Technology Industry). A ‘mixture’ of firms from obviously different
industries was chosen to see if there are any regularities, which are common
to industries of a different nature.
The key element of the method is the application of the system of explicit
regression equations in probabilities

Cq,0 + Cq,1 ∗ Pr{CA/TAq,k}+ Cq,2 ∗ Pr{CL/TAq,k}
+Cq,3 ∗ Pr{TATOq,k}+ Cq,4 ∗ Pr{TL/TAq,k} =

Pr{EBIT/TAq,k},
(24.4)

where q denotes the sequential number of the quarter (q=1,. . . ,44), Cq,0
through Cq,4 are the unknown model coefficients, Pr{Rm,q,k} is the proba-
bility of the m-th ratio’s value of the k-th firm (k = 1, . . . , 88) at the q-th
time. Such an equation system was set up and solved for each from 44
quarterly cross-sections.
Because the ratios entering this equation system are volatile, the volatility

1Note, that these ratios depend on the time unit used to define net sales NS. The following numerical
examples will use quarterly data resulting in values of the TATO equal to about a quarter of the annual
TATO. Quarterly TATO, along with the other ratios will be 25% of the annual value only if sales and
costs are distributed equally over the year.
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of the system’s solutions was minimized by using regression equations in
probabilities and a robust method of solution was applied to make use of
the double filtering effect2 so as to maximize robustness.

The following steps were taken to obtain the MD-rating:

A Ordering within an n-th cross-section:
1. Form the data matrix Mn of ratios from financial statements for

the n-th quarter, so that the k-th row is composed of ratios
CA/TAn,k, CL/TAn,k, TATOn,k, TL/TAn,k and EBIT/TAn,k

denoted generally by Rn,m, k (m = 1, . . . , 5).
2. Estimate the parameters of the distribution functions of the

EGDF type (subsection 15.2.5) for each of the 5 columns of the
matrix Mn (ie for m = 1, . . . , 5):
(a) The global scale parameter Sn,m (see subsection 16.2.1).
(b) The lower and upper bound (LBn,m and UBn,m) of the data

support (subsection 15.2.2).
3. Perform column-wise filtering of all the ratios’ probabilities
Pr{Rn,m,k} by calculating estimates of probabilities P̃ r{Rn,m,k} =
EGDF (Rn,m,k) for all m = 1, . . . , 5 and k = 1, . . . , 88 using the
estimated parameters.

4. Using the gnostic robust method, estimate the coefficients
Cn,0, . . . , Cn,4 of the n-th cross-section by solving equation sys-
tem 24.4.

5. Substitute the coefficients into 24.4 to compute the probable val-
ues of EBIT/TA denoted M̃n,k estimated by the model3.

6. Order the estimates M̃n,k in an ascending manner to determine
the score Scn,k of the k-th firm as its order number. Express the
relative score in per cent form, Scn,k% := 100∗Scn,k/K, where K
is the total number of firms and equals 88.

B Repeat step A for all cross-sections (all quarters n = 1, . . . , 44 from
90Q2 through 01Q1)4.

To interpret the results of the ordering (scores, MD-rating) properly, it is
necessary to take into account, that a higher score does not yet necessarily

2Probabilities were estimated by means of the EGDF (Estimating Global Distribution Function, see
section 15.2 of Chapter 15), which filters the data of the regression system matrix column-wise, then a
robust method was used to solve the system 24.4, which introduced a row-wise filtering effect.

3Note the difference between P̃ r{EBIT/TAn,k} and M̃n,k. The former quantity results from the
application of operation A.3, it is the value of the distribution function of the actual returns. In contrast,
the latter variable is obtained from the model, it estimates “what should the return be from the point of
view of the whole cross-section.”

4The symbol XYQZ defines “the Z-th quarter of the year 19XY”. 01Q1 is the first quarter of 2001.
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mean ‘a better financial position.’ Such an implication would hold only
for economically comparable firms, ie for firms, for which their important
financial variables fit the same multidimensional models. However, the
homogeneity of the cross-section (ie the comparability of all its members)
is not generally assumed, when proceeding with the ordering. The final
evaluation of the financial positions requires, that both multidimensional
ordering and a selection of comparable firms be performed. This second
task for the cross-section analysis (the multidimensional cluster analysis)
will be examined in Section 24.3.

24.1.3 Examples of the MD-rating

This ordering, performed on 44 cross-sections of 88 firms, resulted in 44 sets
of 88 scores. Before considering the history of MD-ratings for individual
firms, it is instructive to examine a summary of the average histories shown
in Fig. 24.1.
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Each of the 88 firms is attached to a point on the horizontal axis de-
termined by its mean score over the entire time period. On the vertical
axis, six symbols show the scores’ statistics characterizing the distribution
(EGDF) of the ratings obtained for each firm during the whole period being
considered:

1. the lowest rating reached (the smallest score, the blue line),
2. the lower quartile of all the ‘historical’ scores (the blue triangles),
3. the arithmetical mean of scores (the magenta line, which was used to

position the firms along the horizontal axis),
4. median of all scores (black circles),
5. the higher quartile (the red triangles),
6. the highest rating reached (the maximal score, the red line).

The scores and their statistics are in per cent form, so that the smallest
is 1 ∗ 100/88% and the highest is 100%. The following conclusions can be
drawn from Fig. 24.1:

• The approach discriminates sensitively between the lower and the
higher MD-ratings: if the results were purely random, then all 88
averages of the 44 ‘scores’ would closely approach 50%. However, the
smallest average score obtained was that of Comp.B, equal to 4.4%
(spread from 1.1% through a maximum of 12.5%). The highest long-
term mean of scores (Comp.A) was 95.2%.
• The half of all scores falling between the first and third quartiles is

mostly concentrated around the median and their spread is not very
wide.
• The other half of the scores reaches both very low and very high values:

the financial situation of any individual firm can deviate substantially
from its average position.
• Even firms with very good average financial positions sometimes de-

crease to very low values: eg firm with an average performance of 88%
fell once to 10.2% before recovering.

24.1.4 Monitoring the MD-rating

Multidimensional cross-section ordering enables the relative financial sit-
uation of a firm to be monitored and timely warnings of possible danger
to be generated. To demonstrate this, the ‘financial history’ lines of three
firms out of the 88 are depicted in Fig. 24.2R:

Comp.C: Performed well until 91Q1 then oscillated around 70% for about
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Fig.24.2: M-RATINGS OF THREE STOCKS
Data: 88 Stocks of 2 US Industries

four years before falling steeply to completely recover from the lowest
level over 3 quarters starting after 99Q4.

Comp.A: Dominating for 11 quarters at near 100% until 92Q4, when it
fell to about 80% for two years to return to its dominant position,
which lasted essentially for the rest of the period.

Comp.B: Maintained a long-term low position with only weak gradual
improvement.

The goal of the analysis is not only to reveal, that something occurred,
but also determine, why it happened: what was the cause of the effect.
As an example of such an explanatory role for the analysis, the case of
Comp.B can be used (Fig. 24.3).

The critical points in time are marked by flags with arrows: At T1 the
decline in performance started with a decrease in relative working capital
RWC due to rising current liabilities CL/TA. The curve of the MD-rating
continued to closely follow that of the working capital until the break point
T2, where a sharp decline in RWC pulled the MD-rating under 40%. At
95Q4 the level of working capital is quite low and the overall valuation
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T2T1 T3

T4

T5

continues to fall. At T3 (96Q2) another negative shock (a sudden increase
in long-term debt (LTD/TA) pushes the valuation down to the bottom.
However, increase in working capital helps to gradually return it to over
20% (T4). At 97Q4, a real financial stress can be seen to be developing
by the simultaneous increases in both current and long-term debt accom-
panied by a deep slump in the return EBIT/TA. Another break-point
(T5) opens a phase of a fast recovery: decreasing CL/TA accompanied
by substantial increases in working capital helps the EBIT/TA to return
to black numbers. Increasing return enables working capital to further in-
crease and the long-term debt to fall to the level it had held during the
‘better’ years before the end of 1994. All the other ratios also return to
their ‘good old’ values and the MD-rating reflects this comeback.

This example shows how strongly the working capital and financial lever-
age affect the performance of a firm. This finding can be confirmed using
the example of Comp.A (Fig. 24.4): its dominating position within the
cross-section over the period 90Q2 through 92Q4 and 95Q4 through 99Q3
coincides with periods of a low financial leverage TL/TA (under 0.2) and
a high level of the working capital (RWC over 0.5).
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Unnecessarily
  high RWC

    Sufficient
 level of RWC

The temporal loss of Comp.A’s leading position (92Q4 through 95Q4)
and after 99Q3 corresponds to a sharp fall in RWC and a striking increase
in TL/TA. Moreover, as emphasized in Fig. 24.4 by green fields, the graphs
lead to a determination (for this firm) as to the ‘necessary and sufficient’
level of working capital: there were periods (1. before 92Q4 and 2. 96Q1
through 97Q3) of unnecessarily high RWC, which exceeded the level about
0.5 sufficient to maintain a rating of 100% over the quarters 97Q4–99Q3.

The low MD-rating of Comp.B also requires an explanation, which is
presented in Fig. 24.5, where order numbers (in %) of the main ratios are
plotted together with the graph of the MD-rating (magenta line).

The main cause of the low valuation is seen at first sight: the long-term
debt’s order number was close to or even equal to 100% over the whole time
interval considered. (Remember the permanently negative (and strong)
impact of the LTD/TA, that has previously been noted). However, in
spite of this prevailing effect, the graphs in Fig. 24.5 reveal two entirely
different phases of Comp.B’s financial history: until 95Q3, there were no
signs of a tendency toward improvement, EBIT/TA gradually fell. The
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temporal changes of the order numbers’ patterns observed at T1 and T2
can be explained by actions of the majority of the cross-section rather than
by changes in policy instituted by Comp.B’s management. However, at T3
(95Q4) the situation suddenly and significantly changed: a strong increase
in EBIT/TA enabled to start increase in the working capital RWC in spite
of suddenly grown current liability CL/TA. This initiated an acceleration
of the total assets turnover TATO and a modest gradual improvement in
the MD-rating.

The graphs reflect a strong year periodicity probably caused by the
operating cycle, but the overall progress, reflected by the rising MD-rating,
is obvious. (The sharp slump of EBIT/TA in 98Q2 (T4) was corrected
in 98Q3 and 98Q4). At T5 (0Q3) a sharp increase in EBIT/TA was
probably initiated by a rapid decrease in current liabilities CL/TA and by
a positive step up in working capital RWC, but the MD-rating did not
respond and began to fall: the extreme financial leverage and high current
liabilities together with the still low activity ratio (TATO) did not allow
Comp.B to keep up with the overall performance of the other members of
the cross-section.
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This example demonstrates the usefulness of the MD-rating: it is sen-
sitive enough to recognize changes in the relative financial situation of a
firm in a timely manner and to attract a manager’s attention to apparent
causes of the changes.

24.1.5 Impacts and Contributions of Explanatory Variables

To quantify the roles of the individual ratios in creating the return
EBIT/TA, relations of the type

∂(AV G(Pr{EBIT/TAq}))
∂(AV G((Pr{Rm,q}))

= Cm,q (24.5)

can be employed using the results from 24.4 after the equations have been
averaged over all k. Indeed, the equation system is linear and therefore it
can relate not only the probabilities of the ratios of the m-type (eg Rm,q,k

for the k-th individual firm in the q-th quarter), but also the (arithmetic)
averages of these probabilities over all 88 firms. The roles of the model
coefficient Cm,q is therefore obvious: it evaluates the partial impact of the
mean of the ratio’s Rm,q,k probabilities on the probability of the return
EBIT/TAq in the q-th quarter. These impacts/sensitivities change de-
pending on q, because there is a separate cross-section model for each of
the quarters.

These partial impacts can be used to introduce some other character-
istics, which demonstrate the influence of individual ratios in balancing
equations 24.4, these are the partial contribution and the mean contribu-
tion of the m-th explanatory variable. Let the general form of the linear
regression model 24.4 be

Cq,0 +
M∑
m=1

Cq,mExq,m,k = Deq,k, (24.6)

where Cq,0 through Cq,M form the q-th model, Exq,1,k through Exq,M, k
are values of the explanatory variables of the k-th object (eg probabilities of
the ratios of the k-th firm) and Deq,k are values of the ‘dependent’ variable
of this object (which equals 1 in the case of an implicit regression). The
partial contribution of the m-th explanatory variable of the k-th object on
the Deq,k is then

coq,m,k = Cq,mExq,m,k (24.7)
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and the mean contribution of all K objects (eg firms) is

coq,m = Cq,m ∗
∑K
k Exq,m,k
K

. (24.8)

These characteristics are applicable to both implicit and explicit linear
regression models. An application using these notions will illustrate their
utility.

Consider once more the time series of 44 quarterly cross-sections (30
companies in the US Chemical Industry and 58 firms in different sectors
of the US Information Technology Industry). Apply the robust method to
the 44 systems of 88 explicit linear regression models in probabilities

Cq,0 + Cq,1 ∗ Pr{CA/TAq,k}+ Cq,2 ∗ Pr{CL/TAq,k}
+Cq,3 ∗ Pr{TATOq,k}+ Cq,4 ∗ Pr{TL/TAq,k} =

Pr{EBIT/TAq,k}
(24.9)

for q = 1, . . . , 44 and k = 1, . . . , 88. The time series of the model coeffi-
cients (ie of the partial impacts of the ratio’s probabilities on EBIT/TA’s
probability, shortly ‘impacts’) are depicted in Fig. 24.6 together with the
T-Bill Rate.

To suppress the quarterly volatility, all five curves are smoothed by
a four quarter moving average. Coefficients are labeled, so that eg
MA(C(TATO)) is ‘the moving average of the coefficient C3,q of equation
24.9 at the q-th quarter’. (Indexes 1,. . . ,4 identify ratios CA/TA, CL/TA,
TATO and TL/TA and the averaging period is: q − 3 through q.)

The graphs in Fig. 24.6 infer the following:

• The strong sensitivity of a firm’s financial position to working capital
(RWC = CA/TA − CL/TA) observed in Figs. 24.3 and 24.4 was
mainly due to changes in current assets CA/TA (the dark blue line),
because the current liabilities had only a weak and relatively small
impact as shown by the green line in Fig. 24.6.
• The strongest (and always negative) impact on the return EBIT/TA

was that of the financial leverage TL/TA (the light blue line). The
long-term trend of this impact was remarkable: the coefficient C4,q

began under -0.6 and oscillated around this value until 94Q4 to even-
tually rise to -0.3 after 0Q4.
• There are strong similarities between the graphs of the T-Bill Rates

and the impact of the current assets C1,q. This can be interpreted as
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“there is an interdependence between the price of short-term money
and its impact on returns.” An examination of the turning points
in both curves provides a good indication of the direction of the
cause/effect: changes in C1,q occur earlier (as if the statement, “the
FED carefully keeps its finger on industry’s pulse to adjust—with a
delay of several quarters—the cost” was confirmed). The curves also
show, that a T-Bill Rate of about 0.05 is too high from the point of
view of industry (causing the negative partial impact of the current
assets on the return), but a decrease to around 0.045 is sufficient to
spur a recovery.

The graphs in Fig. 24.6 reflect the time series of quarterly cross-sections
(88 firms). It can also be useful to have a look at the long-term means and
standard deviations of these impacts. These are shown in Tab. 24.1.
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Mean Contribution Ratio AV G STD

C0 Intercept -0.006 0.007
C1 ∗ Pr{CA/TA} CA/TA -0.012 0.176
C2 ∗ Pr{CL/TA} CL/TA -0.065 0.103
C3 ∗ Pr{TATO} TATO 0.197 0.112
C4 ∗ Pr{TL/TA} TL/TA -0.508 0.119

Tab. 24.1: Long-term Mean Values of Contributions of Ratios to the
Return’s Probability and their Standard Deviations (STD).

The symbol C0 denotes the mean contribution of the intercept (coeffi-
cient Cq,0) to the probability of the return in 24.4. The long-term evaluation
summarized in Tab. 24.1 is instructive:

1. The intercept’s contribution to the probability of the return’s values
is practically negligible. This is a good finding, because a substantial
intercept ordinarily results from having neglected the non-linearity
of the relation and/or from a poor choice of explanatory variables. It
could be shown, that linear regression of the ratios would yield a much
less acceptable model. This confirms the superiority of the regression
in probabilities, at least in this application.

2. As shown in Fig. 24.6, current assets can affect the return both pos-
itively or negatively especially depending on the price of short-term
money. However, the long-term mean effect (Tab. 24.1) of CA/TA is
slightly negative. Its volatility (measured by the STD) is high, but
this is caused rather by the slow, but large, oscillations (probably due
to changes in the cost of short-term money) rather than by a random
structure for this ratio.

3. The far strongest long-term negative impact on return is from financial
leverage, TL/TA.

4. Although useful in completing the over-all picture, the long-term mean
values of the models’ coefficients do not provide an analyst with dy-
namic information comparable to that shown by Fig. 24.1 through
Fig. 24.6.

24.1.6 Multi-marginal Ordering?

The close correspondence of the MD-rating (multidimensional ordering)
to the behavior of the individual ratios (observed in Fig. 24.3 and 24.4)
might suggest, that such a complex procedure is superfluous, and that the
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financial position can be simply evaluated by ordering several individual
ratios, ie by “multi-marginal analysis.” Figure 24.7 illustrates such an
attempt, again using the Comp.C: instead of the values of the ratios as in
Fig. 24.3, here, the ratios’ order numbers are used to reveal their relative
position within the cross-section.
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The critical points, T1–T5, are also plotted as before. A comparison of
the two graphs leads to the following conclusions:

Similarities: A certain similarity of forms is observed between the graphs
of the MD-rating (Fig. 24.3) and of the CL/TA’s score (Fig. 24.7)
although there is no similarity between the values of CL/TA and the
MD-rating in Fig. 24.3. Only the critical points T2 and T4 in Fig. 24.7
attract attention to the fact, that striking changes are in progress in
the two processes.

Dissimilarities: There is no clear resemblance between the forms of the
graphs of the ratios’ values in Fig. 24.3 and their order numbers in
Fig. 24.7. Changes are sometimes in the opposite direction.

Valuation: It would be very difficult to arrive at an overall valuation
of the financial situation using only the multi-marginal view of
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Fig. 24.7, while the MD-rating allows the three distinctly different
phases (90Q2–94Q2, 94Q3–99Q3, 99Q4–1Q1) to be easily recognized
in Fig. 24.3.

Such a negative evaluation of the ability to achieve an overall rating by
multi-marginal analysis does not mean, that this procedure is not useful.
Table 24.2 lists the arithmetic means of scores over the period 90Q2–01Q1
(in per cent form) for the three firms, Comp.B, Comp.C and Comp.A.

Firms
Comp.B Comp.C Comp.A

Ratio AV G STD AV G STD AV G STD

CA/TA 14.8 12.8 33.0 15.0 31.2 9.2
CL/TA 26.2 24.3 56.1 17.7 61.1 16.7
TATO 10.2 6.2 48.0 10.7 56.0 13.0
RWC 19.1 14.4 34.5 14.7 30.3 15.2

EBIT/TA 25.4 15.1 39.9 10.7 32.4 17.2
LTD/TA 97.3 1.9 71.4 16.0 73.4 10.6

TOTR 48.8 25.9 47.9 18.0 46.2 28.3
EP 59.0 27.0 61.3 18.7 58.9 10.6

Tab. 24.2: Marginal Ordering of Financial Ratios of Three Firms

Notation:AV G . . . Arithmetic Means of Scores, STD . . . Standard De-
viation of Scores (while ‘scores’ are order numbers expressed in per cent
form.)

The first six lines of Tab. 24.2 represent the ‘inner’ view based only
on the financial statement data, while the last two are ‘outer’ valua-
tions obtained by ordering the market’s data (Total Returns and Earn-
ing/Price ratios). The most striking result from the first group is, that
LTD/TA = 97.3 ± 1.95 says, that Comp.B’s financial leverage was (with
a small STD) nearly always very close to the top of all 88 firms form-
ing the series of cross-sections. All the other ratios: CA/TA, CL/TA,
TATO, RWC and EBIT/TA were significantly lower for this firm than
the cross-section means (50%). This explains, why Comp.B’s financial po-
sition, evaluated by the MD-rating, was so low. On the other hand: this
result demonstrates, that results of the ‘automatic’ mathematical rating
cannot be taken as absolutely valid. The lowest MD-rating does not nec-
essarily mean, “Comp.B’s financial position is consistently the worst of
all 88 firms,” because alternative interpretation of the results can exist:

5The notation is AV G± STD, ie the arithmetic mean plus or minus the standard deviation.
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“Comp.B is not comparable with the majority of the 88 firms, because it
is substantially different from them in the sense of availability of credits.”
Similar results were demonstrated in Chapter 23, where some firms, eg
Procter & Gamble and Colgate-Palmolive, were shown to be performing
very well with much larger financial leverage and much lower working cap-
ital than the others. The problem of the comparability of firms thus arises
and as previously noted, will be examined in Section 24.3.

On the other hand, the joint ordering of all firms is reasonable even
though some firms are not quite comparable to each other: changes in fi-
nancial position within the cross-section signal, that “something happened
with respect to the firm’s financing.” Such a message can serve as a useful
warning to the financial manager. If this type of cross-section analysis were
included into the firm’s information system as a routine function, such a
warning together with knowledge of the actual model of the cross-section
could serve as an efficient tool for financial management.

The results summarized in Tab. 24.2 lead to other observations:

• None of Comp.A’s mean ratios approaches extreme values (0 or 100%).
In other words, a candidate for the highest MD-rating does not need
to have ratios with extreme values. Rather, “golden means” and an
“optimal mix” of ratios are preferable.
• Multi-marginal analysis based on the long-term means of ratios cannot

distinguish Comp.C’s entirely different policies from those of Comp.A
(which has the highest evaluation), although it can recognize the ex-
treme behavior of Comp.B. Monitoring the time-series of MD-ratings
(such as Fig. 24.1) is thus desirable.
• The market evaluation using TOTR and EP cannot separate the high-

est, Comp.A, from the lowest, Comp.B. The average scores of all three
firms under comparison are close to the mean and their variance is too
large to make any valid decision as to differences between firms.

The conclusion is, that multi-marginal analysis is insufficient by itself
to give a reliable rating to firms although it can provide analysts with
additional useful insight into the data.

24.1.7 Financial Market Generates Chaos

Figures 24.1–24.6 presented a robust multidimensional ordering within
cross-sections formed by firms in two industries, which lead to useful in-
sights into the development of the financial positions of firms. Note, that
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these results are based entirely on the accounting data, ie they represent
an “inner” point of view. Only the T-Bill Rate, as an “external” fac-
tor, was used to characterize its impact on the financial position of firms.
Market impact was reflected only indirectly, by the total asset turnover
TATO. Market valuation factors such as TOTR and E/P did not enter
into the model. Efficient market theory postulates, that the market ab-
sorbs all information both directly and indirectly related to the economy,
using this to establish valuation for stocks and firms. The accounting data
are only a part of this information and an important question to be asked
is: “How far–if at all–can the use of market valuation improve the ‘inner’
valuation?” The high volatility of the market indicators in Tab. 24.2 does
not foretell great success in this respect but the problem deserves a more
detailed analysis.

The “external” (market) valuation of firms represented by the total
return (TOTR) can be taken in account by extending the model 24.4 by
this variable:

Cq,0 + Cq,1 ∗ Pr{CA/TAq,k}+ Cq,2 ∗ Pr{CL/TAq,k}
+Cq,3 ∗ Pr{TATOq,k}+ Cq,4 ∗ Pr{TL/TAq.k}

+Cq,5 ∗ Pr{EBIT/TAq,k} = Pr{TOTRq,k},
(24.10)

where again q identifies the year quarter and k = 1, . . . , 88 the firm. Equa-
tion 24.10 characterizes the impact of probabilities of accounting ratios
CA/TA, CL/TA, TATO and EBIT/TA on the probability of the market
indicator TOTR. The relationship will be analyzed in the same way as be-
fore, ie using multivariate ordering. The results for one firm are presented
in Fig. 24.8: The heavy red line is the same as in Figs. 24.2 and 24.4: the
M-Rating of Comp.A obtained by using only accounting data (model 24.4).

The yellow squares connected by the thin magenta line show the results
obtained by using model 24.10. The method is the same as in the case
of 24.4 (robust multidimensional ordering), but inner (accounting) data
were complemented by the market valuation (TOTR). Again using the
notation AV G± STD a long-term statistical comparison of the two time
series of valuations can be made: while 95.2± 8.8 characterizes the quality
of the purely inner valuation, the “mixed” outer/inner valuation was 59.8±
30.1. In other words, the former can, but the latter cannot be taken as
significantly different from the general mean 50%.

The quarterly values of cross-section orders of TOTR and E/P are also
shown in Fig. 24.8, their statistics were presented in Tab. 24.2. Because of
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Fig.24.8: MARKET GENERATES CHAOS
Scores of the Comp.A

the high volatility, it is impossible to judge, which of the three approaches
using the market data is the best. As shown in Fig. 24.8, all three can
sometimes concur as to the firm’s quality (94Q2), while at other times they
simultaneously disagree (1Q1), but most frequently, the three measures
diverge.

Instead of improving the results of the inner valuation, the additional
information that was hidden in the market data distorts the previous re-
sults. This rather disappointing outcome is not because the quality of the
external information ‘absorbed’ by the market is low, but rather by the
‘market psychology’, which encourages traders to react to news, whatever
the validity of the new developments may later turn out to be. The chaotic
character of this ‘shoot first and sort it out later’ approach is the most likely
source of the volatility of the market measures cited above. The develop-
ment of techniques tailored to the efficient and rapid extraction of only
useful information from the vast amount of data instantaneously available,
is badly needed, so that the information treatment used by managers and
traders for decision making can be improved. The robust MD-rating de-
scribed and illustrated in this section could become the nucleus of a better
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approach to these problems than what is currently in use.

24.2 Monitoring a Single Firm’s Economics

The multidimensional cross-section monitoring set out in the previous sec-
tion allows the relative financial position of a firm to be compared with
that of a number of other firms. The MD-rating “measures” the relative
overall performance through time by the order number assigned to the firm
by the process, but only in terms of, “over the past n quarters the perfor-
mance of firm X was evaluated by a higher score than those given a lower
order number.” Therefore, the order number is not directly interpretable
as an evaluation of the quality of performance such as: “the higher the
order number the better financial position now;” further analysis is needed
to establish, why this and not another MD-rating was obtained. The
most useful outcome of this approach, when it is applied to a time-series of
cross-section data, is a reliable indication, that the firm’s financial position
within the cross-section has changed. Information of this nature should
attract the attention of the financial managers, lead to a search for the
causes of the change, and to the taking of corrective measures.

Could robust multidimensional analysis be used to track the behavior
of a single firm? Such a potentially useful approach has several drawbacks:
it is insufficiently timely since cross-section accountancy data are available
only on a quarterly basis. Effective financial management requires a con-
tinuous flow of information so as to be able to take immediate action. This
is achievable within a firm, where up to date information systems register
all pertinent information needed for financial control; the ‘only’ problem is
to learn how to extract the relevant information from the rich data flows.
There is also an alternative approach based on robust multidimensional
models of the interdependence between financial ratios.

To show, that such a method could yield useful results, the quarterly
data of Comp.C, the company that was previously used in the cross-section
analysis (Fig. 24.3) will be used.

Let Rm,t (m = 1, . . . ,M , t = 1, . . . , T ) be a matrix, the columns of
which are composed of M ratios measured at time t and let an integer be
L > M . The following set of L equations is assumed to hold at each time
t ≥ L:

M∑
m=1

km,t ∗Rm,t−τ = 1, (24.11)
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where τ = 0, . . . , L − 1. The matrix R thus represents an M -dimensional
time series of financial ratios bound to an implicit linear regression model
km,t with a zero intercept. This model is time-dependent, it is valid at the
instant t for the ‘moving average’ (of length L) of R’s columns. By applying
a robust modeling method to each of the T − L + 1 moving averages it is
easy to obtain

1. a sequence of T − L+ 1 models kt,m (t = L, . . . , T , m = 0, . . . ,M), ie
of partial impacts,

2. a sequence of M ∗ (T − L + 1) of the fractional contributions of the
explanatory ratios to 1 (see 24.7),

3. a sequence of L ∗ (T − L+ 1) residuals (equation errors)

et,τ = 1−
M−1∑
m=1

km,t ∗Rm,t−τ . (24.12)

From all the residuals, the value obtained when τ = 0, is the most relevant,
because it is the difference between ‘what would be expected as a smooth
continuation of the process’ and ‘what really resulted due to the current
values of the explanatory variables.’ Each sudden change in an explanatory
variable is thus reflected by this residual. Figure 24.9 is an example of such
residual monitoring for two firms, Comp.C and Comp.A.

According to relation 24.12, a positive model error signals ‘the model
yields less than what would be expected by the moving average’. As seen
in Fig. 24.9R, negative residuals dominated in the case of Comp.C, while
Comp.A has the opposite tendency. Comparing these results with Figures
24.3 and 24.4, it is seen, that large residuals occur especially when sudden
changes in ratios take place after several ‘quiet’ periods (Comp.C at 97Q3
or 99Q4 or Comp.A at 94Q1 and 0Q1). To properly use Fig. 24.9, one must
understand, that ‘quiet’ does not mean, that the ratios’ values remained
constant, but that the relations between the ratios did not change. This
is because the effects of different ratios can compensate for each other’s
changes.

More sensitive signals of change can be derived from the contributions
of individual explanatory variables. Indeed, the ‘dependent’ variable (the
constant 1 in the case of implicit regression 24.11) is input from the ex-
planatory variables (km,t ∗ Rm,t−τ). Its composition changes with changes
in these variables (ratios Rm,t−τ) and corresponding changes in the model
coefficients km,t. An example of such changes in the structure of the equa-
tion’s right-hand side can be seen in Fig. 24.10.
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Fig.24.9: TIME SERIES MONITORING
Model Residues (Comp.C & Comp.A, L=6)

The sum of the contributions of all the explanatory variables/ratios
always equals 1 (24.11), but the make up of these contributions will change
over time. Because the sum must be 1, large positive impacts from a ratio
must be compensated by a strong negative impact in another ratio or
ratios. The total length of the columns in Fig. 24.10 is determined by the
sum of the absolute values of all the impacts. This length is close to 1
for relatively undisturbed cases (smooth changes in ratios), while sudden
changes are manifested by a large increase in total length such as 92Q3,
93Q3, 94Q1–96Q3 and 99Q1–0Q2. A comparison with the graphs of the
ratios in Fig. 24.3 reveals, that tall columns properly signal real changes
in the ratios. Moreover, the changing structure of the mean contributions
is reflected by the color patterns in Fig. 24.3, which in some cases show
the exchange of roles between individual ratios: a positive contribution
becomes negative and vice versa.

There also is an alternative to monitoring the structure of the impacts
shown in Fig. 24.10 based on a geometric idea: the M values of the con-
tributions at a moment t define a point (p(t)) in an M -dimensional space,
which moves at the next instant to p(t+ 1). An evaluation of the changes
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Fig.24.10: TIME SERIES MONITORING
Data: Comp.C, L=6

in the contributions’ structure can be obtained by calculating the distance
between points p(t) and p(t + 1). Of course, it is necessary to choose a
geometry, but in this case, it is a simple decision: Euclidean geometry is
suitable, because the bad robustness of its scalar product is advantageous
here; it helps to detect deviations from the smooth path of the represen-
tative point caused by the ‘outlying’ behavior of a ratio. The red columns
in Fig. 24.11 illustrate the use of the squared distances (sums of changes
in contributions) in monitoring the 5-dimensional time series of ratios of
Comp.C.

These can be compared with the sums of squared changes in the model
coefficients (partial impacts), which are also shown in Fig. 24.11 (green
columns). The information provided here differs from the previous views
due to its different sensitivity to disturbances (compare periods 94Q2–95Q2
with 99Q1–99Q3). The changes in the model’s coefficients play a role in
both cases, reflecting changes in ratios indirectly, however changes in the
contributions are also directly reflected in the ratio’s values. A question of
the type ‘which is better’ can be answered from the point of view of practice
with ‘both of them.’ However, there is one theoretical aspect favorable to
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Fig.24.11: TIME-SERIES MD-MONITORING
Model Changes of Comp.C

contributions: they are expressed in a dimension-less manner and all are
directly comparable as parts of the same whole (of 1 in the implicit case).

The general conclusion from the examples in Figures 24.9–24.11 is, that
robust multidimensional models applied to a time series of ratios of a single
firm can provide valuable information on the changes in the financial situ-
ation of the firm. This information is not in conflict with that obtained by
cross-section analysis (the MD-rating), which requires data on all firms in
the cross-section to be available. When these latter results are evaluated, it
must be remembered, that the sporadic quarterly data series were used in
both cross-section and time series analysis. For a firm’s managerial team,
much more frequent observations would be available, greatly enhancing the
practical utility of the monitoring.
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24.3 Explicit Multidimensional Clustering

24.3.1 Intra-industrial Clusters

Although marginal analysis yields useful information on the behavior of
complex objects, there still is a substantial difference between multiple
usage of uni-variate models and true multivariate models, because only
the latter can lead to the characterization of the interdependence of all the
variables. Multivariate analysis naturally involves the steps of marginal
and pair analysis as well as specific multidimensional techniques. It is not
surprising then, that the problems of data inhomogeneity and the robust-
ness of the methods described on the level of partial analysis also have
an impact on multivariate modeling. For example, recall Figures 23.12
and 23.13 showing through marginal analysis, that firms with different
working capital and leverage policies fell into different clusters. It was then
put forth, that this was probably because of different means of access to
financial markets. It then follows, that a model of the dependence of rel-
ative working capital on financial leverage in these groups would also differ.

Assume, that the idea of “economically comparable firms (firm A ∼
firm B) behaving in accordance to the same multidimensional model” has
been accepted. Recall, that inhomogeneity of working capital and finan-
cial leverage for firms of the chemical industry was shown in Chapter 23.
Therefore the natural implication “marginal inhomogeneity⇔multivariate
inhomogeneity” infers, that not all firms belonging to the same industry
are economically comparable, and that it cannot be expected, that a single
model will be a universally good representation of all firms in an industry
made up of several clusters, each represented by a different model. As
shown in previous sections, a single model of all firms in the two US in-
dustries could be useful for a special purpose (particularly, for M-ordering
of financial positions) although the possible inhomogeneity (and incompa-
rability) of all the ensemble of firms was not analyzed. This shortcoming
of the MD-rating provides only relative and approximative results, suit-
able especially for monitoring significant changes in the relative financial
positions of firms. To make really reliable comparisons, a more detailed
analysis is needed based on multidimensional clustering.

The problem that is faced is to decompose an inhomogeneous multidi-
mensional data sample (eg of financial statement data of firms of given
industries) into clusters of comparable firms (ie firms, which behave ac-
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cording to the same model).

Let a simple explicit (linear) model representing the mutual dependen-
cies of several ratios such as the following be chosen for a group of K
companies:

EBIT/TAk = K0 +K1 ∗RWCk +K2 ∗ TATOk +K3 ∗ TL/TAk, (24.13)

where k = 1, ..., K is the order number of the company listed alphabeti-
cally by ticker symbol, and EBIT/TA represents earnings before interest
and taxes (Compustat’s data 178) divided by total assets (data 6). The
variable RWC is the working capital divided by total assets 22.5, TATO
is the Total Asset Turnover (relative value of net sales, data12/data6) and
TL/TA denotes the ratio of total liabilities to total assets (data18/data6).
The choice of variables is one of several that could be made and it is
motivated principally by the ability to interpret the meaning of the ratios
directly:
EBIT/TA . . . the gross business return on assets,
RWC . . . liquidity,
TATO . . . activity, and
TL/TA . . . financial leverage.
Model 24.13 then describes the principal aspects of a firm’s financial health.

It is possible, that there will be no useful statistical solution to the sys-
tem of equations 24.13, when real data are used to identify the model’s coef-
ficients. This is illustrated with the previously used data set of the 54 com-
panies in the US Chemical Industry for 1995. The coefficients of the model
24.13 estimated by the basic statistical Ordinary Least Squares method
(OLS) are shown in Tab. 24.3 together with the main qualitative statis-
tical characteristic of a linear model, the multiple R-Square (R2). This
statistic (sometimes called the multivariate correlation coefficient) evalu-
ates the relative portion of the dependent variable’s variance explained by
the model. The model’s precision is given by the fitting error, MAE (Mean
Absolute Error), which is shown in the last column. It is preferred here to
the standard deviation (STD), because the latter statistic is not suitable
for models, which treat strongly uncertain data.
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Model Coefficients Quality
Method, Size K0 K1 K2 K3 R2 Fitting MAE
OLS, 54 0.142 0.00781 0.0320 -0.0804 0.141 0.0335
Gnost., 54 0.291 -0.142 -0.00860 -0.224 — 0.0336
Gnost., 32 0.2921 -0.143 -0.00857 -0.225 — 0.0109
Gnost., 10 0.271 -0.137 -0.00495 -0.232 — 0.0157
OLS, 10 0.271 -0.137 0.00505 -0.231 0.995 0.00151

Tab. 24.3 The search for a model of the main cluster 1

The first line of the table with the very low value of R-Square and the
unacceptably large fitting error shows, that there would be no statistically
acceptable model in the form of 24.13, which could explain the behavior of
all 54 sets of ratios. However, this result does not exclude the existence of
a subset (a cluster containing a smaller number of companies), for which
a good model can be found. Companies, which behave in accordance
to the same model are comparable—they react in the same way to the
same changes in their “input” variables. A set of such companies is
homogeneous. Accepting this point of view, the first line in Tab. 24.3 can
be interpreted as a demonstration of the inhomogeneity of the Chemical
Industry taken as a whole.

The second line is obtained, when the coefficients of the above model
are estimated using robust gnostic methods. The MAE of the model is
increased slightly due to the robustness of the procedure, which assigns
smaller weights than OLS to outlying points, while emphasizing the “cen-
tral” data in the most dense region of the multidimensional “cloud.” This
is shown in Fig. 24.12 by the blue line, which depicts the global view of
the whole cloud’s density (the density of the global distribution function
(EGDF) of the 54 modeling errors). The range of the modeling errors
is broad with a minimum of -0.098 and a maximum of 0.186. A more
detailed structure for these errors is obtained by means of the local distri-
bution function (ELDF), which is shown by the red line. The effect of the
method’s robustness is clearly seen: the model emphasizes the most dense
area of the cloud, which contains 32 companies, cluster “A”. An R-Square
is not computed, because the modeling method is not a statistical regres-
sion. The notion of statistical variance loses its meaning, when data with
gross errors are treated.

The second step is to identify the 32 companies, which make up cluster
“A”, to extract them from the initial data set, and to find their robust
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model (line 3 in Tab. 24.3). The density of errors for this model is shown
by the magenta line. Note, that the MAE decreases significantly from 0.036
to 0.0109. It is also seen in Fig. 24.12, that the ELDF of the 32 “kernel”
companies has a narrow central cluster (“B”) of 10 companies.

After separating the 10 companies of cluster “B,” the desired sub-sample
of comparable companies is obtained. This cluster’s model coefficients
(line 5 of Tab. 24.3), obtained using OLS, closely approaches those values
estimated by the robust method (line 4 of Tab. 24.3). The near coincidence
of these values demonstrates, that the model now explains the data’s
behavior very well and this is further supported by the OLS model’s
R-Square of 0.995 and by the very low MAE (0.00151). This whole
process, which results in the isolation of cluster “C” from clusters “A” and
“B”, is illustrated by the three density curves shown in Fig. 24.13 using a
more detailed scale of errors.

The concept of multivariate gnostic clustering consists of repeating the
robust modeling procedure to gradually extract individual homogeneous
clusters, thus decomposing the original inhomogeneous sample into its com-
ponents.

The “first round” of the multidimensional clustering described above
consists of the following steps:

1. The coefficients of the model 24.13 are estimated for all 54 companies
using a robust methodology.

2. The 54 sets of explanatory variables are substituted into 24.13 to
obtain estimates ˜EBIT/TAk for the observed values of EBIT/TAk

(k = 1, . . . , 54).

3. The vector ˜EBIT/TAk − EBIT/TAk of residuals (modeling errors)
is calculated for all 54 values of k.

4. The density of the local distribution function (ELDF) of the residuals
is calculated using a sufficiently small value for the scale parameter to
reveal the individual clusters as autonomous “hills” (the red density
curve in Figs. 24.12 and 24.13.

5. The highest of the density’s “peaks” and the density’s minima closest
to the main peak are found and the data between the two minima
are accepted as members of the main cluster A (the dim red frame in
Figs. 24.12 and 24.13 delimits the interval of cluster’s A data).

6. Cluster A’s data are extracted from the original data sample for fur-
ther analysis (there are 32 data in A).

The same process is applied to cluster B’s data, its main cluster C is
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formed by 10 data. The data bounds of cluster B are delimited by the
magenta frame in both Fig. 24.12 and Fig. 24.13.

After having extracted the homogeneous cluster C (number 1) contain-
ing 10 companies, the remaining 44 data form another inhomogeneous data
sample. The same procedures are repeated and gradually clusters 2 (14
companies), 3 (9 companies), 4 (8 cos.), 5 (5 cos.) and 6 (6 cos.) are iso-
lated. Two companies remain, which exhibit behavior so far removed from
the six models, that they must be considered as not belonging to the rest
of the industry. An examination of their data shows extremely low EBIT
(0.065 and 0.060), which is not “compensated for” by the expected value
of the other parameters RWC, RNS and/or RTLB. The characteristics
of the six cluster models are summarized in Tab. 24.4.
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Cluster Coefficients Quality
No. Size K0 K1 K2 K3 R2 STD

1 10 0.270 -0.137 0.00505 -0.231 0.995 0.0022
2 14 0.0861 0.221 0.0556 -0.0650 0.997 0.0024
3 9 0.333 -0.0686 -0.0583 -0.222 0.988 0.0057
4 8 -0.0959 0.128 0.159 0.0717 0.984 0.097
5 5 0.303 -0.0680 -0.129 -0.0310 0.986 0.0082
6 6 -0.784 0.583 0.418 0.760 0.998 0.0043

Tab. 24.4 Review of the models of six homogeneous clusters of
comparable companies in the US Chemical Industry, 1995.

The models of the individual clusters are all different and it is difficult
to find any regularity in their coefficients at first sight. However, their
statistics, R2 and STD, show that they all explain the data very well
indeed.

The arithmetic averages of the parameters of the individual clusters are
shown in Tab. 24.5.
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Cluster Mean Ratios
No. Size EBIT/TA RWC TATO TL/TA

1 10 0.111 0.215 1.137 0.587
2 14 0.135 0.162 0.964 0.625
3 9 0.127 0.224 1.182 0.551
4 8 0.136 0.130 1.075 0.606
5 5 0.149 0.106 1.001 0.589
6 6 0.157 0.156 1.069 0.530

All 54 0.130 0.170 1.067 0.591

Tab. 24.5 Mean of the ratios for the six homogeneous clusters of the US
Chemical Industry, 1995

This table shows, that there are large differences between the means
of the individual clusters. This is not particularly surprising since each
cluster represents a different set of “ratio behavior” patterns. To visu-
alize the different features of each cluster, it is useful to evaluate the
mean impact of the different ratios on the mean before tax business re-
turn on assets (AV G(EBIT/TA)) as Kx ∗ AV G(RX), where Kx are the
model’s coefficients from Tab. 24.4 (x = 1, 2, 3) and AV G(RX) represents
the mean value of the ratios taken from Tab. 24.5 (X = RWC, TATO
and TL/TA). These results are shown in Fig. 24.14 together with the
mean values of EBIT/TA (“Profitability”). “Liability” represents the
product K3 ∗ AV G(TL/TA) (financial leverage), “Liquidity” stands for
K1 ∗ AV G(RWC) and “Activity” is modeled by K2 ∗ AV G(TATO). The
averages are taken over all members of each cluster. The order of the rows
in the diagram is chosen so as to prevent one column from being obscured
by another and the clusters are ordered by the values of the debt impact
(Liability). This then provides a “snapshot” of the manner, in which each
cluster’s policies contribute to the firms’ profit.

As the last graph shows, the mean relative returns (AV G(EBITdTA))
for each individual cluster differ only slightly. The most striking differences
are seen in the impact of debt (AV G(TL/TA)), which is strongly positive
in cluster 6 and weakly positive for cluster 4, while the others manifest
a negative effect from debt with an increasing negative intensity from
cluster 5 through cluster 1. A possible economic interpretation is, that
since the firms in cluster 6 have such low relative financial leverage, they
could substantially increase their debt burden and still enhance their
profitability. This is also supported by the fact, that the members of this
cluster already have the highest value of profitability as well as a large
positive contribution to profit from liquidity and activity. (The sum of the
magenta, blue and green columns of a cluster, would equal the red column
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only after the inclusion of the intercept, which is not shown in the diagram).

The influence of financial leverage in clusters 4, 5 and 2 is close to
neutral; given the combined policies employed by these firms, the amount
of leverage taken on doesn’t appear to provide any significant contribution
to profitability.

The situation in clusters 3 and 1 is less clear: there are potential signs of
financial distress (the effect of debt is not offset by the other components
in the composite model). The negative impact of liquidity supports such
a conclusion. Yet profitability is at a respectable level, therefore one must
search for other causes to explain the apparent success of these firms.

The negative impact of activity in clusters 5 and 3 once again leads to
a search for a possible cause. Tables 24.4 and 24.5 imply, that the reasons
could be different in these two cases: TATO has the highest mean value
of all the variables in each of the clusters, but the negative coefficients of
the equation of clusters 3 and 5 indicate, that even a high level of sales
can be excessive and not increase efficiency. The low liquidity levels and
the negative impact of total liabilities on these firms would tend to infer,
that the problem probably lies with excessive plant and equipment (fixed
assets), perhaps recent acquisitions, which have not yet contributed to
sales.

An analysis based on criteria such as those displayed in Fig. 24.14 iden-
tify the features (operational policies), which can be used to classify firms
as members of one cluster or another, and it highlights the differences
between clusters.

General conclusions such as the following might be drawn:

• Firms in cluster 6 offer maximum return on assets due to the most ef-
ficient use of low financial leverage, a medium total asset turnover and
a relatively low liquidity. This cluster contains the best performing
companies.
• Cluster 4 is formed by good performing firms; their policies indicate

no problems.
• Companies in cluster 3 and 1 are the poorest performing firms in the

Chemical Industry, although they manifest the highest activity and
liquidity and do not appear to use excessive financial leverage. The
impact of these (not bad) financial parameters on the (still not bad)
profit is, however, negative thus warning of potential problems, which
could lead to financial stress.
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• Firms in clusters 5 and 2 can be classified as performing “on average”
between the “good” in 6 and 4 and the “bad” in 3 and 1.

This technique is useful for the selection of firms, which behave similarly,
and are therefore comparable to each other; it then presents a solution for
one of the problems set out earlier: how to identify groups of comparable
firms within an industry. The startling conclusion, that can be drawn
here, is that the ‘membership” of a firm in an industry is no guarantee,
that it will compare in economic terms with all the other members. Only
a portion of the firms appear to operate in a similar way (in accordance to
the same model) and in extreme cases there may be no comparable firm.
This inhomogeneity is probably caused by the application of the purely
qualitative classification criteria used for the definition of an industry.

The real danger, which results from this intra-industrial incomparabil-
ity and clustering of firms is relying on the usage of “typical”, “normal”,
“healthy” or even “recommended” values for financial ratios obtained by
averaging over a whole industry. Using the means of parameters of eco-
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nomically incomparable firms cannot provide useful or accurate results.

24.3.2 ‘Outer’ versus ’Inner’ Classification of Clusters

Classification by Stock Prices

Taking the analysis from the investor’s standpoint, a subjective evalua-
tion of the riskiness of the investment is necessary; the market prices risk,
and the resulting stock price is a reflection of the investment community’s
assessment of the firm’s future performance. Stock price then becomes a
natural candidate for one of the external measures of a firm’s performance.
The application of this idea to the six clusters identified above will now be
considered along with the results, which are summarized in Fig. 24.15.
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Three quartiles (quantiles corresponding to probabilities 0.25, 0.50
and 0.75) are shown in the columns of Fig. 24.15. These were robustly
estimated using the EGDF of stock prices of the firms in the six previously
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identified clusters. The performance ranking of the clusters based on
Fig. 24.14 and on their mean profitability EBIT/TA (Tab. 24.5) are not
in a full agreement: the best cluster (6) comes in second according to
the latter valuation, cluster 3, which previously was one of the worst
now surpasses the second best (4) (which becomes the second worst in
Fig. 24.15). This approach, incorporating market pricing, does not strictly
correspond to the valuation based on the ‘inner’ or accounting based view.

It must be recognized, that just as EPS, stock prices are functions of the
number of shares outstanding and saying, that the stock price of A is better
than B’s or improved more, etc. is not a very good performance indicator.
A more useful alternative is total return, defined as the relative annual
change of the stock price plus dividend per share (or other cash flow to the
investor). This benchmark takes into account both investing strategies,
the growth-oriented and the dividend based. A strong correlation of the
total return with stock prices was observed in Chapter 21 although a full
interdependence was not shown. It therefore seems reasonable to take the
market’s view into account through this measure. Regardless of its size, or
the number of shares outstanding, a firm returning 10% on its stock price
at the beginning of the year performed as well as another, that earned the
same amount, and better than another, that provided only 7%.

Classification by Total Returns

Total returns using closing stock prices and the annual dividend paid can
be computed for each of the previously identified clusters and the robust
distribution functions (EGDF) of returns for each cluster can be obtained
to provide a second measure for a market based performance evaluation.
Just as in Fig. 24.15 for stock prices, the three quartiles for total returns
are shown in Fig. 24.16.

Since the composition of the six clusters was made from financial state-
ment data without reference to either market price or total return, any
support from a market based evaluation for these same rankings can be
taken as strong support for the idea, that the multivariate analysis does
reveal substantial differences in the economic behavior of firms in the same
industry. This coincidence of ’inner’ with the ’outer’ valuation can seem to
be conflicting with Fig. 24.8, which manifested the rather chaotic behavior
of the market indicators. This seeming contradiction can be resolved by
emphasizing following:
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1. The indicators’ values shown in Fig. 24.8 were related to individual
firms, while Fig. 24.16 characterizes mean values of a group of firms,
which form the cluster. The averaging suppresses the volatility.

2. The valuations in Fig. 24.8 took into account all the firms and did not
respect differences between clusters, while Fig. 24.16 takes the cluster
structure into account.

A comparison of Fig. 24.14 through Fig. 24.16 offers the following com-
ments:

1. the ordering of clusters by stock prices differs from the ordering by
total returns, and is not particularly useful, as explained above,

2. the valuation of clusters by total returns discriminates the cluster’s
performances significantly more sensitively than a valuation by stock
prices,

3. the ordering by total returns is in full correspondence with the valu-
ation based on Fig. 24.14: cluster 6 is absolutely the best, cluster 4 is
the second best and clusters 3 and 1 are the worst with cluster 2 and
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5 performing ‘on average.’ The reversal of the positions of clusters 3
and 1 can also be explained:
• According to the total return, cluster 3 is worse than cluster

1, because more than 50% of its members earned negative to-
tal returns. In figure 24.14, cluster 1 was in the lowest place,
because the impact of financial leverage was slightly stronger
(K3∗AV G(TL/TA) = −0.587∗0.988 = −0.580) than in cluster 1
(−0.551 ∗ 0.995 = −0.548). However, the firms in cluster 3 suffer
from the strong negative impact of the asset turnover. In this
respect, both valuations put cluster 3 in the last place.

Multivariate clustering based on financial statement data has thus
shown, that several subgroups in the same industry may not be compa-
rable using simple ratio analysis, and it has revealed the possible causes of
such incompatibility showing both the existence of and the possible causes
for the inability to directly compare them on the basis of simple ratio anal-
ysis. When clusters of firms are identified as above, the firms within each
cluster are comparable to each other, and they behave in accordance to
the same model. These individual models then provide a base, which can
be used to:

• determine the operating policies of the member companies,
• provide a performance evaluation,
• rate each company as a potential investment candidate.

As a by-product of the analysis, it can be stated, that (in this case) the
rating view based on the individual firms’ financial statement information
was consistent with the outside view, the market’s evaluation based on
total returns, while an appraisal based on stock prices gave somewhat
conflicting results.

However, to forestall overestimation and misinterpretation of these re-
sults, the following cautions are offered: To belong to a certain—eg the
‘best’ cluster No.6 or the ‘worst’ one No.3—does not automatically mean
‘to be better/worse than all members of the other clusters.’ What it really
means is, that they ‘react in a similar way as other members of the same
cluster to some impulses and differently from members of other clusters’.
Equations 24.13 would hold even after multiplication of both sides by a
non-zero constant (lower/higher inputs ⇔ outputs). This means, eg, that
firms in a certain cluster can have different values for the dependent vari-
able. The coincidence of the inner and outer valuation (demonstrated by
Fig. 24.16) is shown for three quartiles.
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The ranges of total returns within a cluster can be very broad. This
prevents a reasonable ordering: total returns in the second best cluster
No.4 range from -0.11 through 0.93, while total returns in the ‘best’ No.6
are from -0.01 through 0.74. It is thus difficult to confirm the “global”
or “universal” superiority of No.6 over No.4 as could seem in Fig. 24.16.
Hence, demonstrated clustering does not provide a complete ordering of
all the firms’ performances, it ‘only’ delimits groups of firms similar in
economic behavior. A transparent example can be given from ordinary
life: cars differ by their power/weight ratio. A car from the most powerful
(and expensive) class/cluster accelerates faster than a car from the cluster
of weak (and cheaper) cars. Cars from the same cluster react to increasing
accelerator pressure in the same proportion. But, this does not mean, that
they always run at the same speed. It depends on the driver, some are
slow, while others take the vehicle up to its maximum speed.

The MD-rating and the multidimensional cluster analysis obviously
solve different problems and answer different questions. They should be
used together, and completed with an economic interpretation of the out-
come of the computations.

24.4 Implicit Multidimensional Cluster Analysis

24.4.1 Clustering in Implicit Models

As discussed in Chapter 17.4, there are two problems with using explicit
regression models:

1. the feed-back problem, and
2. conflicts between seemingly equivalent equations.

Both of the problems related to explicit equations can be eliminated by us-
ing implicit models. The existence of an implicit model can be easily shown
for the case, which is being illustrated. It was seen, that a system of six
homogeneous clusters satisfying explicit equations of the type 24.13 can be
obtained by multidimensional clustering. The homogeneity of the clusters’
models (their statistical acceptability) has been verified. Moreover, an
entirely independent check with mean values of total returns showed, that
such a partitioning of the firms is reasonable. Equation 24.13 can therefore
be taken as ‘granted’ and used as a point of departure for further reasoning.
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In order to measure more precisely the influence of the explanatory
variables, 24.13 will be modified slightly before going over to an implicit
model:

• profitability will now be evaluated by net profit defined by the ratio
EAT/TA,
• instead of using the liquidity ratio RWC (CA/TA − CL/TA), the

addends will appear as separate variables to be allowed to generate
their own weighting coefficients, because there is no real reason to
expect, that they affect ‘working capital’ by the usually accepted a
priori weights +1 and -1. Now, these variables will show their true
influence themselves,
• another change concerns the total liabilities TL (the sum of current

liabilities CL and long term debt LTD). A new ratio LTD/TA will
be used instead.

The explicit equation 24.13 is thus rewritten as follows:

EAT/TAk = K0 +Ka ∗ CA/TAk +Kb ∗ CL/TAk +

K2 ∗ TATOk +Kc ∗ LTD/TAk

(24.14)

for some k = 1, . . . , K. Two notes, which pertain to the intercept (con-
stant) K0 are in order:

1. The actual interdependence of each of the ratios is not necessarily
linear. In these cases, the linear equations model depicts the relations
between projections of the variables’ deviations from a fixed point
onto a tangential plane. The location of the point is determined by
the intercept’s value.

2. The variables on the right-hand side of the equation cannot completely
explain the behavior of the dependent variable. Therefore, the value
of the intercept incorporates the impact of factors not included in the
model.

In any event if K0 is not zero, equations 24.14 can be divided by K0 to
obtain the desired implicit equation

K
′

1 ∗ EAT/TAk +K
′

2 ∗ CA/TAk +K
′

3 ∗ CL/TAk+

K
′

4 ∗ TATOk +K
′

5 ∗ LTD/TAk = 1

(24.15)

The new coefficients, K
′

1, . . . , K
′

5, will give all the variables in the equa-
tion the same ’right’ to contribute to the joint result. None of the variables
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play a ‘special’ (dependent) role. After the coefficients are estimated, the
dependence of each ratio on the others can be obtained from the model
with no inconsistencies.

The computation of the optimal implicit model is analogous to the ex-
plicit case with one exception: Statistical programs, which evaluate the
multidimensional correlation coefficient (R2) need a non-zero variance for
the dependent variable to be substituted into the denominator of the pro-
portional ratio of variances. This is impossible if a constant plays the role
of the ‘dependent variable’, because its variance would be zero. There-
fore, if a statistical verification of clusters, which result from the implicit
analysis is desirable, it is to be performed on the explicit equivalent of the
implicit regression.

The main clusters of the modeling errors of the local distribution’s
(ELDF) density are determined and isolated just as in the explicit case and
the inhomogeneous data sample is decomposed into homogeneous clusters.
The coefficients K

′

∗ for the implicit equation system 24.15 applied to the
US Chemical Industry for 1997 are shown in Tab. 24.6.

Cluster Coefficient for the Ratio
No. CA/TA CL/TA TATO LTD/TA EAT/TA

I 1.231 0.639 -0.120 1.197 0.904
II 0.310 1.526 0.203 0.680 -0.046

III 0.264 0.823 0.174 0.849 2.636
IV 1.275 0.692 -0.164 1.250 0.427
V 1.437 1.050 -0.117 0.359 2.065

VI 2.060 -2.659 0.728 1.590 -4.941
Cluster Mean Contribution of the Ratio to 1

No. K
′
1 ∗ CA/TA K

′
2 ∗ CL/TA K

′
3 ∗ TATO K

′
4 ∗ LTD/TA K

′
5 ∗ EAT/TA

I 0.588 0.168 -0.164 0.339 0.068
II 0.134 0.418 0.225 0.227 -0.004

III 0.121 0.217 0.195 0.259 0.209
IV 0.437 0.145 -0.193 0.586 0.031
V 0.616 0.263 -0.136 0.138 0.118

VI 0.823 -0.552 0.629 0.510 -0.410

Tab. 24.6 US Chemical Industry, 1997: Coefficients of the implicit equation 24.15 and
mean contributions of the ratios to the right-hand side value (1) for each cluster

The results presented above suggest the following:

1. Imagine, that the mean value of the ratio CL/TA of cluster I has
increased by 1%. This increment multiplied by the coefficient K

′

2

(0.639) will increase the ”share” of the ratio by 0.00639. However, the
same relative increase in LTD/TA would increase its contribution
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by 0.01297, ie nearly twice as much. This implies, that changes in
non-current liabilities are a more powerful tool to control the financial
condition of a cluster I firm than changes in current liabilities. It is
easy to see in the upper part of Tab. 24.6, that an analogous relation
also holds for cluster IV, while in clusters II and V the relation is
in the opposite direction: current liabilities provide a much stronger
effect than the long term ones. The situation in cluster VI is entirely
different: the contribution of the two types of liabilities have opposite
signs, they “pull on the opposite ends of the rope.”
Taken from the perspective of a financial manager, assume, that he
considers the effect of acquiring an additional asset ∆A in the most
effective way. The denominators of all the ratios will change toA+∆A,
while the changes in the numerators will be proportional to coefficients
K
′

k. If the manager knows, to which cluster his firm recently belongs,
then the upper part of Tab. 24.6 solves his problem.

2. In providing the weights for CA/TA and CL/TA, coefficients K
′

1 and
K
′

2 are far from the ordinary equality (K1 = −K2), which is used to
establish the relative value of the working capital (RWC). This does
not mean, that the difference CA/TA − CL/TA cannot be used to
evaluate the firm’s liquidity, but it gives warning, that the effect of
the ratios is not simple nor is it constant through time, assumed as a
given, and known once for ever. Instead, as is seen from the diversity
of weights in Tab. 24.6, a careful data-based analysis is necessary in
each particular case.

3. Complementary information is offered in the lower part of the
Tab. 24.6, where the contributory “share” of each ratio to the sum
(1, see 24.15) is presented as the product of the equation coefficients
K
′

∗ and the ratios’ average value taken over each of the clusters6. It
is easy to see, that clusters I, V and VI are “CA/TA-dominated”
in the sense, that this ratio manifests its strongest effect. Using the
same term, it is possible to conclude, that clusters III and IV are
“TATO-dominated” and cluster II is “CL/TA-dominated”. A com-
plete description of the differences between clusters is of course more
complicated and it is given by the clusters’ full models.

6Observant readers will find, that the sum of each column in the rows of the lower part of Tab. 24.6
slightly deviates from 1. This discrepancy is caused by rounding.
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24.4.2 Comparison of Clusters by Odds

It was shown in Fig. 24.16, that clustering based exclusively on “inner”
information taken from the financial statements of chemical firms for 1995
was in agreement with the “external” evaluation produced from the total
returns of the firms in these individual clusters. This comparison made use
of three quartiles estimated from the global distribution functions EGDF;
but this is not the best use of the powerful instrument represented by
these functions. A knowledge of the quartiles does not permit an answer
to the most important question on the mind of an investor: what are the
chances of making a successful investment, or the flip side: what are the
risks? A formal statement of the question is: “given an industrial group
(a cluster of comparable firms) and choosing an acceptable level of total
return TRa for a firm from this cluster, what is the chance of exceeding
TRa?”

Chances are measurable by probabilities. To go over from data to proba-
bility is easy in gnostics because of the availability of distribution functions,
which can robustly estimate each desired probability directly from the data
without the necessity of an a priori assumption on the model. However,
many people are more accustomed to evaluate chances and risks in terms
of odds and transforming the relation between the probability p of an event
to odds in favor OIF of this event is very simple:

OIF =
p

1− p
. (24.16)

The following steps lead to the answer:

1. Perform a multidimensional cluster analysis of the target industry to
find the cluster (X), to which the firm to be tested belongs.

2. Estimate the global distribution function EGDF of TR for cluster X.
3. Define the event as exceeding the value TRa by a firm from cluster X

and determine its probability p := Pr{TR > TRa}.
4. Calculate the odds in favor of this event using 24.16.

Such an analysis is demonstrated below with data from the US Chemical
Industry for 1997 and 1998.

To make a useful comparison of the results over the two years, it is
necessary to take into account the substantial changes in market conditions
over this period (Tab. 24.7).

The arithmetic means of the characteristics in Tab. 24.7 illustrate how
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Year CA/TA CL/TA TATO NCL/TA ROA
1997 0.423 0.245 1.137 0.351 0.076
1998 0.399 0.241 1.078 0.378 0.062

Year EPS PS DIV/PS TOTR E/P
1997 1.932 37.409 0.018 0.181 0.053
1998 1.558 31.510 0.023 -0.138 0.050

Tab. 24.7: Means of ratios and indicators for the US Chemical Industry for 1997 and
1998.

different the market performance was in the two consecutive years. The
mean financial statement ratios were only a little worse, but the market
indicators declined significantly. The fall of stock prices is useful in estab-
lishing, that ’98 was a down market year, but it is not clear, what changes
there were in total number of shares outstanding, which puts a cloud on
the EPS figures. The most sensitive decrease was in the total returns
(which fell from 0.181 to -0.138) especially because of a tumble in stock
prices. The fact, that most firms try to maintain stable dividend policies,
even with declining earnings, can be seen by the increase in mean divi-
dends paid, which increased from 0.697 to 0.726 (to signal, that ‘things
aren’t all that bad’). This, together with decreased stock prices, resulted
in increased dividend yield (DIV/PS, dividends paid divided by the stock
price) from 0.018 to 0.023.

The real lesson here is in the E/P : Those, who held the stock over
the two year period took a bath, but the measure says, that investment
return didn’t change appreciably; what it really is saying is, that if you
buy the stock ‘now’ (31 Dec. ’98) and the earnings don’t go down in ’99,
then the return will be around 5% unless the stock price increases, but
isn’t the latter, what the investor is hoping will happen? Not a very useful
barometer!

The reaction of OIF of the clusters, shown for both years in Fig. 24.17
is interesting.

In 1997, the odds in favor of exceeding an acceptable value of total return
(set to 0.10) in all but one cluster were substantially greater than for 1998.
Since the odds in favor of success in throwing a coin is 1 (corresponding
to a probability 0.5), the data in Fig. 24.17 show, that investing in the five
higher clusters at the end of 1997 had a much better chance of success
than buying the two worst ones,‘f’ and ’g’. The odds for the best, cluster
‘a,’ were nearly 7. In contrast, the odds were less then 3 for all clusters in
1998, even for the best performing one. The chances of the worst clusters
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’f’ and ’g’ were no better than throwing a coin. These findings emphasize
the importance of careful analysis.

It can again be concluded, that

1. clustering based only on financial statement information identified
clusters of firms, which—evaluated through independent external ap-
praisal by the market—lead to reasonable conclusions with respect to
possible investor’s decisions,

2. the odds of success for different clusters in the same industry and in
the same year were significantly different by an order of magnitude,

3. the methodology was successful in both stable and transitory states
of the market.

The clusters in Fig. 24.17 were ordered only by odds, but the composition
of the clusters in both years was not necessarily made up of the same firms.
The order of odds does not coincide with the order of the mean values of
total returns, because the probability of an event depends not only on the



544 CHAPTER 24. ADVANCED FIN. STATEMENT ANALYSIS II

mean value, but also on the form and breadth of the distribution function
(on the volatility of the variable).

24.4.3 A Technical Note

The procedure of multidimensional cluster analysis described above and il-
lustrated by Figs. 24.12 and 24.13 is based on the robustness of the model-
ing, which emphasizes the main cluster over the interval of the most ‘dense’
occurrence of data. It enables purposeful manipulations with groups of
data, which lead to the isolation of the main cluster. The most efficient
way to apply this approach is interactive: to depict the residuals’ density
on the screen, to decide on the break-points between the main cluster and
the rest of data and to take out the main cluster manually step by step.
The disadvantage is the necessity, that the analyst personally participates
in the selection. There is an alternative suitable for full automation of the
process using the following cycle:

1. Robust estimation of the multidimensional explicit or implicit model,
2. calculation of fitting errors (residuals),
3. finding the largest absolute residual,
4. removing the ‘worst’ data vector,
5. repeating this sequence until an error or the least acceptable number

of data vectors is reached.

Although this simple approach frequently leads to usable results (as demon-
strated by Fig. 24.14 and other examples) it suffers from the disadvantage,
which can be demonstrated by the simple implicit equation: let C1 and C2

be coefficients of the implicit regression model, and R1 and R2 the corre-
sponding ratios. In an ideal case equation C1 ∗ R1 + C2 ∗ R2 = 1 holds.
However, it would also hold, when the ‘contributions’ to 1 is C1∗R1+C and
C2∗R2−C. In such a case, the firms in the same cluster could have a differ-
ent structure for their contributions to 1. To prevent this non-uniqueness
from occurring, another step can be included into the above cycle: “de-
termine and remove the data vector, for which the absolute deviation of a
contribution (say, Ck ∗ Rk) from the mean is maximum.” This approach
will be called the double elimination.

24.4.4 Inter-industrial Comparability

The existence of mutually incomparable firms within an industry was es-
tablished through multidimensional cluster analysis. This renders unus-
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able the popular idea, that “typical” values for financial ratios really exist,
and that they can be obtained as means or medians of the ratios of firms
belonging to the industry. The variety of factors, which determine the
‘membership’ of a firm within a cluster is broad and colorful and cannot
be reduced to a simple official classification bestowing membership. An
important question arises in this connection: does membership in an in-
dustry automatically imply, that the firm is not economically comparable
to firms in another industry?

In other word: do firms, which can be described by the same multidi-
mensional financial model, exist in different industries? The intra-industry
incomparability, which has been confirmed, adds complexity to financial
statement analysis. Were there a positive answer to the question of inter-
industrial comparability, the task would become much simpler. To gain
further insight into this matter, consider a mixture of 136 firms, 35 of
which belong to the US Chemical producers and the remainder to the In-
formation Technology and other branches of the High-Technology Industry.
The data source is the Compustat tape financial statements for the 1-st
quarter of 2001. There is no conflict to the fact, that the two industries
are dissimilar, they differ by raw, technology, products, market orientation,
tradition, dynamics, interdependence with other sections of the economy,
scientific background and many other aspects.

The first step is to verify the inhomogeneity of the whole set of 136
data vectors, which are composed of the ratios CA/TA, CL/TA, TATO,
TL/TA and ROA defined as EBIT/TA. An attempt to estimate the
explicit linear regression model of EBIT/TA explained by the other ratios
yields an R-Squared7 of 0.088, which means, that a hypothesis of possible
linear dependence is to be rejected. The standard error of the fit, 0.039,
would also be unacceptable.

An implicit multidimensional cluster analysis results in the separation
of 22 clusters, the parameters of which are summarized in Tab. 24.8. This
clustering was performed using the automatic double elimination process
repeated twice: only 12 of the clusters obtained in the first run had a
satisfactory quality (these are identified by numbers in the first column of
Tab. 24.8). The data of the ‘bad’ clusters were subjected to a second run,
which yielded the results denoted by letters. The series 1, 2, ... and A, B,
... correspond to the order, in which the clusters were obtained.

7This statistics is called Multiple coefficient of determination or Multidimensional correlation coeffi-
cient. It estimates the part of variance of the dependent variable explained by the model.
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Cluster Industry Quality

No. Size Hi-Tech. Chem. R2 STD of Y

CL Size HT CH R2 STD

1 6 1 5 0.9985 0.0012

2 6 5 1 1.0000 0.0009

A 6 5 1 0.9664 0.0155

4 6 3 3 0.9640 0.0042

5 6 6 0 0.9849 0.0228

B 6 2 4 0.9337 0.0109

C 6 4 2 0.9990 0.0016

D 6 3 3 1.0000 0.0001

E 6 6 0 0.9910 0.0124

F 6 2 4 0.9561 0.0094

11 6 5 1 0.9655 0.0103

12 6 3 3 1.0000 0.0001

G 6 4 2 0.9940 0.0025

H 6 4 2 1.0000 0.0002

15 6 1 5 0.9989 0.0011

I 6 4 2 0.9945 0.0032

17 6 6 0 0.9999 0.0004

18 6 6 0 0.9862 0.0097

19 6 4 2 0.9357 0.0047

20 6 5 1 0.9968 0.0119

21 6 6 0 0.9971 0.0040

J 6 4 2 0.9816 0.0067

Tab. 24.8: Cluster structure of the mix of firms from two industries, 2000Q1

Recall, that the R-Squared (R2) and the standard fitting error (STD)
were calculated for the explicit version of the regression models of indi-
vidual clusters. Models of all clusters are obviously acceptable from the
statistical point of view. Even in the case of the least precise cluster, B,
the R-Squared is not under 0.93. The worst standard error of the fit is
0.0228, (cluster 5). The total number of firms, that were clustered, is 132;
four firms did not fall into clusters. The reason is obvious, at least with
the outlying one, which had ‘record-breaking’ low TATO (0.043) and very
low CA/TA and CL/TA (0.047 and 0.060). In the other case , zero was
given for both CA/TA and CL/TA and CL/TA was very high (0.93, the
third highest and uncompensated by other ratios).
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The principal finding from Tab. 24.8 is, that there really are firms, which
operate according to the same multidimensional model (being thus compa-
rable), although they belong to different industries. Out of the 22 clusters
only five were ‘clean’, composed only of companies belonging to a single in-
dustry. The question of the economic comparability of firms is thus far from
trivial: an industry does not represent a homogeneous collection of firms.
The intra-industrial comparability of firms is not automatically warranted,
while inter-industrial comparability does exist. Therefore, a multidimen-
sional analysis is necessary before a judgement as to comparability can
be made; this complicates matters, but on the other hand, the existence
of inter-industrial comparability might simplify an industry wide analy-
sis: analyzing a sufficiently representative number of firms from different
industries would perhaps yield a finite variety of multidimensional mod-
els of ratios. A company could be matched to a cluster by identifying the
model with the smallest ‘distance’ from the vector of ratios of the firm; this
would then allow it to obtain a classification as a ‘similar firm,’ as a mem-
ber of the subject cluster. It is to be emphasized, that this comparability
is based on the similarity of vectors of impacts, the components of which
are summed to approximate 1 (the ‘dependent’ variable on the right-hand
side of the modified implicit equation 24.15). In other word, comparable
firms ‘generate’ the addends on the left-hand side of the implicit equation
in a similar way. This structure is thus the firm’s ‘economic image’. All
addends contributing to 1 are dimensionless and the vector can be thought
of as a point in an abstract vector space endowed with a Euclidean metric.
The distance between points attached to individual firms (or clusters of
firms) can be easily calculated eg as the mean square difference between
the vectors’ components to answer the question “how far is firm A from
firm B”. To illustrate the idea of inter-industrial comparability, consider
a large computer firm CF1, which was assigned to cluster No.4 together
with three companies from the US Chemical Industry (CI1, CI2 and CI3).
Three other well-known computer firms CF2, CF3 and CF4 each fell in
different clusters. It is useful to have a look at the distances between CF1
and all these companies (Tab. 24.9).
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Company Industry Cluster Distance from CF1

CI1 US Chemistry 4 0.074

CI2 US Chemistry 4 0.062

CI3 US Chemistry 4 0.065

CF2 US Hi-Tech Ind. E 0.126

CF3 US Hi-Tech Ind. 17 0.203

CF4 US Hi-Tech Ind. 21 0.273

Tab. 24.9: Inter- and Intra-industrial Distances of CF1, 2000Q1

The mutual distances of the three other computer firms are not much
less than that from CF1: CF2-CF3 0.114, CF2-CF4 0.263 and CF3-CF4
0.324. These examples confirm the thought, that firms, which are techno-
logically very different, can be similar in terms of their economic behavior,
while firms that are similar from the technological standpoint can operate
with very different economic characteristics. It can be concluded, that the
multidimensional economic model is thus not uniquely determined by the
industry, to which firms officially belong.

24.4.5 Structure of Clusters

A rough description of the clusters identified in Tab. 24.8 can be obtained
from Fig. 24.18.

The clusters are ordered by the mean returns EBIT/TA of the firms,
from which they are composed. (These values are shown by the red line).
The color of the columns reflects the clusters’ structure by the mean con-
tributions to 1 of the individual ratios of its members. It is easily seen,
that the color patterns of the clusters are unique, with no duplication in
their makeup. In each case, the sum of the lengths of the columns in each
cluster (when respecting the sign of contributions) is 1 (plus or minus the
relatively small modeling error). The size of columns gives a hint as to the
volatility of cluster’s parameters. So eg in the case of the cluster J (de-
noted CLJ) the sum which equals 1 is obtained as the difference of several
contributions, which have opposite signs. Small relative variations in such
‘fighting’ components can result in a strong overall variation in the sum.
Clusters with long columns of opposite signs can be thus expected to be
more volatile than clusters, the columns of which are positive (eg CLB and
CL1).

The size of a column leads to a judgement as to the dominating role of
some ratios. So eg clusters CL12, CL15, CL18 and CLB are TL/TA-
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dominated, while clusters CL2, CLF, CL17, CL11, CL1 and CL4 are
CL/TA-dominated.

Useful information can be conveyed by signs of the contributions. The
role of total liabilities (TL/TA) is positive in nearly all the clusters with
the exception of CL17, for which the partial impact (coefficient of the
regression model) is negative, while the ratio’s mean is always positive.
The TATO ratio is also always positive, but its partial impact is negative
in 12 clusters; this ratio must compensate for the strong positive effects of
the others. The prevailing role of CA/TA and CL/TA is positive. This
type of information can be valuable to a financial manager as he tunes the
intensity and direction of his control activity.

The high variability, which was noted, might give an initial impression,
that there is no regularity in the relationship between the financial ratios.
However, it is shown in Fig. 24.19, that a regularity does exist, but that it
is a general tendency rather than a strict interdependence.
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The smooth lines were obtained by a linear fit, which approximates the
dependence of CA/TA and CL/TA on TATO (their curvature is due to
the logarithmic scale applied to TATO). The economic interpretation of
these results is straightforward:

1. The faster total assets turnover, the higher the current assets and
current liabilities that must be kept available.

2. The general tendency is to maintain a reasonable level of relative
working capital equal to the difference CA/TA− CL/TA (the space
between the green and red lines).

3. The general tendency is, that working capital increases with increasing
TATO from about 0.2 to more than 0.3.

A close look at individual pairs of CA/TA and CL/TA in Fig. 24.19 jus-
tifies the use of the expression ‘general tendency’, because the relations
between these quantities in individual cases vary significantly. Examples
of the variability of ratios within a cluster are shown in Fig. 24.20.
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Firms in clusters I, 18 and H earn approximately the same return
EBIT/TA, but the makeup of their ratios is different: the contributions
of TATO are large and positive in CLI, but negative in CL18 and CLH.
The role of TL/TA is dominating in CL18, but much weaker in CLI.
The most intense effect of CA/TA is in CLH. It is also obvious, that
membership in a certain cluster does not mean, that the right-hand
value, 1, is obtained in the same manner, the similarity of ‘patterns’
of the contributions is volatile, although the partial impacts (regression
coefficients) are identical for all firms in each cluster. These are all shown
in Tab. 24.10 together with the impacts in clusters CL4, CLE, CL17 and
CL21, to which CF1, CF2, CF3 and CF4 belong.

To complete the comparisons, the mean values of the ratios in these
same clusters are given in Tab. 24.11. Note, that ratios in the last four
lines of Tab. 24.11 are not the individual values of CF1, CF2, CF3 and
CF4 for the first quarter of 2001, but the arithmetical means over the
clusters, to which these companies belong.
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Cluster CA/TA CL/TA TATO TL/TA EBIT/TA Hint

CLI 1.09 -0.17 3.55 0.37 -10.89 In Fig. 24.20

CL18 2.64 -1.15 -1.76 1.67 2.67 In Fig. 24.20

CLH 1.93 -0.23 -1.51 0.95 -7.00 In Fig. 24.20

CL4 1.48 -0.17 -0.69 0.41 6.69 CF1’s cluster

CLE 0.97 -0.64 0.33 0.87 0.28 CF2’s cluster

CL17 2.23 -0.95 0.08 -0.82 6.99 CF3’s cluster

CL21 0.14 -6.92 10.71 1.38 -4.59 CF4’s cluster

Tab. 24.10: Partial impacts of ratios in several clusters

Cluster CA/TA CL/TA TATO TL/TA EBIT/TA Hint

CLI 0.456 0.250 0.159 0.559 0.021 In Fig. 24.20

CL18 0.083 0.103 0.129 0.681 0.021 In Fig. 24.20

CLH 0.452 0.274 0.220 0.710 0.022 In Fig. 24.20

CL4 0.518 0.260 0.282 0.517 0.039 CF1’s cluster

CLE 0.735 0.330 0.324 0.438 0.010 CF2’s cluster

CL17 0.759 0.446 0.842 0.553 0.017 CF3’s cluster

CL21 0.452 0.136 0.161 0.243 0.040 CF4’s cluster

Tab. 24.11: Arithmetical means of ratios in several clusters

The data presented in both tables demonstrates, why and how these
four companies are not comparable from the point of view of their financial
statements.

24.4.6 Interval Analysis of Ratios

The notion of interval analysis was introduced and explained in Chapter
16, section 16.4. It is a method, which examines the reactions of the lo-
cal distribution function ELDF to the extension of the data sample by an
additional varying datum. Due to the special kind of robustness associ-
ated with the ELDF, its location parameter (quantile of the local maxi-
mum of probability density denoted Z0) remains in the toleration interval
[Z0L,Z0U ] even if the additional datum were to vary from −∞ through
+∞. Moreover, the location parameter’s reaction to an increasing added
datum typically is to move in the same direction as the added datum only if
the datum’s value does not exceed the bounds of the typical interval of the
data sample (ZL and ZU). All the typical points can be defined mathe-
matically and an algorithm can be used for their estimation. These bounds
for the data of quarter 1Q1 are summarized in Tab. 24.12 together with the
lower and upper bounds (LB and UB) of the data support. The latter val-
ues were estimated by using the distribution function EGDF along with
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the scale parameter used to calculate the bounds of the other intervals.
Given the methodology, that was used to establish the clusters, it is not
surprising to find, that all five ratio samples were found to be homogeneous,
although the data stem from two entirely different industries.

Point CA/TA CL/TA TATO TL/TA EBIT/TA

LB 0.005 0.047 0.001 0.000 -0.115

ZL 0.385 0.203 0.159 0.384 0.0030

Z0L 0.505 0.263 0.225 0.532 0.0187

Z0 0.509 0.266 0.227 0.535 0.0189

Z0U 0.512 0.268 0.229 0.538 0.0191

ZU 0.659 0.353 0.315 0.702 0.0357

UB 2.922 5.006 1.812 1.363 0.558

Tab. 24.12: Bounds of data intervals

The table demonstrates how narrow the toleration interval is: the loca-
tion parameter is very robust to large changes in the added datum. The
intervals of typical data are relatively broad, their width depends on the
variability of data. The financial parameters of the firms in each cluster
can be classified and visualized by introducing the following symbols to
represent the bounds (R represents the ratio’s value):

LT := ZL ≤ R < Z0L. . . lower typical value,
CT := Z0L ≤ R ≤ Z0U. . . central value,
HT := Z0U < R ≤ ZU. . . higher typical value,
> T := ZU < R < UB . . . over typical value.

An interval analysis applied to the ratios from the financial statements
of the two US industries for quarter 1Q1 resulted in a distribution of ratios
with the intervals shown below in Tab. 24.13.

Interval CA/TA CL/TA TATO TL/TA EBIT/TA

< T 38 51 32 32 31

LT 36 21 33 39 40

CT 0 2 0 0 0

HT 29 30 31 38 31

> T 33 32 40 27 34

Tab. 24.13: Incidence of ratios within specified intervals

With a total number of 136times5=680 occasions for 332 cases (roughly
1/2) the ratios fell into the interval of typical data. In 184 cases the
ratios were under typical, and in 166 cases they were over typical. The
distribution is thus not far from being symmetric.

Using the firms shown in Tabs. 24.9 through 24.11 as examples:
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Firm CA/TA CL/TA TATO TL/TA EBIT/TA

CF1 LT > T HT > T HT

CF2 > T > T > T HT LT

CF3 > T > T > T HT > T

CF4 < T < T LT < T > T

Tab. 24.14: Classification of ratios of well-known companies in the US High-Tech
Industry

From the point of view of interval analysis, the main (and important)
difference between CF2 and CF3 is in their return on assets: with similar
(relatively high) levels for four ratios, CF3 obtained a higher return.

Not less interesting is the case of CF4, which had a return greater than
the typical bound although the four ‘explanatory’ ratios were rather low.

The results of interval analysis, although based on exact numerical anal-
ysis, provides a qualitative evaluation of a firm’s financial position. How-
ever, the advantage of this approach lies in its synoptic form.

24.5 A Case Study: Dirty Financing

The power of advanced financial statement analysis can be demonstrated
by an application to an actual problem:

Countries, that pass through the transient phase from socialism to a
market economy must overcome problems not only of an economic na-
ture, but also of a moral and judicial character. A suitable example is
the “invention” of an alternative way of financing a commercial activity by
using “cheap credit” hidden in the slow payment of liabilities. Countries,
which have a long history of an established market economy generally have
regulatory provisions to protect against such misuse of commercial credit
relationships. These include contract discipline, legal restrictions and the
development of a business philosophy, which imbeds not only the Old Tes-
tament rule “an eye for eye, and a tooth for a tooth,” but also the New
Testament Golden Rule “do unto others as you wish them to do unto
you.” However, in countries with transitory economies, both legal and
moral environments are (at least temporarily) in flux and “dirty” financial
manipulations are more common. Even where capitalism has long thrived,
changes in the structure of the economy open similar loopholes, which are
rapidly exploited8. This generally goes far beyond ‘zero balance’ accounts

8In Europe, after WW-II, when the individual remained pretty much on a cash basis, the expansion
of the food distribution industry and the early emergence of supermarkets, for instance, allowed these
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or the relatively rare practice of using a distant subsidiary to handle local
payables. But the idea is still the same: to expedite collections and to
slow down outflows thereby maximizing the float. Such abuses would be
extremely expensive in an established economy, both from the legal stand-
point as well as from retaliation by commercial associates. Moreover, it
goes against the “going concern” generally accepted principle of accoun-
tancy, which assumes the long term viability of the firm and the good will
necessary for this to come about. But the penalties are nowhere near as
severe in countries, where a large, fast, one time profit is possible, because
firms were established with that idea in mind, and where a court takes
years to decide commercial conflicts.

The most efficient protection against such undesirable trading partners
is to recognize them in time and to avoid them. Such identification is
possible by using financial statement analysis. The amount of current re-
ceivables CR divided by operating costs OC incurred for the accounting
period (say, a year) represents the time of a current receivables cycle, the
reciprocal value of current receivables’ turnover. Current liabilities CL di-
vided by operating income OI is an estimate of the duration of a revolution
of liabilities, the reciprocal value of current liabilities turnover. The lower
CR/OC, the faster the payment for a firm’s products/services, the more
desirable the clients. The lower CL/OI, the better the behavior of a firm
with respect to its “creditors.”9 The ratio

RI =
CL/OI

CR/OC
(24.17)

can be called relative insolvency. The ordinary notion of insolvency is
defined ([25]) as:

Inability of a person to pay debts as they fall due. This is
sometimes called practical insolvency, when the term absolute
insolvency is used to mean, that liabilities of a person are greater
than the assets of the person.

The case characterized by the ratio RI differs from the definition cited

institutions to use 90 day commercial credit to fund their rapid growth at very little cost until the use of
individual credit became more prevalent. The enactment of Commercial Credit Codes lead to a reduction
in the opportunity for abuses of this kind.

9Many firms use ‘standard measures’ to track their performance in these areas: the Collection Period
(AR/(S/360)), where AR is the value of receivables, and S is sales in the period in question. The analogue
for payments is (AP/(COGS/360)), where AP are accounts payable and COGS is cost of goods sold.
Because these ratios are not very useful in cases, where sales vary substantially over time (seasonality
or other reasons), there are variants to this, which relate receivables/payables to sales/COGS for the
month, in which they were created.
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above for insolvency, because the debtor is able to pay, but is unwilling
to do so. The applicability of this type of insolvency is thus more subjective
than it is objective. Therefore, the lower the value of the ratio, the more
solvent the firm in terms of its ability and willingness to pay its debts.

A numerical example based on data from a sector of the Construction
Industry in the Czech Republic for 1997 is used to illustrate the problem
as well as to suggest a potential means of solution by using advanced
financial statement analysis10.

The global distribution function EGDF of the relative insolvency (RI)
in Fig. 24.21 shows, that the problem really exists, as only about 30% of
the values of RI fell under 1.
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This means, that in more than 70% of the firms, creditor-debtor rela-
tions could be characterized as using their partners as a source of ‘dirty

10The data do not cover all firms in the industry, but only 29, which used the financial services of a
bank, which was kind enough to make the statements for 1997 available for the analysis.
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credits.’ The green squares symbolize the positions of individual firms
identified by the bank’s client numbers (the data for three firms out of
a possible 32 were not complete.) Recall, that RI = 1 corresponds to
equal turnover of current receivables and liabilities; the larger RI, the
more abusive the policies of the debtors. As the figure shows, the imbal-
ance between turnovers can be really significant with RI far exceeding 1.
A multidimensional cluster analysis can be enlightening as the following
implicit regression model demonstrates:

K1∗RIk+K2∗TL/NSk+K3∗TATOk+K4∗CE/CLk+K5∗EBIT/TAk = 1,
(24.18)

where k = 1, . . . , 29, and where the listed financial relations were used:
RI. . . relative insolvency index 24.17,
TL/NS. . . total liabilities divided by net sales, ie the estimated lifetime of
debt,
TATO. . . total asset turnover (net sales divided by total assets), a measure
of activity,
CE/CL. . . cash and cash equivalents divided by current liabilities, a
measure of liquidity,
EBIT/TA. . . earnings before interest and taxes divided by total assets, a
measure of profitability.

The mean value of each ratio in every homogeneous cluster divided by
the median of all the clusters is shown in Fig. 24.22.

Clustering revealed earthshaking differences in the behavior of firms
belonging to different clusters:

1. Firms in cluster A manifest the best financial position in the sense
of having maximum return on assets and the highest liquidity and
activity. In spite of this, these firms are the worst partners in terms
of highest relative insolvency: they could pay, but don’t want to. The
longest life of debt signifies high financial leverage and supports the
impression of the risky behavior of the A cluster.

2. In contrast, firms in cluster C, which have practically the same finan-
cial position including financial leverage display much better consid-
eration toward their creditors with a lower RI.

3. The lowest RI is found in cluster E, the firms of which are in the
worse financial position with respect to their core ratios.

Since the decomposition of firms into clusters is known, further infor-
mation can be obtained by calculating the distribution functions EGDF of
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RI within each cluster. These results are in Fig. 24.23:

1. The distribution of RI for cluster A affirms the worse expectations:
the probability of RI reaching a value of 1 or less is zero and it is very
high, that extreme values of RI will be attained; eg the probability of
exceeding a value RI = 9 is about 0.1!

2. The distribution functions reveal more detail of the firms’ character
than the mere mean values of RI: Members of cluster C with the sec-
ond best financial performance and a modest mean value of RI leave
80% of their creditors waiting for much longer than they themselves
wait for the payment of their receivables. The percentage in cluster B
is the same, but their creditors’ wait is even longer. The most favor-
able probability (about 0.6) of having an RI of less then 1 is for firms
of cluster D, but their distribution function has the largest spread on
both sides of 1: such high volatility can be interpreted as doubtful
reliability for prediction.

3. A nearly ideal and balanced behavior is shown by the distribution
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function of cluster E, which has an unusual form, sharply bounded
from both sides. Large deviations from 1 thus have a probability of
zero.11

A potential associate might interpret the above as:

1. Stay away from firms of type A: they are dominated by self interest
and will make poor trade partners.

2. Be cautious in developing relations with types B and C, particularly
the former, due to their apparent systematic recklessness.

3. While firms of type D have the best overall distribution of RI, the
volatility of the group is very high, and it would be wise to examine
an individual firm’s distribution function over time before entering
into a long term commitment.

4. Firms in cluster E are the most stable and appear to display the best
long term reliability even though their performance vis a vis their

11Note in Fig. 24.22, that the cluster’s E profitability was the worse of all clusters. An ugly and sad
thought intrudes: doesn’t this amount to a penalty for being honest among dishonest fellow-travellers?



560 CHAPTER 24. ADVANCED FIN. STATEMENT ANALYSIS II

financial statements is marginal; ie they may not be doing very well
for themselves, but perhaps because they are in need creditor support,
they are willing to behave properly.

These conclusions pose a nearly philosophical question: does the best fi-
nancial position of cluster A and the worst for cluster E come about in
spite of the bad/good ethical policies of the firms or because of this be-
havior? There is only one certainty: such large scale of behavioral patterns
cannot have a long life.

The importance (or weight) of each of the five ratios with respect to
each other can be seen in Fig. 24.24.

One last thought can be tendered with respect to the operating poli-
cies cited before leaving this example: The figure shows the proportional
importance of the elements of the implicit equation 24.18. The strongest
impact is that of relative insolvency, which points to the fact, that testing
for the presence of such a “phoney insolvency” should not be neglected in
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the historical evaluation of the Czech economy, and indeed it could prove
valuable in the analysis of other economies in transition.

24.6 On the Internal Information System of a Firm

The recent state of information technology is advanced enough to make the
idea of a firm without an internal information system unthinkable. Highly
developed information systems are offered on the market and high costs of
both purchasing and operating these systems are generally considered as
being fully compensated by the convenience they provide to firms’ manage-
ment. However, a critical analysis of the functions of these systems results
in a certain degree of scepticism: they suffer from imperfection in the final
treatment of the rich databases they create and maintain. They ensure
collection of data on all levels of a firm’s activity, classify the data and
accumulate them in databases, make data available both for analysts and
some relatively simple automated functions such as report or statement
composition, but the high level of automatic data processing currently
available for application to technological control and information systems
is far from a reality in the present state of business information systems.
The functions of a module of financial statement analysis (if any exists)
are limited to what was critically analyzed in Chapter 22.

One should expect, that the information system of a firm based on recent
know-how in computers and networks automatically includes a module to
perform the tasks of

1. evaluating the financial position of the firm,
2. preparing recommendations to assist financial managers in optimum

decision making of the financial management,
3. monitoring cash flows,
4. automatic warning of unusual or even dangerous states of the firm’s

economic status,
5. both operational and long-term predictions,
6. etc.

In other word, such a module should perform the functions of advanced
financial statement analysis and other functions illustrated by examples
provided in this book. It can be expected, that performing these tasks will
require (among others) the ‘continuous’ (as frequent as possible) monitor-
ing the firm’s multidimensional data series as well as checking the firm’s
relative financial position within the cross-section of its economic environ-
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ment.

24.7 Summary

A broad spectrum of the tasks of advanced financial analysis can be solved
using the means provided by robust gnostic methodology, especially the
use of gnostic distribution functions and robust regression models (both
explicit and implicit types) together with a regression in probabilities:

• Robust multidimensional modeling of interactions between the finan-
cial parameters of firms,
• multidimensional ordering of the financial position of firms leading to

an objective (mathematical) rating,
• reliable and sensitive cross-section analysis of groups of firms,
• robust monitoring of multidimensional time series,
• multidimensional cluster analysis of groups of firms resulting in sub-

groups of economically comparable firms,
• classification of the financial positions of firms based on robust interval

analysis,
• creation of software capable performing the tasks of advanced financial

statement analysis in the environments of the internal information
systems of firms.

The real effects of gnostic multidimensional analysis were demonstrated by
examples of applications to real data.



Chapter 25

Contributions to Market Analysis

25.1 Industry Comparisons

25.1.1 Cross-section Analysis

Recall, that the first stage of the cross-section analysis (the marginal anal-
ysis in section 23.2.5) dealt with the probability distribution of a given
variable (eg a financial ratio of a given type) estimated using data taken
from a group of objects (eg an industry) at a fixed point in time (eg a
year or a quarter). If they are needed, homogeneity tests are run on the
data samples at this stage and possible inhomogeneities are eliminated by
means of marginal (univariate) cluster analysis. The second stage of the
cross-section analysis focuses on the time series of these marginal (one-
dimensional) distribution functions. The most detailed insight into the
structure of the cross-section data can be obtained by using a multidimen-
sional structure analysis with robust modeling techniques.

The application of marginal analysis to illustrate the development of
the distributions of the total returns (TR) of the US Chemical Industry is
illustrated in Fig. 25.1 in a manner similar to that used in Fig. 23.8.

The quarterly data of 36–38 companies make up the data set and the
time period covered spans 90Q2–01Q21. Time is on the horizontal axis of
Fig. 25.1, while the vertical axis measures the probability of values of total
returns TR expressed in percent, ie as 100 ∗ Probability(%). The lines
drawn on the graphs connect points/quantiles, which correspond to one
of nine levels of probability: the lowest magenta line thus traces values of
TR not exceeded by 2% of the companies in the US Chemical Industry

1Symbol 90Q2 again stands for the “Year 1990, Quarter 2.”

563
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during any quarter. The bold green line corresponds to the medians of
the distribution functions, ie it connects the quantiles of probability 0.5.
The vertical distance between quantile lines measures the interval between
values of TR (their ‘spread’ in percentage form). So eg the vertical distance
between the 98% and the 2% quantile lines represents the interval of TR,
which is covered by 96% of the companies in the Industry. A glance at this
family of quantile lines provides a general view on the development of the
TR over the time period 1990Q2–2001Q2: the median of the TR traces a
slow and small oscillation about its long-term arithmetic average of 0.071
(the long-term median is 0.082). The marks on the graph’s lines for each
quarter show 9 values of the probability distribution function representing
the time at Q. The following general characteristics are observed:

Stationarity: The process cannot be taken as stationary: all the quan-
tile lines have too much variability; relatively quiet periods such as
94Q1–96Q1 are followed by turbulent periods similar to 90Q2–92Q3
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or 98Q1–01Q2.
Changing distributions: The forms of the cross-section distribution

functions can change both smoothly (91Q4–93Q2) and discretely,
or suddenly (98Q3–98Q4, 99Q2–99Q3 and 01Q1–01Q2).

Symmetry: The cross-section distributions can be nearly symmetrical
(98Q1) as well as strongly asymmetric (91Q1, 93Q4, 01Q2).

The complex variability of the process does not permit the volatility to
be described by a single number such as variance.

It also follows, that the process cannot be characterized by using an
a priori ‘prescribed’ and easily parameterized distribution function of a
standard type or—in the even worse case—by numerical statistics such
as means, variance or others. Graphs in the form of Fig. 25.1 are more
universal, and they bear much more information.

25.1.2 Comparison of Industries by Cross-section Analysis

The analytic results obtained in the preceding sections came about through
the application of gnostic algorithms to data representing the US Chemical
Industry. And, it was shown there, that not all companies in this indus-
try are comparable to each other (see section 23.2.7). The industry was
made up of several clusters, each of which was formed from firms, that
behave in accordance to the same multidimensional model, which binds
the firms’ financial ratios. The models of the individual clusters differ; this
means, that companies belonging to different clusters behave differently in
the sense, that they do not respond in the same way to identical changes
in the same financial ratios. Intra-cluster comparability thus exists, while
inter-cluster comparability generally does not. The intra-industrial compa-
rability of firms becomes a no trifling problem, which calls for the careful
analysis considered above. This raises an important and an interesting
question: Does inter-industry comparability even exist?

To examine this issue, data characterizing different industries, oriented
toward high technology, and therefore substantially different from the
Chemical Industry were taken over the same period. The sample was com-
posed of 89–120 firms2, mainly involved in the consolidation of the crude or
natural gas extraction, refining or transmission process, electrical services,

2Sample sizes (number of firms with a complete set of available data for a quarter) varied nearly each
quarter.
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computers, and various aspects of wireless technology.

A graphical presentation will be used for the first stage of the cross-
section analysis. An important feature of such a summary for numeric
data is, that it is more easily perceived than a numerical representation:
people are ‘not designed’ to view digits like computers. However, people
are endowed with high-capacity, high-resolution, broad-band optical infor-
mation channels and a brain to analyze an image in the blink of an eye.
A careful observer can therefore easily discern both similarities and differ-
ences between the two industries by comparing Fig. 25.1 with the analogous
graphs of the US High-Tech Industry, Fig. 25.2:
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Volatility: The variability of the TR for Hi-Tech is much stronger.
Performance: The bold green lines of the medians show (at least over the

period 90Q4–98Q1) a systematically better level of TR in High-Tech
than for Chemistry (the long-term average over the whole interval
90Q2–01Q2 for the two groups of firms is respectively 0.0774 and
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0.0309).
Common external impacts: In spite of large differences in economic

and technological orientation, both industries are obviously subjected
to strong impulses initiated by the overall economic system. This is
manifested by nearly synchronous reactions in both graphs (90Q2–
90Q4, 98Q3–98Q4, 99Q3–99Q4) to the same external impulses as well
as by the striking similarity of the forms of median lines over 90Q2–
99Q4.

Phase shift: The reactions of the Chemical Industry are not always
strictly synchronous to those of the High-Tech Industry: the former
lagged the latter about a year and a quarter over the whole period
91Q3–95Q2 attaining a synchronous movement over 95Q3–99Q1, but
with an amplified sensitivity, manifested especially by steeper losses
in the case of Chemistry (98Q2–98Q3 and 99Q3) then reaching the
level of High-Tech in 99Q2. The comparative behavior changed fur-
ther after 00Q1, when High-Tech began its long lasting slump, while
Chemistry behaved in a relatively relaxed manner and then rose to a
record level in 00Q4. It is also worth noting, that in 01Q2 a much
larger portion of the Chemical Industry had positive TRs, while gains
and losses of the High-Tech Ind. were still well out of balance.

A more detailed comparison of both industries using distribution and den-
sity functions of the total returns for 2000 is in Fig. 25.3.

This example shows, that a ‘black-and-white’ conclusion of the type
‘Industry A performed better than Industry B in 2000’ cannot be drawn:

1. Chemistry’s results had a steeper probability distribution and a
sharper and more concentrated density function with a maximum
at TR = 0.199, while the same location parameter for the High-Tech
was -0.132. Hence, Chemistry’s expected performance was much bet-
ter and less volatile than that of High-Tech.

2. The probability of falling into the ‘red numbers’ (TR negative or zero)
was about 0.18 for Chemistry and 0.67 for High-Tech. Hence, it is
expected, that Chemistry will turn in a better performance.

3. Chemistry’s probability density falls to zero at about TR = 0.6, while
there is no such a cut-off in the case of High-Tech. The probabil-
ity of exceeding TR = 0.6 is zero for Chemistry with about 7% of
High-Tech’s firms having a chance to reach these much higher returns.
Hence, in this respect, Chemistry was worse.
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The drastic change in behavior of the two industries, which took place in
98Q1, can also be seen in Fig. 25.4: the robust means of stock prices—
although on differing levels—ran parallel to each other during the long
period 90Q2–98Q1.

The fast fall of the High-Tech Industry in 98Q1–98Q2 was matched
by only a modest decline in Chemistry’s prices, after which the prices
movements diverged: over (98Q3–00Q1) chemical stock prices rose rapidly,
while the technical firms continued to decline. A further deterioration of
High-Tech’s prices in 99Q4–00Q3 was followed by Chemistry, but lagged by
a quarter: the rapid return of technological equities to their former highs
in 00Q3–01Q1 was not imitated by the chemical group.

These examples show how useful the modern tools of analysis can be
in announcing, that something indeed did happen, and what and how
it happened in processes documented by data. The first portion of the
analytic effort can be made efficient in this manner. However, there remains
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another task, to explain why an event occurred. To do this, further effort
is necessary and it requires both additional data and advanced analytic
tools.

25.1.3 The Marginal Comparability

To demonstrate some of the differences between the Chemical and Hi-Tech
Industries, Fig. 25.5 compares the evolution of the quarterly total returns in
these sectors together with the total of all US industry (the red columns).

The total is naturally the most stable, while both industries fluctuate
significantly. The High-Tech Industry strongly outperformed the US in-
dustrial total in 9 out of 13 quarters, while showing better results than
Chemistry in all 13 periods. Chemistry bettered the industrial total in
only 4 cases. It can also be observed in Fig. 25.5, that both the High-Tech
and the Chemical Industries followed and reacted more drastically to the
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negative development of the US industrial sector (see especially the period
98Q1 through 98Q3 in Fig. 25.5 and the corresponding fall of the quan-
tiles in Figs. 25.1 and 25.2). However, the main point of Fig. 25.5 is, that
Chemistry behaved differently from the High-Tech industry and both of
them differed from the industrial composite.

This conclusion is further supported by Tab. 25.1, which compares char-
acteristic values of the five fundamental financial ratios. The results from
both industries, considered separately, are shown together with the com-
bined ratios. There were 40 companies in US Chemistry and 110 firms
in Hi-Tech. The combination was subjected to tests of (marginal, ie uni-
dimensional) homogeneity. Twelve out of 15 samples appeared to be ho-
mogeneous. The only samples with outliers concerned the ROA. (Note
the different sample sizes in the last column of Tab. 25.1, which presents
sample sizes of homogeneous samples and subsamples.)

Symbols:
RWC. . . working capital divided by total assets,
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TATO. . . total asset turnover (sales divided by total assets),
TL/TA. . . total liabilities divided by total assets,
ROA. . . return on assets (earnings before tax divided by total assets),
TR. . . total return (relative change in the stock price plus dividend yield),
LB. . . the lower bound of the data support estimated by EGDF,
Min. . . minimum of the data sample,
LSB. . . the lower bound of the sample estimated by EGDF,
RMed. . . robust median (quantile of probability 0.5),
LP . . . location parameter of EGDF (location of maximum density),
USB. . . the upper bound of the sample estimated by EGDF,
Max. . . maximum of the data sample,
UB. . . the upper bound of the data support estimated by EGDF.
Size. . . the number of data in the homogeneous sample.

Ratio Ind. LB Min LSB RMed LP USB Max UB Size

RWC Ch. -4.887 -0.240 -2.297 0.136 0.144 0.490 0.485 0.658 40

RWC HiT. -0.264 -0.090 -0.264 0.238 0.231 0.888 0.715 0.893 110

RWC Both -0.444 -0.240 -0.443 0.207 0.194 0.748 0.715 4.212 150

TATO Ch. 0.000 0.076 0.001 0.257 0.273 0.451 0.444 0.676 40

TATO HiT. 0.021 0.076 0.021 0.257 0.260 2.912 1.554 2.990 110

TATO Both 0.003 0.076 0.004 0.256 0.264 2.955 1.554 2.960 150

TL/TA Ch. 0.000 0.161 0.001 0.626 0.653 1.488 0.970 1.491 40

TL/TA HiT. 0.028 0.126 0.126 0.496 0.516 2.974 1.696 2.977 110

TL/TA Both 0.000 0.161 0.000 0.535 0.564 2.849 1.696 2.951 150

ROA Ch. -0.031 -0.014 -0.014 0.021 0.020 0.236 0.053 0.285 39

ROA HiT. -0.074 -0.042 -0.074 0.021 0.020 0.137 0.106 0.138 107

ROA Both -1.729 -0.142 -0.865 0.021 0.023 0.155 0.106 0.159 149

TR Ch. -8.206 -0.634 -3.985 -0.023 -0.011 0.829 0.548 0.830 40

TR HiT. -1.022 -0.580 -1.021 0.054 0.008 7.150 1.460 8.724 110

TR Both -1.080 -0.634 -1.079 0.024 -0.009 7.195 1.460 8.434 150

Tab. 25.1: Comparison of fundamental financial ratios of two US industries
and of their combination, based on data for 1999.

(Ch. . . . Chemical Industry, HiT. . . . High Technology Ind.)

The most noticeable differences between the two industries are seen in
the performance of RWC and TR: all the characteristics of the Chemical
Industry are significantly lower than those of the Hi-Tech group. For TR,
this finding corresponds to Fig. 25.1, but the pattern in Tab. 25.1 allows a
conclusion as to the form of the probability distribution to be made: Nei-
ther of the distributions of TR are symmetrical: very low values for the
Chemistry and very high ones for the Hi-Tech Industry can be expected.
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Very low values of RWC are also more probable in the Chemical Industry,
while there are high probabilities of attaining large values of TATO and
TL/TA in the Hi-Tech Industry. There are also interesting differences in
the ROA: although the means (RMed and LP ) of both industries coincide,
high returns are more probable for Chemistry. Note, that here is no con-
tradiction between the vividly opposite relationship between the ROA and
TR of the two industries: ROA is an objective (accountancy) parameter
independent of the market’s evaluation, while TR is strongly dependent on
the market’s ‘point of view’, which is a product not only of expectations
of future performance, but also of the reigning mass psychology, invest-
ment ‘fashion’ and other subjective factors3. It is to be emphasized, that
this conclusion is valid only for 1999; these relationships are fluid and do
change over each year and quarter.

A brief comment with respect to the results obtained for the combina-
tion of both industries: they fall in between the two industries, obscuring
any distinguishing features of the specific industries together with the op-
portunity to distinguish their individual identities.

At this point, a tentative conclusion can be put forward, that member-
ship in an industry may be an important specific feature, which cannot be
neglected in the marginal analysis of financial ratios, for it can establish a
set of bounds for these measures, that apply to that group of firms. From
the point of view of marginal analysis, enterprises belonging to different
industries are not comparable to each other4, a specific analysis of the
relationship of the financial ratios of each industry is necessary.

25.1.4 Comparison by Correlations

The marginal incomparability of firms belonging to different industries
manifested by the substantial differences in the distributions of individual
financial ratios as seen in the previous section does not necessary imply
multidimensional incomparability. Enterprises are comparable, when they
behave in a similar way and they behave in a similar way, if they are
subjected to the same multidimensional model of relations between their
fundamental financial ratios. When examining different cars, one finds,
that the relations between such parameters as the car’s weight, the power
of its engine and acceleration are similar for different types of cars. This

3Recent developments in the market shows, that the figures in Tab. 25.1 can be interpreted as a serious
warning, that the market was overestimating the real potential of the Hi-Tech Industry.

4At least for the group of industries treated here.
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Correlations in US Chemical Industry

Ratio RWC TATO TL/TA ROA TR

RWC 1.000 0.237 -0.734 0.360 0.007

TATO 0.237 1.000 -0.138 0.098 -0.001

TL/TA -0.734 -0.138 1.000 -0.532 -0.330

ROA 0.360 0.098 -0.532 1.000 0.139

TR 0.007 -0.001 -0.330 0.139 1.000

Correlations in US Hi-Tech Industry

Ratio RWC TATO TL/TA ROA TR

RWC 1.000 0.227 -0.659 0.337 -0.035

TATO 0.227 1.000 0.055 0.204 -0.257

TL/TA -0.659 0.055 1.000 -0.432 -0.105

ROA 0.337 0.204 -0.432 1.000 0.092

TR -0.035 -0.257 -0.105 0.092 1.000

Tab. 25.2 Robust correlation matrices of fundamental ratios
for two US industries, data for 1999)

is a natural consequence of the Laws of Mechanics, the validity of which is
universal. Such strict regularities have not been discovered in economics,
but this does not mean, that firms can behave quite arbitrarily, without re-
specting any constrains. This point can be demonstrated by examining the
robust correlation coefficients of several financial ratios for firms belonging
to the two different industries considered above:

The symbols for the ratios are identical with those in Tab. 25.1. Both
similarities and differences are observable in Tab. 25.2. Interdependencies
of (RWC, TATO), (RWC, TL/TA), (RWC, ROA) and (ROA, TL/TA)
can be considered as revealing an analogous mechanism in both industries.
On the other hand, correlations (ROA, TATO) differ, while interactions
(TL/TA, TATO) have the opposite sign. However, the behavior of TR
differs substantially. The impact of TATO on TR is negligible in Chem-
istry, but strongly negative for the Hi-Tech Industry. The negative effect
of TL/TA on TR is three times stronger in Chemistry than in the Hi-Tech
Industry. Therefore, it can be expected, that the multidimensional models,
which include TR and the bulk of each of the industries will be parame-
terized differently. A multidimensional cluster analysis applied jointly to
the two industries will be useful in clarifying this point.
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25.1.5 Comparison Using MD-models

The problems of multidimensional models were examined in sections 24.3
through 24.5. It was shown, that within an industry, there can be sev-
eral clusters of firms, which are comparable within their cluster, but not
comparable with firms in other clusters. On the other hand, comparable
firms operating according to the same MD-model can be found in different
industries. This situation does not allow one to speak of the MD-model
of an industry nor to compare separate industries by “their” MD-models.
It also was shown, that the means of ratios in different clusters can have
very broad ranges. It is not the values of the ratios themselves, which are
decisive for the inclusion of a firm into a cluster, but the pattern of the
whole set of ratios.

These findings are important in financial statement analysis, because to
make a judgment as to “good” or “bad” financial ratios, comparability is
decided not by membership in an industry, but by belonging to a cluster
of firms potentially formed from different industries.

An attractive task, the solution of which could vastly simplify routine
procedures of both financial statement analysis and financial management,
can now be designed. The idea is to split the process into two stages:

Assembling a catalogue: A general ‘stocktaking’ of multidimensional
models for all the industries by multivariate cluster analysis, which
should provide

1. the formulae for the multidimensional models of all the clusters
found,

2. the parameters of distribution functions of the models’ residu-
als obtained by application of the models to all members of the
cluster,

3. comments on the specifics of the cluster’s model and on the per-
formance of each cluster’s membership.

This job could be performed by teams of skilled analysts in specialized
firms (eg such as rating agencies). The catalogue would take the form
of a data base and since all these relations are dynamic, would include
a program for its routine periodic revision.

Use of the catalogue: A judgment as to the financial position or with
respect to a necessary control action related to a particular firm would
consist of following steps:

1. Preparing the data on the firm.
2. Running the program to query the data base to find a cluster of
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the most comparable firms:
(a) Step by step substitution of the firm’s parameters into the

clusters’ models to compute the modeling error (residual).
(b) Probability evaluation of the error by using the distribution

function of the cluster’s residuals.
(c) Determination of the most suitable model, ie the model, for

which the tested firm’s probability of error would differ the
least from 0.5.

It is obvious, that these steps can be automated.
3. Collecting and examining the comments on the specific features

of the cluster’s firms in the database.
4. Making a decision based on the information gathered.

This stage would not require any special analytical/mathematical skill
from the user. Nevertheless, the decisions taken would likely lead to
successful outcomes because of the principles of advanced analysis
implicitly applied.

The main message of this section is: firm-to-firm as well as industry-to-
industry comparability exists and can be effectively used to make judge-
ments on the financial position of member firms, but the real picture is
much more colorful than what is seen, when only trivial financial state-
ment analysis is applied.

25.1.6 Comparison Using Interval Analysis

A profound look at the behavior of industries over time can be obtained
by using Interval Analysis. Such an example was discussed in subsection
24.4.6 and is illustrated in Fig. 25.6.:

1. High stability of bounds of typical data: intervals of typical data
are narrow for all the ratios considered. Moreover, their width does
not change significantly with time, it only shifts to sensitively reflect
overall changes in the ratio values. Therefore, these bounds can be
used as reliable numerical characteristics for the classification of data
ranges.

2. Changes over time within industries: the relative total liability TLdA
is the most stable indicator in both industries, while total returns
change in the most sensitive manner.

3. A strong asymmetry is caused by data, which are outside of the typical
intervals. This is especially true for the most volatile ratios ROA, TR
and RWC.
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4. The structure of intervals (especially those of typical data) for both
industries are similar.

It can be concluded, that interval analysis can be useful to reveal fine
differences between industries reliably and to judge the significance of the
impacts of common ‘external’ factors, that influence the industries.

25.2 Stock Market Analysis

The history of mankind is inseparable from the historical development of
markets. History has its milestones ordinarily arising from the great inven-
tions of the human mind. The creation of money allowed market history
to be subdivided into two periods: the barter age, and intermediation.
Another leap in the development of markets resulted from the invention of
shares, the ‘moneyless money’ that has gradually taken over the reins of
the world economy. The dominant role of markets has become a permanent
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fixture in all facets of human development; it is no surprise, then, that the
market mechanism is a permanent subject of analyzes, the special focus of
which is on two important topics:

1. The ability of the market to generate economic stability: ‘the role of
the invisible hand.’

2. The efficiency of the real markets: the setting of prices and the allo-
cation of resources.

Without getting too deeply embroiled in economic theory, a brief exami-
nation of these points of view can shed some light on current thinking in
these areas.

25.2.1 The Invisible Hand Revisited

It has been popular in recent times to cite Adam Smith in support of
whatever economic policy is being espoused, regardless of the orientation of
the proposal. While many of the principles, which he developed in Wealth
of Nations [102], are as applicable today as they were in 1776, when the
work was first published, the words that are bandied about are all too
often plucked off of pages, which have little bearing on the subject being
debated. Commentaries ranging across the economic continuum use this
vast work to undergird their broadly diverging propositions. Given these
varied referrals, it seems appropriate at this juncture to review several of
Smiths’s ideas and to put them into their initial context. The most often
quoted phrase, referring to the invisible hand appears only once in this
work of over 1000 pages. Its setting is a discussion of foreign trade:

. . . As every individual, therefore, endeavors as much as he can
both to employ his capital in support of domestic industry, and
to direct that industry that its produce may be of greatest value;
every individual necessarily labours to render the annual revenue
of the society as great as he can. He generally, indeed, neither
intends to promote the public interest, nor knows how much he
is promoting it. By preferring the support of domestic to that
of foreign industry, he intends only his own security; and by di-
recting that industry in such a manner as its produce may be of
greatest value, he intends only his own gain, and he is in this, as
in many other cases, led by an invisible hand (bold face supplied)
to promote an end which was no part of his intention. Nor is it
always worse for the society that it was no part of it. By pursuing



578 CHAPTER 25. CONTRIBUTIONS TO MARKET ANALYSIS

his own interest he frequently promotes that of the society more
effectually than when he really intends to promote it5 . . . [102].

The thrust here was for support of domestic markets and production
over the importation of goods because of the inability to supervise and
control invested capital far from home. The hand in guiding the invest-
ment and productivity of capital, would increase the domestic output and
thereby increase the welfare of the society. With the existence of rapid
communications, this is no longer the case today, when securities or goods
may be traded instantaneously almost anywhere in the world. Further,
he advocated the purchase of foreign goods, when their prices (and their
costs of production) were less than would be the case were they produced
at home.

When the produce of any particular branch of industry exceeds
what the demand of the country requires, the surplus must be
sent abroad and exchanged for something for which there is a
demand at home. Without such exportation, a part of the pro-
ductive labour of the country and the value of its annual produce
diminish6.

Smith’s economics, and the setting of prices for commodities are based
on perfectly competitive markets, not on the oligopolistic structure which
has developed in the industrialized world. Hence:

These ordinary or average rates [for the employment of labor and
stock] may be called the natural rate of wages, profit and rent, at
the time and place in which they commonly prevail.
When the price of any commodity is neither more nor less than
what is sufficient to pay the rent of the land, the wages of the
labour, and the profits of the stock employed in raising, preparing
and bringing it to market, according to their natural rates, the
commodity is then sold for what may be called its natural price.. . .
The actual price at which any commodity is commonly sold is
called its market price. It may be above or below its natural price.
The market price of every particular commodity is regulated by
the proportion between the quantity which is actually brought to
market, and the demand of those who are willing to pay the
natural price of the commodity7. . .

5Book 4, Chapter 2, pp 485
6Book 2, Chapter 5, pp.463
7Book 1, Chapter 7, pp 62-63
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Under these circumstances, efficient allocation of resources leads to lower
prices, and growth. On the other hand, market power leads to the erosion
of competition and eventually to monopolistic domination.

Variations in supply and demand will affect the costs of the factors of
production and the profit earned so as to keep the price of the commod-
ity above or below the ‘natural’ price, but only if there is freedom for the
market to react to developments and adjust to change. With free entry,
increases in competition lead to a reduction in prices and profit as com-
petitors attempt to enter the market:

But though the market price of every particular commodity is in
this manner continually gravitating, if one may say so, towards
the natural price, yet sometimes particular accidents, sometimes
natural causes, and sometimes particular regulations of police
[policy], may in many commodities, keep up the market price,
for a long time together, a good deal above the natural price8.

Therefore some of the parties to the economic contract may have an
interest in dampening these fluctuations:

It is to prevent this reduction of price, and consequently of wages
and profit, by restraining that free competition which would most
certainly occasion it, that all corporations, and the greater part
of corporation laws, have been established. . . . But this preroga-
tive of the crown [to control and regulate incorporation] seems to
have been reserved rather for extorting money from the subject,
than for the defense of the common liberty against such aggressive
monopolies9.

However, at some point in the development of an economic system,
a civil framework of law and regulation becomes necessary. This would
occur, when the accumulation of property exceeds the immediate needs of
the consumer.

Wherever there is great property, there is great inequality. For
every rich man there must be at least five hundred poor and the
affluence of the few supposes the indigence of the many10.

. . . The rich, in particular, are necessarily interested to support
that order of things, which can alone secure them in the posses-
sion of their own advantages. Men of inferior wealth combine to

8Book I, Chapter 7, pp 67-68
9Book I, Chapter 10, pp 142-143

10Book V, Chapter 1, pp 766
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defend those of superior wealth in the possession of their prop-
erty, in order that men of superior wealth may combine to defend
them in the possession of theirs.
. . . Civil government, so far as it is instituted for the security of
property, is in reality instituted for the defense of the rich against
the poor, or of those who have some property against those who
have none at all11.

However, acquisition of market or monopoly power acts against the
individual’s ability to pursue his independent agenda.

A monopoly granted either to an individual or to a trading com-
pany has the same effect as a secret in trade or manufactures.
. . . The one [monopoly price] is upon every occasion the highest
which can be squeezed out of the buyers, or which, it is supposed,
they will consent to give; the other [natural price] is the lowest
which the sellers can commonly afford to take, and at the same
time continue their business12.

To give monopoly of the home-market to the produce of domestic
industry in any particular art or manufacture, is in some measure
to direct private people in what manner they ought to employ
their capitals, and must, in almost all cases, be either useless or
a hurtful regulation13.

Those, who lean on Smith to support greater regulatory control speak to
his condemnation of the demeaning nature of the repetitive tasks imposed
by the specialization of labor,

. . . His dexterity at his own particular trade, seems in this manner
to be acquired at the expense of his intellectual, social, and martial
virtues. But in every improved and civilized society this is the
state into which the laboring poor, this is, the great body of the
people must necessarily fall, unless government takes some pains
to prevent it14.

or the restrictions on the mobility of labor and the free choice of employ-
ment in one trade or another.

Though men of reflection too have sometimes complained of the
law of settlements as a public grievance; yet it has never been the

11Book V, Chapter 1, pp 771
12Book I, Chapter 7, pp 69
13Book IV, Chapter II, pp 485
14Book V, Chapter 1, pp 840
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object of any general public clamor, such as that against general
warrants . . . There is scarce a poor man in England of forty years
of age, I will venture to say, who has not in some part of his life
felt himself most cruelly oppressed by this ill contrived law of
settlements15.

Let the same natural liberty of exercising what species of industry
they please [for displaced workers], be restored to all his majesty’s
subjects, in the same manner as to soldiers and seamen [who
could choose any employment once discharged from active ser-
vice]; that is, break down the exclusive privileges of corporations,
and repeal the statute of apprenticeship, both which are real en-
croachments upon natural liberty, and add to these the repeal of
the law of settlements, so that a poor workman, when thrown out
of employment either in one trade or in one place, may seek for
it in another trade, or in another place, without the fear either of
a prosecution or of a removal16. . .

Smith was very critical of regulation and government intervention in the
marketplace, which is where the proponents of open markets obtain their
ammunition. Yet, as we have seen, he was very conscious of the distortions
brought about by the application of market power, and thus the need for
oversight and control of these activities.

It is thus that every system which endeavours, either, by extraor-
dinary encouragements, to draw towards a particular species of
industry a greater share of the capital of the society than what
would naturally go to it; or by extraordinary restraints, to force
from a particular species of industry some share of the capital
which would ordinarily be employed in it; is in reality subversive
of the great purpose which it means to promote. It retards instead
of accelerating, the progress of the society towards real wealth and
greatness; and diminishes, instead of increasing, the real value of
the annual produce of its land and labour.
. . . the sovereign has only three duties to attend to; three duties
of great importance, indeed, but plain and intelligible to common
understandings; first, the duty of protecting the society from the
violence and the invasion of other independent societies; secondly
the duty of protecting, as far as possible, every member of the
society from the injustice of or oppression of every other member

15Book I, Chapter 10, pp 162-163
16Book IV Chapter 3, pp501
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of it, or the duty of establishing an exact administration of justice;
and, thirdly, the duty of erecting and maintaining certain public
works and certain public institutions, which can never be for the
interest of any individual, or small number of individuals, to erect
and maintain; because the profit could never repay the expense
to any individual or small number of individuals, though it may
frequently do much more than repay it to a great society17.

Therefore the greatest benefit is derived by letting the normal course of
events take its own path:

. . . The natural effort of every individual to better his own con-
dition, when suffered to exert itself with freedom and security, is
so powerful a principle, that it is alone, and without any assis-
tance, not only capable of carrying on the society to wealth and
prosperity, but of surmounting a hundred impertinent obstruc-
tions with which the folly of human laws too often incumbers its
operations18.

Much of the present argument to let the market determine the true
price of an asset glosses over the requirement for ‘perfect markets’ and
the costless flow of information available to all participants. Indeed, these
imperfections are at the root of the recent turmoil. Among others:

1. the vast amount of and rapidity of the flow of information coupled to
the limited ability to analyze and digest its implications in a timely
manner,

2. rationing information: special briefings for large investors, etc.,
3. biased analysts’ reports and recommendations,
4. symbiotic relationship between banking and investment,
5. mechanical trading rules for large blocks of securities (program trad-

ing) automatically triggered at predetermined price levels,
6. the ‘kinship’ syndrome, news affecting one firm tarring all the others

in the same industry segment,
7. the misapplication of the ‘true and fair’ principle in financial reporting.

Adam Smith’s invisible hand could be alive and well today, but only
if the environment were to permit the individual to freely pursue his own
interests. Unfortunately, the glut of data, the paucity of good analysis,
and the monolithic bureaucratic structure of big business and government
impede the exercise of the simple self-serving actions, which would allow

17Book IV, Chapter 9, pp 745
18Book IV, Chapter 5, pp 581
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it to function properly.

The history of the past several centuries has shown, that Adam Smith’s
ideas on the inherent power of the free market are capable of develop-
ing national or regional economies in an impressive manner. The invisible
hand of the market really exists and it works in principle, but only if it has
proper information as raw material. This thought suggests a comparison
to Darwin’s thesis on the development of biological species: What those
processes were that went missing were only partially exploited by nature,
and could have led to . . . better adapted, more useful, more highly spe-
cialized . . . living forms, or what detours could have been taken before
final outcomes were achieved, will never be known. On the other hand, the
development of the world’s economies has also had its failures and (verba-
tim!) dead ends. But unlike the case of natural history, it allows questions
about missing or at least underestimated elements to be asked as well as
answered: information. The invisible hand of the market is blind with-
out information and the decisions based on incomplete, fuzzy or even false
information are chaotic, counterproductive and even dangerous. Theories
dealing with market efficiency emphasize the role of information, however
this does not automatically mean, that the market’s recent performance
has been due to the influence of the best quality of information available.

Returning to Fig. 24.8, it is possible to state, that the market indicators
really behaved in a chaotic manner, while the tools of advanced analysis
revealed the true development of the financial position of a real economic
object. This statement was strongly supported by Fig. 25.4, which was
able to explain the historical performance of the object.

25.2.2 Is the Stock Market Really Efficient?

In recent years, market theory has been dominated by versions of the
efficient-market hypotheses developed in part from a paper written by
Kendall [43]. Market efficiency relates to the extent, that information is
costlessly and timely available to market participants, and already imbed-
ded in stock prices. The idea, that prices moved in a random walk had
been proposed years earlier by Bachelier [3] as well as popularized more
recently by Malkiel [73]. If all information about a company is reflected
in the firm’s stock price, then only new information can cause prices to
change. Since good news is equally likely as bad news, then prices have
an equal probability of rising or falling. Typically, two independent and
diametrically opposed approaches are taken to exploit this information set.
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The fundamentalists try to uncover new information about the company,
its markets, products and its expected profitability. In contrast, the tech-
nicians study past prices and patterns and speculate, that these movements
will be repeated over time. The fundamental analysts feel confident, that
all relevant information is available to investors, while the technical an-
alysts (also dubbed “elves”) guarantee, that the current price reflects all
past sequences in pricing. For a complete discussion on this subject see
Roberts [92].

Another condition difficult to meet in practice, even if accurate and
timely information is possessed is the ability to cover trading costs. Small
traders, in particular, are unable to easily negotiate commissions, and in
general, successful outcomes are more likely to be the consequence of fre-
quent small trades rather than a few ‘killer strikes.’

If—as commonly expected—all publicly available information is taken
into account in a timely manner, then the semi–strong version of efficiency
holds; therefore:

• A diligent search to develop new information can reward the patient
investor. But information is costly both in the time or in the knowl-
edge necessary to develop it, or from the direct cost of purchasing it
from professional analysts.
• Beating the market consistently is difficult, and most mutual fund

managers have found, that they can barely cover the cost of hiring
and using superior analysts, who can develop timely investment rec-
ommendations.
• This has lead to the proliferation of ‘index funds’—if you cannot beat

it, then join it!

But the major assumption of the theory, the universal and relatively cost-
less availability of all information to all participants, is not very realistic.
There will always be new developments in computers and other communi-
cation hardware not easily exploitable by all investors; therefore the tech-
nical level of information to consumers will not be the same and they will
not be provided with the same data at the same time. There is also an-
other important problem: to have the same data does not mean to have
the same information. Data bear information, but information must be
extracted from the data by software. Software is influenced by rapid de-
velopment as well as by theories, on which data treatment methods are
based. It is obvious, that all analysts do not use (nor do not probably
understand) the most recent state of the art in analytical methods. These
comments notwithstanding, nothing above infers, that the ethical and legal
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relationships of market participants are in question; a conclusion, which
given recent events invokes further discussion.

The belief in market efficiency (or—as journalists say—in the almighty
invisible hand of the market) is deeply rooted. Every finance textbook
instills the idea, that stock price is deemed efficient if it equals the present
value of the expected payoff divided by 1 plus required rate of return

([83]). Natural questions arise in connection with this notion: Even if
accurate estimates of future pay offs were obtainable, whose expectations
and whose required return are assumed? Expectations and requirements
are highly subjective and as such, they are hard put to provide an objective
price estimate. The label linked to the price suggests, that the market’s
expectations and the market’s requirements should be used, but this would
work properly only if the market were really efficient, in which case, then,
efficiency would play an objective role.

In a truly efficient market, absent new information, assets would trade
for their ‘natural price’ ± the cost of carry. Given the wide price differen-
tials, which are observed, it is more probable, that the (real, market) price
is not efficient and perhaps a more plausible explanation for the excessive
volatility is, that many investment decisions are based on little if any or,
false, or badly interpreted information.

The importance of information in decision making as highlighted in [83]
infers a similar conclusion:

...a forecast requires analysis of the firm’s earning ability. Future
prices and dividends cannot be forecast in a vacuum, without un-
derstanding the ability of the firm to deliver value. Future prices,
in particular, will depend on how well the firm performs in its
operations. So your ability to gain arbitrage opportunities19 will
come from developing better forecasts than the market of what the
firm will deliver in its operations in the future. As better forecasts
come from better information and better analysis of information,
we could say, that arbitrage opportunities arise from having good
information and being able to see the implications of that infor-
mation.

It is thus recommended to an analyst to obtain better information so as
to find a market that is not in balance (with his new information) and to
take that opportunity to make a risk-less profit greater than what would be

19Arbitrage opportunity refers to the ability to buy an asset in one market and sell it at a profit in
another, where the information set or requirements are different.
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possible in equilibrium, where the required return is the only ‘legal’ profit
opportunity.

All of this can be interpreted as a call for effective advanced analysis. It
was shown in previous chapters, how important results can be obtained by
advanced financial statement analysis. Robust multidimensional models
were used to characterize dependencies between the principal character-
istics of the building blocks of a firm’s financial condition. Models, that
include such dependencies may be used to extract additional information,
which is not readily available to all participants in the market. The above
demonstration using the two US industries, Chemistry and High-Tech, are
an example of the utility, that can be gained from the exploitation of these
ideas.

25.2.3 The Reappraisal of Shares

Investment decisions depend on expectations of the future cash flow gen-
erated by particular shares and this depends on forecasts of earnings to
implement any particular strategy. There are two levels of prediction: the
more difficult is to predict future total returns, while the simpler task is to
predict at least the sign of the trend of the returns’ movement. The latter
problem can be defined as follows:

Given the past and more recent basic accounting data of a group
of (in a way) comparable firms and the market’s estimate of their
financial positions as reflected by current values of the total re-
turns; provide, as reliably as possible, a response as to whether
the next total return for each individual firm will be more or less
than it is at present.

A change in total returns results from either a stock price movement (ex-
ternal factor) or a dividend policy decision (internal factor) by the firm’s
board of directors. The dividend’s input reflects the firm’s financial posi-
tion and policies as well as its future performance expectations, while the
change in stock price results from the market’s appraisal of these policies,
taking into account not only the firm’s financial data, but also additional
information from outside sources. These may include an appraisal of un-
certainty, the interpretation of which is most likely not very accurate. By
accepting such a point of view, supported by his experience with the mar-
ket’s behavior, a potential investor can propose the following audacious
hypotheses:
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1. The market’s mechanism for the appraisal of shares is imperfect.
2. To find the ‘true’ value of a share and to establish its fair price, the

market needs a not negligible portion of time.
3. Imperfections in the results of the market’s appraisal are at least par-

tially caused by inadequate treatment of available quantitative infor-
mation.

If these hypotheses are indeed valid, then a successful reappraisal of
shares is possible based on an improved treatment of the available data.
To accomplish such a task, and to estimate the reliability of its results, the
appraisal procedure must be described and the definition of success must
be set out. The following procedure will be implemented:

• Select M variables Rm,q,k (financial ratios based on entries in financial
statements of K firms for a series of Q consecutive quarterly periods),
which are suitable as explanatory variables in the cross-section models
of total returns

TRq,k = K0,q +
M∑
m=1

Km, q ∗Rm,q,k (k = 1, . . . , K, q = 1, . . . , Q).

(25.1)
• Estimate the model coefficientsKm,q (m = 0, . . . ,M) for allQ quarters

using a robust method.
• Estimate the quarterly total returns ˜TRq,k of each (k-th) firm for

each q-th quarter using these models. Accept these estimates as the
reappraised values of total returns imbedded in the actual market
appraisal TRq,k.
• Take such a result as a successful reappraisal, when one of the fol-

lowing relations hold:

( ˜TRq,k > TRq,k) ∧ (TRq+1,k > TRq,k) (25.2)

or
( ˜TRq,k < TRq,k) ∧ (TRq+1,k < TRq,k). (25.3)

• Using all the data, estimate the probability of success as the number
of successes divided by the number of trials.

The idea behind this experiment can be simply interpreted: the relation˜TRq,k > TRq,k says “the k-th firm’s shares were underestimated by the
market”, while the validity of the relation TRq+1,k > TRq,k means “the
market recognized and corrected its mistake in the next quarter in the di-
rection shown by the reappraisal.” The interpretation of 25.3 is analogous,
but the sign of the error is in the opposite direction.
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Before presenting numerical results, the basic trivial/naive trend-
predicting strategies for the next quarter of a year are set out below:

Bull-Bull: Rising TR will continue to rise.
Bear-Bear: Falling TR will continue to fall.
Bull-Bear: Rising TR will fall.
Bear-Bull: Falling TR will rise.
Monte-Carlo: Decision by tossing a coin.

The data used to test the above reappraisal strategy were again taken from
US Chemical Industry (30 firms) and US High-Tech Industry (58 firms) for
43 quarters from the 2-nd quarter of 1990 through the 4-th quarter of 2000,
which resulted altogether in 88×43=3784 trials realized. Curves showing a
gradual increase in the number of successes with a rising number of trials
are depicted in Fig. 25.7.
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(The brown line of the Monte-Carlo approach was obtained by simulat-
ing the outcome of tossing a coin by a pseudorandom generator. This line
is important, because it describes a purely random change in the bull/bear
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market posture (‘the Brownian motion’). The mean probability of suc-
cesses for 3784 trials was 0.723 for the gnostic reappraisal, against the 0.5
theoretical and 0.501 actually realized probability obtained by the Monte-
Carlo approach. The trivial strategies yielded 0.301 for Bear-Bull, 0.318 for
Bull-Bear, 0.155 for Bear-Bear and 0.135 for Bull-Bull guesses. In view of
the large number of trials, the significance of the results of the reappraisal
refutes any suspicion, that the results were random. The hypotheses of
imperfection in the market are therefore supporting the meaning, that the
market can be beaten by using a mathematical technique, at least
on the level of the less difficult task of predicting quarterly trends. The
alternative interpretations of these results are: the mathematical reap-
praisal is better than the market’s appraisal of stocks and the
stock market is not efficient.

25.3 Example of Real-time Foreign Exchange Trad-
ing

Internet trading as well as Internet banking has become an everyday activ-
ity. While these networks were established many years ago, initially, only
the top banks, which were principally engaged in foreign exchange trading
had access to such electronic facilities; today there are many participants.
In 1994, an international scientific congress was organized to review the
processes employed. Real time data for such studies were made available
to the participants in this conference by the sponsoring institution20, which
monitors the network and organizes its database. These data were made
available to the authors, and are used here to illustrate the type of results,
which could be obtained by the application of gnostic filtering methodol-
ogy to the trading mechanism. The data set predated the adoption of the
Euro, and the Deutsche Mark still existed as an independent currency.

Over the course of a day, many billions of dollars of value are transferred
over very short, almost instantaneous, time periods. Fig. 25.8. models
trading over about 15 minutes, showing both the bid and the ask prices
for the DM/US$ exchange rate for trades which were consumated.

The events occur randomly and to treat and depict them individually
would be difficult; their frequency is too large. The processes are there-
fore condensed by averaging their number over intervals of ten seconds.

20Olsen & Associates, Research Institute for Applied Economics. Seefeldstrasse 233, CH-8008 Zurich,
Switzerland. E-mail: hfdf@olsen.ch.
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The fluctuations in the DM/US$ rate are strong even after the averaging.
Therefore the application of a gnostic robust filter would facilitate the
decision-making, ie it would show, that the mean short-term spread (the
difference between asks and bids) was zero between 5200 to 5350 seconds
(this time interval is emphasized by the magenta frame). This does not
necessarily mean, that individual favorable transactions could not be made
but the information on this temporary equilibrium must be taken in ac-
count by the trader. As shown by the graph, it was better to wait a few
seconds for a substantial favorable recovery to take place in the spread
than to force a trade during this hiatus.

A filter for smoothing data in this application must be both robust to
outliers and sensitive to changes in the short-term mean of the processes.
The importance of robustness is emphasized in Fig. 25.9, where the dy-
namics of the gnostic filter are compared with those of a popular robust
statistical filter 53H of the L-type based on moving medians [74]
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ỹk =
S(5, k − 2)

4
+
S(5, k − 1)

2
+
S(5, k)

4
, (25.4)

where yk are elements of the time series and

S(v,m) = median(ym−(v−1)/2, . . . , ym, . . . , ym+(v−1)/2). (25.5)

Both filters are applied in Fig. 25.9 to determine the short-term means of
the spread minus the long-term mean.

��������

���������

��

��������

�������

����� ����� ����� ����� ����� 	����

�����������

������������� �������������  ��������������!"�

�������#$��%&
'('��) *�+%�� ,(')�
�������-�������.��/���.01 2

������"���#!3������4�)�����3�(����5�%������6�)77����'��������3�8����5�

The deviations of the filter’s outputs from the long-term value signal a
temporary imbalance between the asks and the bids, which can be exploited
for buy/sell decision making. The arrows in Fig. 25.9 signify outlying data.
The filter’s robustness should protect the decision process from hasty re-
actions to outliers, while sensitively delimiting the periods of favorable
actions. The graph shows a better performance from the gnostic filter. Its
output is smooth enough to be used even for the predictions.
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Fig. 25.10 replicates a trading scenario: the red line shows the predicted
time series of bids, while the green line corresponds to the sum of predicted
asks and long-term spread.
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The time intervals of bids that exceed the points on the green line are
favorable for selling the German Mark, while the opposite situation calls
for a buy decision.

The idea of censored data was discussed in Chapter 22 (section 22.2.11).
Bargaining can also be viewed as a manipulation with censored data: the
selling party aims to get the maximum for its goods, pushing the price as
high over the (hidden, mostly unknown) true value as possible. The interest
of the buying party is the opposite. The problem can be formulated as a
probabilistic one: there is no reliable information on the true value of the
good in question. The bid price is the minimum estimated (and required)
by the buyer, but the true value could be “anywhere” (with the same
probability) between this minimum and the upper bound of the prices:
the assumption of a uniformly distributed true value over this interval
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corresponds to the complete lack of information. But, this is the model of
right-censored data. Analogously, the asks can be viewed as left-censored
data. Fig. 25.11 compares the distribution functions of asks and bids with
those obtained under the assumption of censoring.
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A possible occurrence of true values exceeding the required bid shifts the
distribution of bids to the right, while the possible existence of true values
lower than asks results in a left shift of the ask’s distribution. The area
(X) between both censored distributions can be interpreted as a region of
compromises acceptable by both sides. As the graph shows, the compro-
mise area is reasonable for exchange ratios in the narrow interval 1.4122
through 1.4134. The probability of occurrence of conditions favorable for
such compromise can be roughly estimated as 0.77 minus 0.06, ie by 0.71.

These results are based on extreme assumptions (a complete lack infor-
mation as to the true value of the “goods”). The availability of additional
information would likely permit a less uncertain decision to be made.
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25.4 A Case study: The French Car Market in 2000

25.4.1 The Role of the Market Analysis

Success in marketing is a reward for having properly solved a long chain of
related and difficult tasks: the identification of a need/demand for a new
product⇒ its conception and initial design⇒ finding a niche in the market
that will accommodate a certain quality product, which can be sold for a
competitive price ⇒ the establishment of both its technical and economic
parameters ⇒ the development, design and production of the product so
as to satisfy the demand of a specific class of consumers ⇒ setting both
technical and economic parameters of the product for designers⇒ the final
development and design of the product.

The automobile is an everyday tool of modern life, a mass produced
commodity, which has a significant impact on the world economy. As such,
then, the car market can serve as a useful application field for advanced
analysis. Since ‘everybody understands the problem,’ the results of such an
analysis are easily understood using common sense. Those in the market
for an automobile generally are faced with a set of questions, which are
resolved more or less objectively and include, among others:

• the real needs to be satisfied and the main purpose to be served,
• the principal user/users,
• cargo, if any to be carried,
• the character and habits of the driver and his driving style,
• the desired safety level,
• reliability,
• economic requirements related to the

– purchase price,
– fuel consumption,
– maintenance, service, insurance and projected repair costs,

• availability of a network of dealerships, service and repair shops,
• availability of spare parts,
• comfort level required,
• personal preferences as to taste, style and fashion,
• prestige aspects.

This—surely incomplete—list of factors allows several conclusions to be
drawn:

1. the choice of a car is highly individualized and manifold,
2. individual preferences must be reflected by prices,
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3. the diversity of the demand results in diversity in the supply of cars.

The objective of such an analysis of automobile market data should be to
provide to manufacturers an objective view of both the technical (engi-
neering) and economic parameters of cars on the market so as to identify
the market segments, in which they desire to compete. An alternative goal
could be to show to a car buyer ‘what fulfillment of his individual wishes
cost’ and ‘what he has to pay for.’

25.4.2 French Car Market Data

The preparation and maintenance of a complete and up-to-date data base
covering a substantial sector of a car market is undoubtedly a task for a
professional agency. However, this study only aims to demonstrate that by
using advanced analysis useful conclusions can be drawn even from basic
data available to the general public. Specifically, these data were taken
from the French journal, L’Automobile Magazine for May 2001, which
summarized the following basic parameters of cars offered on the French
market:

1. Manufacturer,
2. model of the car,
3. type of engine (Diesel, gasoline),
4. French fiscal category for the model,
5. size (volume) of the engine (liters),
6. power (HP),
7. maximum speed (km/h),
8. fuel consumption (liter/100 km),
9. price (Euro).

The Journal lists 262 different diesel cars and 504 gasoline models. An
overall view of the market is in Fig. 25.12, where all 766 car types are
presented ordered by their price distribution.

The prices of gasoline models cover a broad range from the cheapest
(price of Euro 7607) through the most expensive ones, (Euro 357073). The
price range of diesel types was narrower, from Euro 9907 through Euro
126838. The differences in price distributions of the two basic classes can
be seen in Fig. 25.13.

The ranges of the technical parameters also were very broad. A true
‘King of the Road’ among Diesels was the car with top characteristics:
drive volume 4.9 liter, power 400 HP, maximum speed 250 km/h and fuel
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consumption 15 l/100 km. The smallest Diesel engine was that declaring
the smallest fuel consumption (4.5 l/100 km). The lowest power Diesel
drive was 58 HP and the lower bound for maximum speed 129 km/h.

These same parameters for cars with spark ignition engines were spread
over even broader intervals: the largest engine volume was 8 liters, which
had a voracious appetite: 30 l/100 km), the highest power was 426 HP,
greatest maximum speed 307 km/h. On the small end: volume, 0.8 l, power
50 HP, the lowest maximum speed 139 km/h and the most economical
consumption 6.6 l/100 km.

The fiscal category of the car type relates to taxes; it reflected the
official French evaluation of the compromise between practical needs and
the luxury of the particular car type (the higher fiscal category, the higher
both the imputed luxury and therefore the tax). The fiscal categories
of Diesels were spread from 3 through 32, while for gasoline cars they
ranged from 4 (for many of the smallest cars from nearly all manufacturers)
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through 36.

It is obvious, that these sets of parameters could neither completely
describe the car nor reliably compare each of them with others. Impor-
tant information was missing, which strongly influenced both the price
and safety of the car (number of air bags, electronic safety devices such
as ABS—automatic brake system, MBA—power brakes, ASR and MSR—
transmission controllers, EDS—traction control, ESB—electronic stabiliza-
tion system, CAN—electronic data bus connecting all the electronic de-
vices, various computer chips, brake servos, power steering, xenon lights,
automatic fuel cut off in case of an accident, automatic activation of the
windshield wiper, a rear view TV set, TV for passengers, electronic map
with a satellite orientation, electronic car protection and/or immobiliza-
tion, satellite tracing, radio, magnetic tape or CD player, leather uphol-
stery, adjustable and heated seats, remotely controlled and heated rear
view mirrors, electrically driven windows, wood trim and so on). Experi-
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ence shows, that some customers may base their buy decision not only on
“serious” aspects, but also on such trifles like the number of cup holders.

Another drawback was lack of data on the total numbers of cars of indi-
vidual types, which were sold. Such data could help in making a judgement
as to the popularity of the makes and types. The incompleteness of the
data subjected to analysis represented the main limitation of the analy-
sis. Nevertheless, there were factors, which could partially compensate for
this lack of detail. The principal of these is the competition between vari-
ous models and makes, which forces them to include a certain “commonly
accepted” standard of safety and luxury to various classes and prices of
cars. The popularity of cars and their producers is also reflected by prices,
which can be associated with both the producer’s goodwill as well as with
a measure of prestige for the car owner; it is important, that these factors
can be quantitatively evaluated after the true car value has been provided
by the multidimensional model. These additional facts can enhance the
trustworthiness of the mathematical analysis of the limited data set avail-
able.

25.4.3 Steps of the Analysis

The analytic tools used in Chapters 23 and 24 will be employed here:

• marginal analysis of individual variables by means of distribution func-
tions EGDF (section 15.2.5) and ELDF (15.2.4) and interval analysis
(16.4),
• robust multidimensional analysis by means of non-traditional methods

(17.3) including
– explicit MD-regression in probabilities,
– implicit MD-regression in probabilities.

It is hypothesized, that the broad scale of car prices observed in
Fig. 25.12 and 25.13 correspond to a wide range of car quality that is
reflected—at least partially—by the technical parameters. The robust mul-
tidimensional modeling technique will be used to evaluate the relationship
between the parameters and prices. The explicit probabilistic price model
applicable to the multidimensional ordering and pricing of cars takes on
the following form:

Pr{Prik} = C0 + C1 ∗ Pr{V olk}+ C2 ∗ Pr{HPk} (25.6)

+C3 ∗ Pr{MxSpk}+ C4 ∗ Pr{Consk},
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(where k = 1, . . . , K) with the following notation:
K . . . the total number of automobile types,
Pr{x} . . . an estimate of the probability of the variable x,
Pri . . . purchase price (Euro),
C0, . . . C4 . . . model parameters,
V ol . . . engine size (volume in liters),
HP . . . engine power (HP),
Cons . . . consumption of fuel (liters/(100 km)).

An objection to these models can be expected based on the belief, that
there is a proportionality factor between volume and power in automobile
engines. If so, then this interdependence spoils the models. However, this
idea is not justified. If there were such a relationship, the relation HP (V ol)
would be represented by a straight line—which, as seen in Fig. 25.14, is
not the case. Therefore these two variables are not linearly dependent and
using both of them in the regressions is reasonable.
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In addition, the relations between the technical parameters and prices
can be viewed differently depending on whose point of view is chosen: for
the producer to raise the parameters, the costs of development and pro-
duction will increase. These same changes are viewed by a potential owner
as additional utility received for his money: the better the parameter val-
ues for a lower price, the more utility provided. To obtain such a measure
of utility, parameters V ol, HP and MxSp will be divided by the purchase
price of the car. The impact of fuel consumption on the utility is nega-
tive: the higher consumption, the lower utility. This is why the notion of
kilometrage21 (measured in kilometers the car runs while burning 100 liters
of fuel) will be used instead of a raw consumption figure. The following
implicit multidimensional regression in probabilities is used to describe a
car’s utility:

c1 ∗ Pr{V olk/Prik}+ c2 ∗ Pr{HPk/Prik} (25.7)

+c3 ∗ Pr{MxSpk/Prik}+ c4 ∗ Pr{Kmgek/Prik} = 1,

where Pri again stands for the purchase price andKmge is the kilometrage.
The implicit form of the equation is chosen to escape of the necessity of
designating one of the variables as ‘dependent’.

The analysis takes on the following steps:

1. The marginal analysis of all variables:
(a) Estimate robust distribution functions of the EGDF type for all

five variables,
(b) verify the homogeneity of the analyzed data samples and (in the

case of inhomogeneity) find the EGDF of the main homogeneous
cluster of each sample along with its bounds of data support LB
and UB and scale parameter S,

(c) use the parameters of the EGDFs with distributions ELDF to ap-
ply gnostic interval analysis (finding the interval bounds of typical
data ZL and ZU along with the location parameter Z0),

(d) apply the parameters to decompose cars into three classes (below
typical, typical, above typical),

(e) summarize the mean parameters of classes separately for Diesel
and gasoline cars.

2. The multidimensional analysis:
(a) using the distribution functions EGDF, calculate all the values of

21This can be viewed as the European analogy to the American notion of miles per gallon.
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probability to be substituted into 25.7 and 25.8 (see 25.4.6 for the
latter),

(b) solve both 25.7 and 25.8 separately for Diesel and gasoline cars,
(c) Apply the MD-models to

i. estimate the ‘true and fair’ values of cars,
ii. order car types with respect to their relation to the pricing

model,
iii. estimate the ‘premiums’ connected with purchasing each car

type,
iv. evaluate the cost of prestige and the goodwill of car producers,
v. order car types with respect to their utility,
vi. order makes of cars from the point of view of utility.

25.4.4 The Classes of Typical Cars

The results of the robust interval analysis are presented in Tab. 25.3.

Interval Drive type

Bound Diesel (Euro) Gasoline (Euro)

LB 9325 5868

ZL 16522 13698

Z0 20041 17745

ZU 24983 23744

UB 127481 358979

Tab. 25.3: Bounds of Price Intervals

The notation is the same as in section 16.4:
LB . . . the lower bound of the data support,
ZL . . . the lower bound of the typical data,
Z0 . . . the location parameter (the mode of the ELDF’s density),
UL . . . the upper bound of the typical data,
UB . . . the upper bound of the data support.

The interval bounds of typical prices of Diesels do not differ significantly
from those of gasoline cars, but the spread of the prices of these cars is
much broader than that of the Diesels. This was shown in Fig. 25.13.

The bounds indicated in Tab. 25.3 were obtained by using the distribu-
tion functions although the data were non-random. This approach is fre-
quently applied in gnostic analysis, the methods of which are founded on a
non-statistical conception of data uncertainty: instead of random events,
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the uncertainty is considered to be a lack of information as to events and
their character. From this point of view, the gnostic distribution functions
do not describe statistical probability. Their real sense is a quantification
of inferences drawn from data as to ‘what can be expected.’ This means—
in application to bounds LB and UB of data support—that ‘prices of new
cars of less than LB and over UB were not to be expected on the French
market.’

The interval bounds of Tab. 25.3 can be used to define three classes
of cars. The mean parameters of these are summarized in Tab. 25.4 for
cars with Diesel engine and in Tab. 25.5 for those using gasoline. The
symbol X again denotes the arithmetical mean of the data vector X.
Price classes are symbolized by BT (below typical), T (typical) and AT
(above typical). The fiscal category is denoted FisC.

Class Range (Euro) % FisC V ol HP MxSp Cons Pri

BT 9325 ÷ 16522 27.9 4.9 1.80 75.0 163.9 6.68 13496

T 16522 ÷ 24983 39.7 6.4 2.00 104.8 181.9 7.50 20176

AT 24983 ÷127481 32.4 9.4 2.42 146.8 194.3 9.18 35595

Tab. 25.4: Characterization of Diesel Cars

The technical parameters, as expected, rise with prices, although not
as fast. The mean prices of the “economical class” BT are only about one
third cheaper than those of the typical cars, but the prices of the “luxury”
cars are much higher. Using the parameters of the gasoline classes allow a
comparison with the Diesels to be made (Tab. 25.5):

Both typical and economical (lower than typical) gasoline cars are sig-
nificantly cheaper than Diesels, but the extremely broad range of prices
of the more luxurious gasoline cars raises their mean to nearly five times
that of the economical cars. Compared to the Diesels, both the ‘economic’
and ‘typical’ gasoline cars are even cheaper, but the highest gasoline class
has much higher prices due to both greater expected luxury and higher
technical parameters. Typical class shares in both cases are approximately

Class Range (Euro) % FisC V ol HP MxSp Cons Pri

BT 5868 ÷ 13698 33.9 5.0 1.30 74.5 163.4 7.90 11143

T 13698 ÷ 23744 39.9 7.4 1.72 113.9 186.4 9.20 18007

AT 23744 ÷358979 26.2 15.2 3.00 213.7 218.7 12.62 50927

Tab. 25.5: Characterization of Gasoline Cars
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the same, about 40%. The mean values of the ‘tax variable’ FisC do
not contradict the tendencies of the parameters derived from the interval
analysis.

25.4.5 Ordering of Cars by the MD-Models of Prices

The model 25.7 enables car prices and their components to be ordered in
multidimensional space. Indeed, this MD-model represents the relation
Probability(prices(parameters)) as ‘viewed’ by the whole market. It is a
hyperplane in the MD-space, where each car price’s probability is depicted
by two spatial points: the modeled price’s probability (determined by the
right-hand linear form of 25.7), which lies on the hyperplane and the actual
price’s probability ProbPrik, which is located in a general case somewhere
else. The probabilities of some prices (those of cheaper cars) fall below
the hyperplane, while the more expensive ones appear above it. It is not
necessary to determine multidimensional distances between the two points,
because they correspond to differences between sides of 25.7.

These are of dimension one and can thus be ordered, when their polarity
is taken in account. The order number (‘score’) can be used as an indicator
of the position of the car on the ‘ladder’ of car types. Let the smallest score
be assigned to cars, the modeled price of which is at the lowest point below
the market price. In other words, the lower the score, the better price of
the car given its technical parameters from the point of view of the car
owner. The results of this ordering are summarized in Tab. 25.6 grouped
by manufacturers. The score is expressed as a percent of the range, so
eg score 125 for a Diesel will be shown as 100∗125/262=47.4%, while the
same order number for a gasoline car would be 100∗125/504=24.8%. This
is done, so that a total score (for both Diesel and gasoline drives) can
be provided using the sums of scores weighted by the number of models
offered.

The main message of these results is, that MD-ordering of cars based
on the considered parameters leads to a conclusion, that the best relations
between car parameters and price are obtained with the least expensive
cars.

Recall, that a position in this table is not determined only by the price
but also by the technical parameters. From the point of view of a manu-
facturer, a higher score (and a higher price) for his model rather than for
a technically comparable competitive car is a success. It is also a (market-
ing) success to sell a car with inferior parameters, when better parameters
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Car Diesel Engine Gasoline Engine Total

Manufacturer Types Score% Types Score% Score%

1 7 32.1 7 22.2 27.1

2 0 —- 2 29.5 29.5

3 2 42.0 9 27.7 30.3

4 7 31.6 4 32.2 31.8

5 28 35.6 42 31.9 33.4

6 16 32.1 18 34.7 33.5

7 27 46.8 59 34.4 38.3

8 35 43.0 58 39.3 40.7

9 4 46.6 8 39.1 41.6

10 21 41.6 24 41.8 41.7

11 18 43.4 27 40.7 41.7

12 17 45.5 24 39.3 41.8

13 6 48.3 17 43.6 44.8

14 2 55.9 10 43.0 45.1

15 10 61.9 15 37.3 47.1

16 4 74.8 5 30.2 50.0

17 0 —- 1 51.0 51.0

18 2 60.1 6 50.9 53.2

19 5 52.1 8 55.2 54.0

20 2 68.1 6 52.4 56.3

21 0 —- 13 59.2 59.2

22 1 81.3 2 49.0 59.8

23 5 69.6 4 64.6 67.4

24 13 68.1 22 74.2 72.0

25 0 —- 6 74.3 74.3

26 0 —- 6 75.8 75.8

27 4 79.2 17 75.1 75.9

28 0 —- 6 77.1 77.1

29 3 91.0 2 57.2 77.5

30 2 80.3 5 77.9 78.6

31 11 82.7 22 79.7 80.7

32 8 91.0 18 84.1 86.2

33 0 —- 5 86.9 86.9

34 0 —- 8 88.5 88.5

35 2 93.7 1 90.1 92.5

36 0 —- 2 92.6 92.6

37 0 —- 5 94.7 94.7

38 0 —- 2 94.9 94.9

39 0 —- 1 96.0 96.0

40 0 —- 1 97.0 97.0

41 0 —- 2 97.5 97.5

42 0 —- 3 99.1 99.1

43 0 —- 1 99.6 99.6

Tab. 25.6: Multidimensional Ordering of Car Manufacturers
by Price Scores
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are offered for the same price by a competitor. The buyer’s decision in
such cases must have been motivated by other aspects, eg perhaps by the
prestige of the make.

The variable ‘fiscal category’ used in France for tax purposes can be
interpreted as an official measure of the car’s imputed luxury. There is no
detailed description available of the mechanism, which defines the specific
assignment of this parameter, but, as seen in Fig. 25.15, there is no serious
contradiction between the multidimensional ordering (score) and the fiscal
category attached to specific models.
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However, the uncertainty in the assignment of fiscal category to the
various types of cars is greater than for the scores or prices.

It is interesting to note the relations between scores of Diesels and gaso-
line cars of the same make. There is a close correspondence not only for
cheaper cars, but also in cases of more expensive ones. However, for some
manufacturers, there are substantially different evaluations for their Diesels
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and gasoline cars. In these cases the position of Diesel cars is more favor-
able than for the gasoline versions. An explanation of this effect would
require additional analysis: there are at least two thoughts in this regard,
perhaps some extra perceived qualitative factor attributed to Diesels, but
maybe also a different pricing strategy.

25.4.6 Impacts of Parameters on the Car Price

Equation 25.7 describes the dependence of the probability distribution of
price on the probability distributions of the parameters, whose impacts are
quantified by the model coefficients C0 through C4. The mean contribution
of a k-th car parameter vk to the mean probability Pr{Pri} of prices is
Ck ∗ Pr{vk}, where Pr{vk} is the mean probability of the variable vk.
Expression

ρk :=
Ck ∗ Pr{vk}

C0 +
∑4
m=1(Cm ∗ Pr{vm})

(25.8)

can therefore be used to quantify the mean share of vk on Pr{Pri}. After
all the distribution functions have been prepared and the model coefficients
have been estimated by solving equation system 25.7, the ordering can
proceed. After the mean values of the probabilities have been calculated,
the impacts ρk can be determined and are reviewed in Fig. 25.16.

They can be interpreted as measures of ‘what people want when buying
cars.’ Indeed, although the data characterize the supply side of car market,
they provide insight into the demand side as well, because the market is
more or less in equilibrium. The quantified impacts thus reflect not only
the structure of the supply, but also the weighted interest of the buying
public attributable to the individual technical parameters. The results
shown in Fig. 25.16 suggest, that the following conclusions can be drawn:

1. The requirements for Diesel cars differ from those related to gasoline
cars.

2. There are only two really significant factors, that influence the price
of Diesels, power and—to a smaller extent—fuel consumption.

3. The impacts on prices of gasoline cars are less concentrated on the
power, volume of the engine plays a role too.

4. Fuel consumption has roughly the same weight with either type of
drive.

5. Maximum speed plays a relatively negligible role in both classes.
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6. The relatively small contribution of the intercept infers, that the
model’s parameters sufficiently explain the data, ie the chosen linear
model is suitable.

The weak impact of maximum speed is a bit surprising, but it is probably
due to the fact, that increasing maximum speed does not cost the manufac-
turer as much as increasing power. On the other hand, an emphasis on high
power can be explained by reference to safety aspects: high power enables
the driver to escape dangerous situations by rapid acceleration (eg when
overtaking). However, a non-trivial question remains unanswered: is power
exceeding 400 HP (which could move a military tank) really necessary for
a personal automobile?

The impacts of the parameters will be discussed in more detail in con-
nection with the multidimensional cluster analysis to follow.
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25.4.7 Prestige, Goodwill & Premium Components of Car
Prices

It is well-known from everyday experience, that two products of equivalent
quality can be sold for different prices. There are at least three main
factors, which lead to this market segmentation:

1. the goodwill of the manufacturer and of his trademark (brand loyalty),
2. the prestige felt by or imputed to the owner,
3. fashion.

Goodwill can be defined [9] as an intangible asset, that reflects value
above that generally recognized in the tangible assets of the firm. It arises
from the reputation of the name of the business and/or of its trademark
or of the premises, where it is conducted or of the person, who has been
carrying on the business [25]. Important roles are played by long-term
tradition, generally shared and accepted positive experience and intensive
and skillful marketing.

Prestige connected with purchasing and owning a product (and espe-
cially an automobile) is closely related to the reputation of the product’s
make. Frequently, the make of one’s automobile is a symbol of the owner’s
social status. There are also countries, where the opportunity to obtain
financing is measured by the estimated price of client’s car. There are also
places, where it is not socially acceptable to have a car of a class higher
than that of one’s boss. The classical proverbs “Fine feathers make a fine
bird” or “The tailor makes a man” can be brought up to date by “Fine
cars make fine men.” And, of course, expensive cars are frequently used
as a public demonstration of the personal wealth of the owner. All these
factors help to raise the price of the most expensive models in an explosive
manner as is seen in Fig. 25.12 and 25.15.

Neither is the fashion effect negligible. From the time of the giant
American ‘ships of desert’, which accented aerodynamics through the cycli-
cal change from angular to round lines of automobile design to the current
SUV craze, this attribute has been a driving force in the car market. Fash-
ion is sometimes considered an element of culture as well as a means of
entertainment, but its first aim is business. Ladies cut their skirts so as to
be subsequently forced to buy new long skirts. Men abandon their obsolete
square-edged cars to buy modern round ones (and to return to the boxy
shapes once again in the near future). Some component, or colors can be
fashionable, even technical innovations to the engines or suspension sys-
tems, automatic devices, etc. Fashionable things of course raise the feeling
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of comfort (and price) and add to prestige.

Neither goodwill nor prestige are provided free of charge and it is in-
teresting to establish their price. This can be done, because the hidden
“fair and true” value of cars is estimated by quantiles of the probability
distribution of the right hand side of the model 25.7. The difference be-
tween this value and the purchase price is a premium, which can be positive
(gain to the buyer) as well as negative (gain to the seller). These premiums
averaged by car makes are summarized in Tab. 25.7.

25.4.8 Ordering of Cars by Utility

The equation system 25.8 can be used to evaluate the utility of different
car types. The implicit regression model in probabilities is obtained by
robustly solving this system of equations. A score can then be attached
to each car with respect to the difference between the sides of 25.8 as the
equation’s order number in the ordered series of these differences.

So as to be able to compare gasoline cars with Diesels, the relative order
measure is expressed in percent and applied as Rn = 100∗N/Nmax, where
N is the order number of the car and Nmax the total number of the car
types, ie 262 for Diesels and 504 for gasoline types. Most manufacturers
offer several types, therefore to characterize the producer, the median,
minimum and maximum values of the relative order are determined and
shown in Figs. 25.17R and 25.18R:

The scale is chosen so as to attach the value of 100% to the largest utility;
the smaller the value the less utility obtained for the purchase price. The
main conclusion is in correspondence with the analysis of prices: the more
prestigious and luxurious the car is, less utility is measured by the technical
parameters divided by the price.

The results for the “economic” cars deserve a comment: not only do they
occupy favorable positions in Tab.2̇5.6, Tab. 25.7, Fig. 25.17 and Fig. 25.18,
but they allow a broad and flexible compromise to be made between ser-
viceability/economy and luxury using the wide interval between minimum
and maximum utility in Fig. 25.17 and Fig. 25.18. In this way, a large
portion of the market is addressed. There are large bands for the utility
intervals offered by other large car producers, but not by all: the maxi-
mum utilities in both graphs fall with the medians: the manufacturers of
the most luxurious cars have little interest in sharing the market for cheap
cars.
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Car Diesel Engine Gasoline Engine Total

Producer Pri Euro Pre Euro Pri Euro Pre Euro Pre Euro Pre %

A —– —- 302606 -215465 -215465 -71.2

B —– —- 265391 -121511 -121511 -45.8

C —– —- 22089 -3473 -3473 -15.7

D 40778 -7655 59187 -9691 -9012 -15.2

E 35782 -6485 39988 -5796 -6052 -15.1

F —– —- 83712 -11662 -11662 -13.9

G —– —- 52988 -6679 -6679 -12.6

H —– —- 28974 -3552 -3552 -12.3

I 28500 -2477 32784 -1891 -2003 -6.1

J 23224 -1404 20485 -1102 -1181 -5.8

K 19615 40 16977 -1312 -888 -5.2

L 27297 -800 27739 -1959 -1315 -4.7

M 46802 -3277 51274 -1850 -2289 -4.5

N 19460 -125 17611 -923 -657 -3.7

O 19704 -803 18102 -500 -641 -3.5

P —– —- 73251 -2482 -2482 -3.4

Q 18560 -1409 15182 126 -488 -3.2

R 23355 3120 32758 -2069 -587 -1.8

S 20040 -1099 18034 428 -147 -0.8

T 23019 -1836 20618 418 -146 -0.7

U 23271 215 19061 56 96 0.5

V —– —- 31278 321 321 1.0

W 19769 -935 16912 971 209 1.2

X —– —- 28315 783 783 2.8

Y —– —- 54645 1641 1641 3.0

Z 16386 487 12869 514 501 3.9

AA —– —- 14033 660 660 4.7

AB 21161 1935 15947 453 1046 6.6

AC 15784 1007 14677 1066 1038 7.1

AD 17766 2667 19999 950 1611 8.1

AE 18176 684 15702 1700 1279 8.1

AF 20794 8 16663 1627 1358 8.1

AG —– —- 129581 11235 11235 8.7

AH —– —- 67078 5907 5907 8.8

AI 15201 1083 13644 1569 1260 9.2

AJ 26861 7665 43143 995 5442 12.6

AK 16754 1883 12839 1691 1726 13.4

AL 21327 3879 12668 1559 2591 20.4

AM —– —- 39243 8561 8561 21.8

AN 24178 2902 13598 5504 4637 34.1

AO —– —- 62235 21406 21406 34.4

AP —– —- 36319 15530 15530 42.8

Tab. 25.7: Multidimensional Ordering of Car Manufacturers
by Purchase Premiums
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Fig.25.17: CARS ORDERED BY UTILITY
Diesel Cars on French Market 2001

25.4.9 Structure of the Market

It was shown in Fig. 25.14, that there is no direct proportionality between
such parameters as engine volume and power. To consider the variety
of relations between parameters of cars, multidimensional cluster analysis
can be applied to the equation system 25.8. These results are presented in
Fig. 25.19 and Fig. 25.20.

The concept of comparability of multidimensional objects (financial po-
sitions of firms) has been introduced in previous chapters: multidimen-
sional objects are comparable if their functions can be reproduced by the
same mathematical model. The same concept can also be applied to equa-
tion system 25.8. The distribution function of the residuals of its robust
solution reveals the inhomogeneity of the data.

To achieve a true comparability of car types, the whole set of types has
to be decomposed into homogeneous clusters, each of which has a perfect
model (in the sense of classical statistical variance analysis). This was
successfully pursued to obtain six homogeneous clusters of Diesel types
denoted CL1 through CL6 and formed by 139, 60, 35, 16, 6 and 5 car
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Fig.25.18: CARS ORDERED BY UTILITY
Petrol Cars on French Market 2001

types. One car appeared to be different from all the clusters. The analysis
of gasoline cars resulted in eight homogeneous clusters CL1 through CL8
of 266, 105, 96, 12, 7, 6, 6, and 5 car types with one car, which had no
peers and was outside of all the clusters. Both the ‘outliers’ are shown as
‘Rest’ in Figure 25.20.

The intra-cluster utility parameters along with the mean prices of the
car clusters are given in Fig. 25.19 for Diesels and in Fig. 25.20 for gaso-
line cars. To be able to use the same scale for the parameters, some
unusual currency units were applied: deciEuro . . . dEuro (Euro/10), Eu-
rocent . . . Euroc (Euro/100), and miliEuro . . . mEuro (Euro/1000). The
right-hand vertical axis in both graphs depicts the utility parameters using
these units: volume in cm3/dEuro, power in HP/Euroc, maximum speed in
(km/h)/Euc, kilometrage in 100 km/liter/mEuro. The left-hand vertical
axis shows the car price expressed in Euros. The general tendency of util-
ity parameters to fall with rising price is distinctive, especially in the case
of gasoline cars and for clusters of the most expensive cars. The relative
patterns of clusters seem to be similar, but they have different models.
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The differences between clusters are emphasized, when the weighted
impacts of the individual utilities in 25.8 are used instead of the mean
parameters themselves.

This is shown in Fig. 25.21 and Fig. 25.22, where the product of the
model coefficient and the mean value of the parameter represents the mean
‘contribution’ to the sum (equal to 1) of addends (coefficients multiplied
by the means) in 25.8, the weight or mean impact.

The patterns of these weights differ in both graphs at first sight. Recall,
that cluster CL1 of Diesels is formed by 139 of 262 cars and CL1 repre-
senting the gasoline models includes 266 of the 504 types, ie more than
half for either of the classes. If the supply’s structure answers to demand,
then the patterns of CL1 testify to the wishes of the prevailing part of the
drivers (and of their families): Figure 25.21, CL1 shows, that the leading
role in the decision to purchase a Diesel car is primarily linked to maximum
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speed22 followed closely by the power aspect. Engine volume (the required
power given) is not as important.

This is different from the largest cluster of gasoline cars (Fig. 25.22,
CL1): the power and volume aspects play an equal role, dominating the
maximum speed and kilometrage. A peculiar collection of gasoline car
types is identified by CL6 in Fig. 25.22: high power and small engine vol-
ume. Some features are common to all clusters:

• high power requirements (acceleration) are universal,
• the inverse roles of maximum speed and kilometrage—the higher

speed, the less kilometrage (the higher fuel consumption),
• in 10 of 14 clusters, the high power impact is accompanied by a strong

negative impact for maximum speed,
• cluster CL5 in Fig. 25.21 has a structure similar to that of CL4 in

22This finding is interesting in comparison with Fig. 25.16, which shows, that maximum speed has only
a weak impact on the Diesel car price.
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Fig. 25.22; in both cases, the mean prices are at the cross-over between
rapidly increasing prices and the more economical models. In spite of
the relatively high purchase price of these cars, fuel consumption is
an important factor.

Cluster CL4 is the exception among the other gasoline cars, where
fuel consumption does not play an important role. In contrast, for
Diesel models, Fig. 25.21 shows, that in five of the six clusters kilome-
trage/consumption plays a measurable role in the composition of the car
features.

The results show, that the advanced analysis put into a market frame-
work is capable of producing information useful for both managerial and
personal decision making.
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25.5 Summary

The examples of applications of the advanced economic analysis to mar-
kets show, that for many problems, the solutions justify a more thorough
analytical effort than that ordinarily applied:

• Beneficial information, useable for diagnosing the financial condition
of firms can be obtained by the analysis of similarities and dissimilar-
ities between different industries by means of

– robust multi-marginal (repeated uni-variate) analysis of financial
ratios,

– analysis of robustly estimated variances and covariances of finan-
cial indicators,

– robust multidimensional cross-section analysis,
– comparison of robust multidimensional models,
– robust multidimensional cluster analysis.
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• A substantial improvement in the pricing of assets can be achieved as
was demonstrated by using real examples:

– unlike recent investment decisions based only on market valua-
tions (external with respect to firms), which induce harmful and
unnecessary volatility in share prices, a thorough (internal, based
on firms’ financial statements) analysis can reveal the true and
fair financial position of firms and more reliably estimate their
shares’ value,

– robust multidimensional models based on financial statements
of homogeneous clusters of comparable firms enable a successful
reappraisal of market share prices to be made.

• Robust filtering of time-series can lead to improvements in on-line
trading as shown by the use of an example based on the foreign ex-
change market.
• The tools of advanced analysis can offer a deep insight into a specific

commodity market as shown by example of a large segment of the
European automobile market:

– a robust multidimensional pricing model for cars can be estab-
lished, which reflects both technical and economic parameters,

– a multidimensional evaluation of the utility attributable to various
car models and the ordering of car types by their utility can be
performed,

– the impacts of technical parameters on car prices can be quanti-
fied,

– car manufacturers can be compared and ordered by the technical
and economic aspects of their cars,

– the role of manufacturers’ goodwill and their makes as reflected
in car prices can be evaluated,

– the structure of the market can be described by means of multi-
dimensional cluster analysis. This can provide an orientation for
designers on the requirements and tastes of potential customers.
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Chapter 26

Miscellaneous Applications

26.1 The Role of Economics of Information

26.1.1 Universality of the Problem

A number of examples of the application of gnostics to problems of both
micro- and macroeconomic were introduced in Chapters 23 through 25.
They document the usefulness of advanced analytical methods in eco-
nomics. However, a straightforward and unbiased view of these exam-
ples reveals, that they are solutions of special cases of more general prob-
lems, which are faced universally in many branches of science, technology,
medicine, biology, etc. These situations are noted especially, when the re-
ality of an event and its processes are to be recognized and quantitatively
evaluated by data analysis. The important elements of the problem are:

1. Wherever and however obtained, data are expensive.
2. The higher the data quality, the higher its cost.
3. The number of data available for analysis can be limited, not only by

cost, but also by other restrictions of a more fundamental nature.
4. Real measurements are always disturbed by undesirable effects.
5. The desired information is not generally given directly by data, but it

must by extracted from them through analysis.

In all application fields obtaining quantitative information bears a cost and
it is the outcome of some special technology. The acquisition of information
and processing it economically is therefore an important aspect in the
choice of data and its processing methods. The advantage of gnostics
over other approaches is its ability to measure the amount of obtained
information under much more universal conditions, restricted only by a
few realistic and plausible assumptions. This special technology allows the

619
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maximum amount of information to be gathered from data by using gnostic
methods.

The ultimate significance of taking into account the economic aspects of
information can be measured by considering the utility of the information,
which is acquired and reflected by the gains in knowledge or the losses
resulting from not having had the best data, on which to base a decision.
A correct and timely diagnosis can save the life of a patient. The culling
out of defective products or the recognition of factors, which lower the
useful life of goods result in increasing the producer’s goodwill and in a
justification for higher prices. An emergency signal extracted from noisy
real-time measurements can prevent the dangerous development of a pro-
cess, when the data treatment method is sensitive enough to real changes
in the process, while it minimizes false alarms. Recognition of the true
nature of objects and processes along with a capability to create realistic
models permits these real processes to be efficiently controlled. The eco-
nomics of everyday life is thus conditioned by the economics of information
processing.

26.1.2 Information, Normality, Geometry

Information is the goal of the game, assumptions such as ‘normality’ are
tools to assist in reaching this goal. The statistical notion of normality
is tied to the special case of a Gaussian probability distribution and was
discussed in section 20.3.2. Reliance on the unquestioned applicability of
an assumption of this type has serious negative consequences:

1. Tests of the normality of processes and of membership in data samples
can generate false information.

2. This notion of normality can be unacceptably narrow.
3. Prejudices as to the Gaussian character of events can distort informa-

tion as to the nature of the process being observed.

A decision of the type ‘normal/not normal’ leads to specific diagnostic
and/or discriminative information. Consider typical examples of such a
diagnosis:

1. (a) “The object behaves in accordance with the Gaussian probability
distribution. Hence, it is normal.”

(b) “The object is normal, therefore its probability distribution is
Gaussian.”

2. “The value of an event is normal, if and only if it belongs to the interval
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bounded by prescribed quantiles of the Gaussian distribution.”

The information inferred from such a diagnosis can have far reaching or
even critical consequences: it can miss a natural, economic, technological
or even a military disaster as well as trigger a very expensive false alarm.
Recall a period of the cold war, when the false recognition of objects in
space could have ignited a nuclear war. Not only incidents, which could
have repercussions for all of society fall into such categories; it is far more
likely, that events dealing with industrial production and control or medical
trials or studies would be subjects for examination.

A careful consideration of the roots of these problems inevitably leads to
geometry. Indeed, the question “how far is this distribution from that (eg
‘normal’) one” concerns the determination of the distance. Analogously,
the question of “how far a datum is allowed to be from other data in the
sample to be still accepted as a member” is again a function of distance.
Both are thus problems of geometry similar to those visited in sections
6.2.1 and 9.2.2. It will now be useful to go a step further.

Assuming, that it is the true distribution of data, let P (x) be a dis-
tribution function attached to the data sample X := 〈x1, . . . , xN〉. The
probability, that x will exceed a value xU is

P{x > xU} = P (xU) (26.1)

and its differential is
dP (x) = g(x)dx, (26.2)

where g(x) := dP
dx is the probability density. Such an expression was identi-

fied in 9.2.2 as a univariate formula for distance measured in a special type
of Riemannian geometry defined by the weighting function g(x), which is
the corresponding univariate metric tensor. When this function is declared
to have the Gaussian form of probability density,

g(x) =
σ
√

2Π

exp
(−(x− µ)2

2σ2
), (26.3)

then this causes the special geometry to be chosen. The Central
Limit Theorem justifies convergence to this density function for a suffi-
ciently large number of arbitrarily distributed independent random vari-
ables, which have a mean µ and variance σ2. The special geometry is
therefore well founded in this instance, but not in every general case. The
existence of a mean and of a variance cannot be taken for granted. The
non-zero probability of a large outlier can jeopardize the validity of the
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normality conditions especially if there is an insufficient number of central
data, which can override the effect of the extreme datum.

It is a common practice to mathematically transform the real data so as
‘to make them normal.’ There are places, where official norms of quality
assessment methods not only allow such practices, but even recommend
them. Riemann’s view, that the choice of geometry is not a task for math-
ematicians, but of Nature, has already been cited. Therefore the arbitrary
choice of a Gaussian distribution for non-normal data is an unjustified a
priori designation, which distorts both the data and the results of any
analysis conducted on them.

26.2 Research Methodology

This section briefly reviews several engineering/industrial problems, which
were resolved through the use of gnostic methods.

26.2.1 A Geological Survey

Geological materials are standardized using traditional internationally es-
tablished procedures:

1. The geological raw material to be standardized is defined.
2. The location of the deposit of the cleanest and most typical material

of this kind is identified.
3. A qualified national institution in that country is selected to conduct

a specific survey.
4. An appropriate amount of the raw material is extracted.
5. It is pulverized, homogenized and divided into a large number of por-

tions/samples.
6. Portions of the samples are distributed among leading geochemical

and geophysical laboratories the world over.
7. The reports of all these laboratories are accumulated by the respon-

sible national institutes.
8. The foregoing results are given a final review and a closing survey re-

port is prepared along with a specification, which contains a summary
of the analyzes.

9. The samples with their specification are made available on a worldwide
basis so as to serve as standard for the material.
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In the late 1980’s interest was focused on the storage of spent nuclear fuel
rods, which emit a strong flux of fast neutrons as they decay. The half-life
of such radioactive residue is extremely long therefore these radioactive
wastes must be contained in safe repositories. For this reason, granite, and
especially its cobalt content, became a point of interest, because cobalt
has a very high cross-section with respect to thermal neutrons, ie it is
capable of very efficiently capturing them. The construction of repositories
in large granite deposits is suitable for storage purposes because of the high
chemical, geological and mechanical stability of the material and its nuclear
characteristics. The fast neutrons emitted by the radioactive wastes are
slowed down to thermal energy levels by the hydrogen nuclei of water
and—with a high probability—captured by the cobalt.

A deposit of granite suitable for consideration was found in the Czech
Republic and the Czech Geological Survey was charged with carrying out
the survey. At the time that the worldwide analytical report of the search
for suitable granite deposits was being prepared, an experimental gnostic
analyzer was made available to the Czech team. An analysis, using this
technology, led to the publication of [82], which represented a marked de-
parture from the usual results summarized by the sample mean plus minus
the sample estimate of the standard deviation. The conclusions of the
summary report of the survey are reproduced in Fig. 26.1.

Instead of the expected nice single bell-form of a Gaussian density curve,
three distinctly separated peaks with widely diverging maxima appeared.
Initial disbelief in this outcome was resolved, when a more thorough exami-
nation of the laboratory reports revealed the true origin of the inhomogene-
ity: each of the three clusters resulted from a different class of chemical or
physical methods, meaning, that systematic errors were made in the ap-
plication of the techniques used. The individual laboratories did not catch
the errors, because their measurements were taken using the methodology,
in which the laboratory was specialized and the results had an acceptable
spread.

Both the arithmetic and the geometric mean, marked in Fig. 26.1, are
respectively equal to 2.73 and 1.07. It is difficult to interpret, what these
numbers (and the standard deviations of 2.96 and 1.93) reveal. It suffices
to say, that had they been taken as the survey’s conclusions, information
of fundamental importance on the inhomogeneity of the results and the
inconsistency of measuring methods would have been lost.
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26.2.2 Incompatibility of Measuring Methods

A further example shows, how—without having knowledge of the distri-
bution functions—the use of only the point statistics of a sample or an
ordinary regression can lead to a false interpretation of information from
the data. In addition, this example also shows how results can vary with
different measuring methods. Data cited from [76] are in Tab. 26.1 and
are taken from three methods used to measure the tantalum content of a
sample:

NM . . . nuclear method (activation analysis),
MS . . . mass spectroscopy,
RF . . . roentgen-fluorescence method.

None of the customary classical statistical tests to measure the dif-
ferences between the three methods, also cited in [76], were statistically
significant (at the level of 0.05). The application of a gnostic distribution
function (EGDF) to this data leads to Fig. 26.2.
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Method Data

NM 68.00 78.72 79.79 80.90 81.43 85.30 86.50 89.00 92.70 100.00
MS 32.50 77.16 82.00 83.00 85.63 90.59 93.00 —– —– —–
RF 56.00 65.00 74.00 82.00 82.33 86.17 —– —– —– —–

Tab. 26.1: Data from the analysis of tantalum content
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The EGDF’s probability densities are shown in Fig. 26.3. The following
conclusions can be drawn from these graphs:

1. None of the distributions can be taken either as normal or as lognor-
mal, because the data supports for all three distributions are bounded
from below by a large positive bound. Moreover, two of them are also
bounded from above.

2. The medians of the three distributions, determined as quantiles of
probability 0.5, are close to each other.

3. The forms of the three distributions are not at all similar; this is seen
especially in Fig. 26.3.
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It is vividly evident, that while the medians are very close to each other,
when the gnostic distribution functions are introduced into the analysis,
the wide differences between the three measurement techniques can be
clearly seen and their equivalence cannot be justified.

The above illustration is also suitable to demonstrate another important
task: the identification of an outlier.

26.2.3 Membership of an Extreme Datum

The most frequently used approach to quality assessment consists of testing
a product’s quality parameter q to see whether it satisfies the inequality
|q − µ| < K ∗ σ, where µ is the arithmetical mean of the data sample and
σ is the sample estimate of the standard deviation. The constant K is
determined so as to ensure the required statistical significance for the test.

It is evident, that such a test can be justified if and only if the statistics
µ and σ are sufficient to identify the actual distribution of data. For a
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normal distribution, their sufficiency is warranted, but even then at least
four serious objections arise:

1. The test is based on the assumption, that even when there is a datum
exceeding the ‘tolerance,’ the actual distribution remains unchanged
and normal. What evidence is there to support this assumption? The
presence of a significant outlier can also be interpreted as a change in
the form of the distribution.

2. Both statistics µ and σ are unrobust, ie they are sensitive to outliers.
When their ‘old’ values from a previous ‘good period of the process’
are applied, then there is no control as to their actual recent values
and the test is unreliable. When the recent/current estimate of these
statistics is used, they are distorted by the outlier and the test is also
unreliable.

3. The choice of the constant K is mostly based on a subjective decision.
The test is then subjective.

4. The tested inequality is related to the determination of the distance
between the extreme datum and the mean of the sample. Therefore,
the applied geometry corresponds to the (subjectively and a priori
assumed) distribution. The test is once more subjective.

The tantalum example discussed above allows the gnostic approach to
this problem to be examined together with the usual statistical solution.
The MS (mass spectroscopic) data from Tab. 26.1 are depicted on the
horizontal axis in Fig. 26.4 by triangular marks.

There are six data spread over an interval from 77.17 through 93.00 and
one ‘suspect point’, 32.5. A careful analyst should test such an extreme
data value for ‘membership’ in the sample. For K = 3 (which is the
frequently used value) the arithmetic mean minus three standard deviations
equals 15.6. From the point of view of this statistical test the extreme value
32.5 cannot be rejected as an outlier and it would be accepted as an orderly
member of the data sample.

In contrast to the above, the gnostic approach to the bounds of ‘mem-
bership interval’ of a data sample (which was described in section 15.3.7)
is based on the fact, that the probability density of the global distribution
function (EGDF) has only one maximum in the case of a homogeneous
data sample. This distribution function is continuous and all its deriva-
tives exist. When a data sample’s characteristics change and tend toward
inhomogeneity and so to a second maximum in the EGDF’s density, there
is a critical transient moment at that point called the point of inflection.
This is seen in Fig. 26.4: the six valid members of the data set are fixed and
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the seventh one (the suspect) is moved upward from 32.5. The blue and
red lines respectively depict the density function, when the tested datum
reaches 52 and 53 respectively (using an enlarged scale). The red curve
shows, that for x = 51 (and fixed other data) the point of inflection is
reached, while for x = 52 the density still rises monotonously. It is there-
fore logical to accept x = 52 as the lower bound of the samples membership
interval. It is not necessary to manipulate the density function in this way
to determine this bound. Instead, equations 15.40 through 15.42 can be
solved simultaneously. It is obvious, that by doing this, no subjective in-
tervention is required, the solution is unique and it is determined only by
data (‘speaking for themselves’).

The results of the gnostic test has an opposite outcome with respect
to the arbitrary ‘three sigma’ approach: the extreme value 32.5 cannot be
considered as belonging to the sample formed by the six other data.

Figure 26.4 provides a similar outcome for the NM (nuclear method,
activation analysis) method.
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The smallest value, 68, located well down in the interval allowed by the
statistical test is rejected by the gnostic membership test, which declares
73 to be the lower bound of the membership interval.

26.2.4 What Kind of World Do We Live In?

“Leben wir in einer Volterra-Welt?”1 is the title of [85], which summarizes
the results of a mathematical investigation of natural evolution dynamics.
The leitmotif of this study is the capability of nonlinear equations of the
Volterra-Lotka type to successfully model many evolutionary processes,
which take place in biology, ecology, sociology, demography, economics
and—among others—in technology. This idea may seem strange at first
sight: what can be common between the mechanisms of extending stress or
fatigue cracks in an automobile drive shaft and the growth dynamics of a
tree or an animal, in the development of a business, etc? The explanation

1Do we live in a Volterra-World? (In German).
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can be found in the original purpose of this type of equation: to describe
the dynamics of conflict between two or more participants in a competition
for survival. A simple classical example is that of interactions between
two populations, rabbits and foxes [60]. An increasing number of rabbits
augments the foxes’ chances of survival and ability to multiply, but at
the same time, the rising population of foxes decimates that of the rabbits,
which in turn decreases the foxes’ survival opportunity. Similar competitive
forces can be found in other evolutionary processes. If this scenario is
indeed valid, then the idea of a Volterra-World could be interpreted as the
promotion of competition to a more prominent role as one of decisive Laws
of Nature.

It is not difficult to see the role of ‘randomness’ in such processes:

• A fox can catch a rabbit only with a certain probability.
• A scratch on a rotating shaft’s surface can give rise to a fatigue crack

and can be viewed as a random event (although its existence has some
entirely deterministic causes).
• There are positive as well as negative factors associated with the

growth of a plant, including uncertainties in their occurrence.
• A nuclear reactor functions only if there is a balance in the competitive

processes of the neutrons nascency (by fission of the fuel kernels) with
their loss from non-productive capture and escape from the process.
All of the individual reactions of neutrons with the kernels can be
viewed as random processes.

This leads to the conclusion, that we really do live in a Volterra-World ruled
by countless modifications of the Law of Competition with a substantial
contribution by uncertainty.

The utilization of the expression 26.2, which was interpreted as a def-
inition of the metric of the space of uncertainties and the application of
the Gaussian model of a distribution function implies ‘Gaussian metric’ in
a ‘Gaussian world of uncertainty.’ People prefer—if they are allowed to
by the circumstances—simplicity. It would be pleasing to view a single
model of the world, say a Volterra-Gaussian one. But this is impossible.
The explosion of the Cernobyl nuclear reactor surely represented a specific
modification of Volterrian conflict of competitive factors, but the particu-
lar dynamics differed from those of the pandemic spread of AIDS or of the
rate of introduction of mobile telephones in developed countries. On the
other hand, it was shown, that many different distribution functions can be
inferred from data, that the ‘normal’ distribution has no monopoly. ‘Nor-
mal’ should not be accepted as a universal synonym for ‘Gaussian.’ To call
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something ‘normal’ is to say, that for a specific event or set of events, the
behavior of the data in those circumstances is as would be expected. That
is to say, they behave normally under the conditions of their observation.
Thus, before any definition for normality can be ascribed, the investigator
must make the necessary effort to determine the model of that specific set
of ‘normal conditions.’

The world we live in is too complex to be characterized by a single
word. It can take many forms, sometimes it might be Volterrian and its
uncertainty is sometimes Gaussian, but very frequently it is non-Gaussian.
In further clarification, it can be added, that neither the Gaussian nor
the non-Gaussian world of uncertainty is Euclidean. The probability den-
sity g(x) in 26.2 would imply a Euclidean metric only if it were constant,
independent of x which is rarely true.

26.3 Analysis of Historical Coins

The idea of revealing interesting historical and economical facts from the
Middle Ages by advanced analytical methods can seem strange at first
sight. Indeed, historical studies frequently base their conclusions on arche-
ological findings. Among such findings, an important role is played by
coins, because:

1. Historical coins were minted from precious metals. Therefore, they
did not lose their value as time passed. They remained unlimitedly
liquid and they could be used not only as a trading medium, but also
for the accumulation of wealth/treasure.

2. Their physical/chemical composition allowed them to survive for cen-
turies.

3. Coins describe historical facts and reflect the economic life of the time
of their mintage.

The last statement is supported by the results of the investigation, which
was carried out.

26.3.1 Grossi Pragenses

The name for these coins is, of course, Latin and it is derived from Prague
Grosh2. Its use became popular in Europe because of the economic power

2From the Czech ‘groš’ and German Grosch.
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Mintage Weight (g) Purity (rel.unit)
Type Time Range (g) Pieces Range (1) Pieces

I. 1346-1348 3.235-3.645 14 0.843-0.875 3
II. 1348-1355 3.204-3.490 3 0.875 1
III. 1350-1358 3.125-3.520 13 0.847-0.870 7
IV. 1358-1378 2.430-3.586 13 0.838-0.865 9
V. 1370-1378 2.480-3.787 24 0.749-0.767 7

Tab. 26.2: Number of Coins Analyzed for Weights and Purity and Ranges of the Values

of the Czech kingdom and its adoption as national currency by several
countries. The coin, minted in Czech silver was embossed with the Latin
name of the Czech king, Vienceslaus Secundus (Václav II.), on one side and
with the Czech crown and double tailed lion on the other. The coin was
introduced in 1300 during an economic reform instigated by King Václav
II (1278-1305) and the coinage was called ‘eternal and holy’ probably be-
cause of its stability and universal liquidity stemming from its broad use
in Europe. It is estimated, that annual production of silver from only the
Kutná Hora3 mines was around 20 thousand kilograms. The coin main-
tained its value primarily due to its silver content and mint marks, which
guaranteed its authenticity. This contributed to its continued employment
in international trade. Due to its silver content, it circulated for several
centuries until the quality of the coins deteriorated. Collections of these
coins, which exist today, mostly stem from archeological sources, and un-
fortunately, only a few of them have been quantitatively described so as to
conduct a thorough analysis. It is something of a paradox, that numisma-
tists are ready to spend large sums of money to complete their collection,
but consider the costs of measuring and analyzing their coins too high.
The objective of the study [86] was to show, that worthwhile historical
information can be obtained by analyzing old coins.

26.3.2 Available Facts

The coins made available for analysis dated from the reign of the Czech
King and Holy Roman Emperor Charles IV, (1346-1378). The designa-
tion of ‘types’ and subsequent identification of the issue dates had been
numismatically determined previously by comparing minor differences in
the images, that had been struck. Table 26.2 reports the results of the
analysis.

3A Czech city listed and protected by UNESCO.
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Mintage Bounds Estimate Median
Type Time LB (g) UB (g) Med (g)

I. 1346-1348 3.233 6.369 3.478
II. 1348-1355 1.852 3.556 3.375
III. 1350-1358 1.458 3.590 3.402
IV. 1358-1378 0.201 3.723 3.297
V. 1370-1378 2.475 12.73 2.901

Tab. 26.3: Data Support Bounds and Medians for Coin Weights

Mintage Bounds Estimate Median
Type Time LB UB Med

I.-II. 1346-1355 0.843 0.936 0.848
III. 1350-1358 0.844 0.870 0.865
IV. 1358-1378 0.837 0.865 0.863
V. 1370-1378 0.643 0.767 0.763

Tab. 26.4: Data Support Bounds and Medians for Purity

Robust estimates of lower and upper bounds of the data support (LB
and UB) and median determined as quantile of probability 0.5 are reviewed
in Tab. 26.3 for analysis of weights and in Tab. 26.4 for purity.

While modern purity measurement methods do not damage the coins,
the traditional/historical metallurgical methodology for analysis was de-
structive, therefore the number of data, that could be used in the cited
study was relatively small. This explains the preference of collectors for
untested and undamaged specimens over those of known purity, but which
have suffered under essay. Even so, modern analytical tests are felt to be
expensive, given the results provided. However, the information provided
in Table 26.4 could lead to a reconsideration of this point.

26.3.3 Distributions of Coins’ Quality

The manufacturing technology for coins then was much the same, but
cruder, than what is common today. Purity was controlled by the amount
of base metals included in the alloy, and a sheet was hammered out and
rolled to a desired thickness by a mill. The coins were then stamped out
using an engraved die. The master of the mint was responsible to the King
for controlling these two parameters; this was necessary for wide acceptance
and trust in the coinage of the realm.

The relative spread for purity in Tab. 26.4 is much smaller than that of
the weights. This can be easily explained by the fact, that most of the coins
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were found in buried treasure and corrosion had a greater impact on the
coins’ weights than on their chemical composition. A second likely reason
is, that the ability to maintain standard weights over several centuries
would have been more difficult than adhering to a purity norm.

The results show a gradual but substantial degradation in the value of
the money. This conclusion can be supported and a more detailed insight
into the process can be obtained by considering the distribution functions
EGDF of weights in Fig. 26.6 and of the purity in Fig. 26.7.
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The form of the distribution functions of the weight in Fig. 26.6 and the
values of the upper bound of data support (UB) allow several conclusions
to be voiced as to the development of the quality of production. The distri-
bution of the oldest coins (type I) gives evidence of a very wide tolerance in
the thickness of the silver sheet, which results in nearly random behavior
of the function, and in high probabilities of exceeding the standard with
a very high value of UB (6.369 g). The curve for the type II shows a
substantial improvement.



26.3. ANALYSIS OF HISTORICAL COINS 635

��

����

����

����

����

��

��	� ��	
� ���� ���
� ����
������������������������

��������������



���������
����
�

���������
����	�

���������	����	�

 ������	!�"�#$$%���&"'($'$
)�*�%*+�,���������-.���������������	�

%���%%

��%%%

��%%%

��%/

��%/

��/

��/

%���%%

The standard (initial) weight was fixed and accurately maintained with
UB=3.556 g, to which the distribution function sharply rises.

Recall, that the steeper the probability curve rises, the more certain the
quantiles are, and the less the ‘local’ volatility. The curve for type III in
Fig. 26.6 attracts attention from this point of view: it is the steepest one
and—like the type II—it distinctly marks the upper break of the function
close to the established standard (which can be estimated by the UB of
3.590 g). It is interesting to note, that according to historical records, there
was a new and strict master of the mint appointed at that time. However,
after 1358 the quality started to deteriorate with the UB of the type IV
coins increasing to 3.373 g followed by a type V UB of 12.73 g: the ‘old
good order of things’ returned signifying the decline of the society. This
process can also be traced by values of the robust median, which was 3.402
g (type III) to fall to 3.297 g (type IV) and to 2.901 g (type V).

In the lower part of the distribution functions in Fig. 26.6 the spread
of LB values is much larger than that of the UB. This is caused by
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deterioration through corrosion rather then by poor control over the weight
of the coins.

Since the smallest values of the lower bounds belong to Types IV and
V, this supports the comment on poor minting quality. This is further
supported by Figure 26.7, which shows, that in the case of type V the
purity was poor.

The probability distribution functions of the coins’ purity shown in
Fig. 26.7 support the conclusions inferred from the weights. The bounds
set out in Tab. 26.4 for types I, II, III and IV document good control for
the coins’ purity. The change in quality over time can also be observed:
The initial upper bound UB was the highest for the types I-II (0.936).
However, then it was decided to be more economical in the use of silver
and to decrease the upper limit to 0.870 for type III, while keeping its
lower limit unchanged (LB=0.844), so as to maintain a solid foundation of
precious metal. These results infer, that a decision was made to lower the
silver content, yet retaining quality to ensure, that the value of the coinage
was maintained. The form of the functions here is even more unusual than
in Fig. 26.6: instead of an S-form, the very tight bounds on purity force
them to rise steeply and cut off sharply on both-sides of the bounds. Care
in the quality of production seemed to be approximately maintained for
type IV at the upper bound, but the lower bound LB was allowed to fall to
0.837. After 1370, all pretense for coin quality was abandoned completely:
the upper bound UB of purity was drastically decreased to 0.767 and the
respect for the reputation of the money obviously declined judging by the
fall of the lower bound to LB=0.643.

This brief look at the manufacture of coinage over a short period of
history can provide some interesting insights in the development of soci-
ety even though a significant period of time has passed, and the physical
quantity of evidence is sparse.

26.4 Production Quality

26.4.1 Certification of Quality

The range of the impact of product quality on the market was vividly shown
in Chapter 25: the greater the quality, the more goodwill accrued to the
producer and the reputation of his brand as well as to the popularity of
his product, market share and—last but not least—his ability to command
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higher prices. Certain products (eg medications, food, military supplies
and others) have especially strict norms of quality and there are complex
procedures to protect consumers. But the globalization of the market-
place has forced not only producers in various countries to pay attention
to the quality of their goods, but also has given rise to the establishment
of national quality standards, and governmental intervention into quality
control is gradually expanding to all markets. Producers have little chance
of exporting goods without an official certification. This process is con-
trolled by special regulations and only designated institutions with skilled
and experienced personnel are licensed to control the merchandise and is-
sue certificates of quality. This process is expensive, consuming both time
and investment and has become a special occupation. Unfortunately, the
state of art does not really meet the needs of the industry nor exploit the
level of available knowledge. The problem stems from both the inadequate
traditional methodologies, that are used, as well as the inertia contributed
by the ingrained bureaucracy that is in place to administer the system.
This conclusion begs a more detailed justification. A firm, that desires
to compete in the international marketplace, should establish procedures,
which include the following elements:

1. The creation of a computerized information system based on its local
network, which is capable of registering the basic production data:
(a) the identification of the raw materials and the various component

parts used in production,
(b) the results of quality tests on the inputs,
(c) a description of all production operations,
(d) the results of interim control operations,
(e) the results of final tests of quality of the products,
(f) details concerning inventory storage, maintenance and shipment,
(g) a list of personnel responsible for accepting inputs, for the manu-

facturing operation, and for the quality control tests.
2. The preparation of a detailed plan of the production process.
3. The elaboration of a detailed plan for the control operations including

the prescribed tolerance limits and emergency thresholds.
4. The preparation of a plan to cover extraordinary and emergency sit-

uations.

The production quality subsystem is a part of the complete business in-
formation system used to share economic data with other company nodes.
The real sense of the words illuminate the problem. A computer origi-
nally was a device meant for computing. Today, its functions are used
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for computing only a small part of the time. The original purpose of a
computerized information system was to provide information to the user.
In reality, the make up of information systems justifies only that they be
called data collecting and storage rather than information systems. What
they can deliver to the user is only data, but rarely information, because
the latter can be obtained from the data only by computer analysis. Un-
fortunately it is a fact, that many business information systems have no
on-line or even in-line analytical modules. If there are analytical tasks to
be performed, it is the generally accepted the point of view of the design-
ers of these systems, that the user should employ a professional statistical
analytic package for that purpose. Such an approach simplifies the design
of the information systems and releases the designers of the need to solve
complex data treatment tasks. But this approach abdicates responsibility
and is akin ‘throwing the baby out with the bath water.’

Indeed, the real purpose of a business information system is to provide
the means to direct the business. The most efficient control is that of a
feedback system: the results of control actions feeding the input are com-
pared on the output side with the required quantities and the deviations
are returned to the input after the optimization of a corrective action.
The inclusion of an off-line analytical system, that requires personal inter-
vention, complicates the communication effort and introduces undesirable
time delays. A closed-loop system should be provided with an analytic
module using real-time automated software. This requirement relates to
both the quality and business control functions of the system.

A change in mentality is required: sophisticated information systems
are installed and maintained to serve as databases without satisfying their
main purpose—the provision of information. Emphasis on administrative
and bureaucratic functions as an end, such that the certificate itself rather
than the quality of the product is the desired objective, subverts the pur-
pose of the system.

However, the mere installation of an in-line analytical module is insuffi-
cient without the inclusion of advanced software. Programs incorporating
the usual prejudices toward ‘normality,’ independence, stationarity, homo-
geneity, homoscedascity, Euclidean measure of errors, etc. are not capable
of providing the information needed to reliably govern a real process.
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26.4.2 Comparison of Technologies

The following is an illustration of the ability of gnostics to compare produc-
tion technologies. It took place in the Czech firm TATRA, which produces
unique air-cooled trucks made famous by gaining multiple wins in the dif-
ficult Paris-Dakar race. These vehicles are designed to serve under the
most difficult off-road conditions. Their reliability depends—among other
things—on the life of the suspension springs. The main problem is pre-
vention of fatigue cracks and this depends on the characteristics of the
material and on the technology used to produce the springs. Testing for
durability is expensive and time consuming, because it requires hundreds
of thousands of cycles of loading and unloading operations. In addition,
the test is destructive, therefore the number of completed tests (which or-
dinarily end by breaking the spring) is small. The results of tests of two
technologies (5 cases for each method) are shown in Fig. 26.8. The unit
of measurement used was millions of loading cycles until the spring was
broken.
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The nature of the data is obviously multiplicative, therefore the use of a
logarithmic horizontal scale, on which the common logarithms of millions
loads are shown. Taking the customary approach with point statistics and
assuming a lognormal distribution of data, the mean logarithm of four tests
for Technology 1 mu1, is -0.0289 and its standard deviation, σ1, is 0.154.
The critical value µ1 + 3 ∗ σ1 is thus 0.491. The fifth outcome, the largest
value (circled) 1.046 therefore far exceeds the ‘critical bound’ and should
be discarded as a sure outlier. The analogous test for technology 2’s data
gives µ2 + 3 ∗ σ2 = 0.514. The largest value is 0.055 and it is not for being
an outlier. Student’s test is unable to refute the hypothesis, that there is
no difference between the two technologies.

Shifting the approach so as to use distribution functions (EGDF) rather
than point estimates leads to an opposite conclusion. The seeming outlier
1.046 (ie this spring survived 101.046 millions loads!) becomes important,
because it forces the distribution function to the concave form even for high
values of the spring’s life. This value identifies the best spring by far, the
one which really survived the record number of loads. It would be illogical
to discard this value. On the other hand, the ‘strange’ form of the (green)
distribution function of technology 2 is quite natural, when it is examined
from the point of view of the mechanism of fatigue scratches: during the
initial interval, the repeated changes of load cause no measurable effects,
but the material ‘registers’ them, accumulating both the number and the
intensity of the stresses. But once a certain limit is exceeded, a crack
starts from a disturbance on the material’s surface and gradually increases
with the increasing number of cyclic loads. The resistance of the material
increases slowing down the growth of the incipient crack until the moment,
when the growth rate increases. From this point, the curve changes its
form from concave to convex and the crack extends with increasing speed
until the break occurs. A comparison of the distribution functions (DF1
and DF2) allows the following conclusions to be drawn:

1. The crack in DF1 begins, when DF2 reaches a value of about 0.5, ie
when about half of the springs of technology 2 are broken.

2. The change of DF2’s form from concave to convex occurs, when DF1
reaches 0.5, ie when about half of the springs of technology 1 survive
(when 80% of T2 are expected to have failed.)

3. DF2 reaches a value of 1, when the DF1’s value is about 0.6, ie when
all springs of technology 2 are broken and about 40% of the springs
of technology 1 still survive.

4. The behavior of DF1 close to the right end of the graph is nearly
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linear, ie the change from concave to convex character of DF1 can be
expected only at a still longer lifetime.

Using the distribution functions allows the superiority of technology 1 to
be proved.

26.4.3 The Quality of Caprolactam

Caprolactam is an important chemical product used as a raw material
in the textile industry. Some years ago, the quality control department
of a producer of caprolactam initiated a study to identify the factors of
production that have a greater influence on the quality of this product.
The behavioral relationships between the variables traditionally used to
measure quality and the main quality indicator, light absorbance, were not
known with sufficient confidence to justify the setting of control thresholds
for important variables. Caprolactam is produced in batches and measure-
ments of nine quality indicators from 39 batches were provided as inputs
to the study. The variables are listed in Tab. 26.5.

Only variables 1 through 5 are continuous; the rest are dichotomous:
only two levels can be reliably distinguished: ‘high’ or ‘low.’ Limitations
as to permissible values for absorbance, AB, are set by the end user, and
the permanganate number, PN , plays the next most important role in the
manufacturing process. The analysis is intended to explore the impact of
these individual indicators on the absorbance.

Preliminary information can be obtained by examining the probability
distribution of absorbance over the set of all batches. The EGDF of the 39
values of absorbance results in the probability and density functions shown
in Fig. 26.9.

No. Symbol Name Data type

1 AB Absorbance Continuous
2 PN Permanganate number Continuous
3 V A Volatile alkalis Continuous
4 CH Color by Hazen Continuous
5 AL Alkalescence Continuous
6 MC Moisture content Continuous
7 SP Solidification point Dichotomous
8 AR Annealing rest Dichotomous
9 MI Mechanical impurities Dichotomous

Tab. 26.5 Quality parameters for caprolactam
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Data are depicted as triangles on the X-axis. Labels along the proba-
bility distribution identify each individual batch. The estimated bounds
of the data support are very broad (LB = 0.191 and UB = 17.07), which
along with the bell-like form of the density curve might suggest normality
or logarithmic normality. This would mean, that values exceeding the max-
imum acceptable absorbance level (0.6) are possible and can be expected.
Indeed, two batches (No.23 and 24) reach the limit and should not be mar-
keted. The requirement, that probability at the desired limiting point of
0.6 be equal to 1 implies, that neither normal nor lognormal probability
distributions can be used, because such distributions would reach 1 only
at infinity.

The above shows, that the determination of what causes high ab-
sorbance is really needed. The first hypothesis to be tested is, that the
absorbance AB can be explained by the permanganate number PN . How-
ever, the linear regression AB = C0 + C1 ∗ PN leads to a coefficient of
determination of R2 = 0.177, ie this model can explain only 17.7% of ab-
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sorbance’s variance and should thus be rejected. A better outcome may be
obtained by extending the number of explanatory variables.

The four other continuous variables can be used as explanatory variables
in a multidimensional regression model of the type

ABk = C0 +C1∗PNk+C2∗V Ak+C3∗CHk+C4∗ALk+C5∗MCk, (26.4)

where k=1,. . . ,39.

Unfortunately, this model does not do a much better job of explaining a
greater portion of the variance, because its R2 is only 0.494. The distribu-
tion function of residuals of this model reveals substantial inhomogeneities
in the data. Moreover, variables AL and MC can be left out, because they
have only a negligible effect on the solution.
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The next step is therefore to institute a robust multidimensional cluster
analysis (see section 21.7), which decomposes the set of batches into 7
clusters and an unclassified remainder of 4 batches (which is insufficient to
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build a 5-dimensional model). Each cluster contains 5 batches. There are 4
coefficient to be determined, so the models have one degree of freedom. All
seven models are acceptable from the point of view of statistics, because
their R2 are all greater than 0.985 and the standard fitting errors of the
models are all less than 0.0166. The decomposition is thus successful.

An insight into the clustering can be obtained from Fig. 26.10, where
probability distributions of the absorbance for individual clusters are shown
(the left over four batches are included as CL8).

The distributions of six ’good’ clusters reach 1 for absorbance well before
0.6, while the probability of exceeding this value is high for CL2 and even
larger for CL8.

After a robust solution of the system 26.4 has been obtained, a review
of the mean impacts of the explanatory variables on the absorbance can
be calculated (eg for the variable PN as C1 ∗ PN , where PN is again the
arithmetic mean). The mean impacts within the clusters are depicted in
Fig. 26.11.
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The upper bound of the data support (of the absorbance) UB(AB)
determined for each of clusters is shown by the red line. There really are
six clusters (CL4, CL5, CL1, CL7, CL3 and CL6) of ‘passing’ batches, for
which the absorbance limit is not reached. Their UB(AB) is 0.440, 0.454,
0.480, 0.498, 0.541 and 0.562, respectively. However, in the case of the
cluster CL2 the probability of exceeding the acceptable level 0.6 is surely
less than 1, because its UB(AB) is 0.696. The patterns of the impacts
differ widely and only one of the continuous variables (CH) seems to be well
correlated with absorbance and can be identified as showing a contribution
to higher absorbance values. The patterns of the cluster’s composition
shown in Fig. 26.11 show, that the three parameters PN , V A and CH are
interdependent; their effects on the absorbance in some combinations can
compensate for, as well as amplify each other. The large impacts of the
intercept suggest, that there are still missing variables, which indicates,
that the impact of the dichotomous variables should be examined.
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A firm interested in streamlining its operations and improving its over-
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all quality control should look for commonalities within batches in its pro-
duction cycle. Such items as common conditions existing ‘within’ clus-
ters and for differences ‘between’ clusters can serve as important per-
formance indicators. Factors such as the composition of crews (espe-
cially shift supervisors), the time factor (day/night), calendar effect (Mon-
day/Wednesday/Friday4), etc, are likely to provide clues to differences,
which are found over time.
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However, there are still unused data in the considered case: the three
binary-valued factors SP , MI and AR. Their impact on the absorbance
can be easily analyzed using the natural advantage of the non-parametric
estimation technique based on an estimation of the conditional proba-
bility distribution functions. Indeed, to obtain the distribution function
Pr{AB ≤ x|(SP = low)} it is sufficient to separate the batches for, which
the condition SP = low holds and to find the distribution function of these
batches. Analogously, the alternative SP = high can be explored. The

4Recall the Hailey’s novel, Wheels.
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resulting conditioned distributions for both alternatives of the solidifying
point SP are shown in Fig. 26.12.

The difference between the alternatives is especially evident in the den-
sity functions: although the case SP = high has a broader density function
with a lower maximum (ie the volatility is higher), the density’s integral
(probability) is higher at the point 0.6. This means, that a higher SP is
better for quality. This example demonstrates the power of the analysis
based on the distribution functions: reliance on the point estimate of the
variance would lead to an opposite conclusion (‘the higher variance, the
higher risk of exceeding the limit’). The result is, that increasing SP has
a small but positive effect on the quality.

The conditioned distributions for the factor MI are in Fig. 26.13.
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The effect on the quality is much stronger here than what was seen
for SP and the conclusion is opposite: to get a low absorbance, keep
the mechanical impurities as low as possible. The effect of AR shown in
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Fig. 26.14 is really striking: the difference between alternatives AR = low
and AR = high is not only quantitative, but qualitative.

Instead of a bell-form, the density of absorbance for batches with a low
AR has the U-form. The probability of exceeding a value 0.43 is zero and
reaching the limit 0.6 is not expected. The annealing rest has been shown
to be the strongest factor in the determination of caprolactam’s quality.

The analysis suggests the following conclusions:

1. The strongest impact on the absorbance of caprolactam is the anneal-
ing rest AR. To ensure a high caprolactam quality the quantity AR
must be kept at a low level.

2. The second strongest factor is the amount of mechanical impurities
MI. A high quality requires MI be low.

3. The continuous variables PN , V A and CH taken individually have
no remarkable effect on the quality, but they are interdependent and
affect the quality in certain combinations.

4. Variables AL (alkalescence) and MI (moisture content) have no sig-
nificant effect and can be left out of the control procedures.

26.4.4 The Cleanroom Problem

For some manufacturing processes, the quality of the product depends
on many factors, among which an important role is played by the envi-
ronmental conditions that prevail, where the work is performed. Many
procedures require extreme cleanliness of the air in the workplace. This
is necessary not only in operating rooms, food processing plants or phar-
maceutical production, but also in the high-tech industry. Experience has
shown, that the reliability of microchips depends on the concentration of
airborne microcontamination particles in the rooms, where uncovered chips
are manipulated. Such a room is called a cleanroom. These special needs
are incorporated in the building’s plans and are similar to those used, when
working with radioactive or biological materials, but with opposite effect:
instead of preventing radioactivity or biohazards from leaking outside, the
cleanroom is protected against the infusion of contaminated air from the
outside. The requirements for perfect filtration of the air before it enters
the cleanroom include anterooms for personnel to change their clothes, and
cleaning all the materials and devices needed in the process. There are also
requirements for a precise measuring and information system. The needs
of such a facility are set out in [18] as follows:
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T1 to confirm cleanroom class conformity,
T2 to provide timely information about particle movements,
T3 to provide diagnostic information about contamination, whether it be

personnel, equipment, or facility-generated,
T4 to quickly identify particle count excursions and air handling failures

before they have an impact on the yield,
T5 to identify locations and operations contributing to high concentrations

of particles,
T6 to confirm proper operation of the cleanroom and equipment appro-

priate for semiconductor research and development,
T7 to establish a database for correlation of particle counts with process

yield,
T8 to identify particle monitoring strategies for future fabrications.

However, an important function for each automatic monitoring system
does not appear in [18]: to provide autodiagnostic information on the
proper functioning of the monitoring system and on its readiness to fulfill
all its tasks.

The very complex behavior of the airborne microcontamination parti-
cles poses difficulties in the design of the system: the more or less sta-
tionary ‘noise’ generated by many small particles is disturbed by sudden
very strong excursions probably caused by a clump of particles clustered
together. These bursts occur randomly and then cease without affecting
the background level. The difficult issue to be confronted is to decide,
whether these are a very short term temporary disturbances or the start
of a dangerous rise in the particles’ density. The article [18] describes at-
tempts to solve the problem by an approach based on fractal methodology.
In parallel with this effort, a research project was run5 based on gnostic
methodology. A decision was made to solve the main tasks T1 through
T6 by using a fast, but robust gnostic recursive filter running in-line. An
example of its activity is reproduced in Fig. 26.15.

The thin red line shows the unfiltered output of a particle counter, while
the thick red line is the output of the gnostic filter. Note, that the filter
smoothes even large temporal excursions, but is sensitive to and reacts in a
timely manner to changes in the actual level of the process. This provides
reliable information sufficient to satisfy tasks T1 and T3. A solution to
tasks 5 and 6 can also be based on such filters to read signals from local
detectors (a cleanroom is fitted with a large number of particle detectors

5Sponsored by the DEC (Digital Equipment Corporation), Vienna
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both of the laser type and suitable versions of Wilson chambers).

The magenta line in Fig. 26.15 represents the rate of change of the ro-
bust filter (its first derivative) obtained by application of the differentiating
linear operator (see sections 18.4.1 and 18.4.4). This output is both robust
and sensitive enough to satisfy tasks T2 and T4. The filtered signal to-
gether with its derivative stored in a database are suitable to fulfill tasks
T7 and T8. Should their signals fall below a threshold, the autodiagnostic
signal indicating a failure of the monitor would be triggered.

26.5 Application to Psychology

26.5.1 Job Stress Survey

The significant impact of stress in the workplace on employee health, well-
being, and effectiveness has been increasingly recognized in the last sev-
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eral decades. Stress and strain in work settings are generally attributed
to the interactions between an individual and that person’s occupational
environment. Work stress results primarily from an incompatible person-
environment fit that produces psychological strain and stress-related phys-
ical disorders. The methodology of the Job Stress Survey (JSS) as set
out in [39] and [40] was applied in the Czech Republic. The authors of
the Czech version of the JSS were Helena Knotková, Frantǐsek Man and
Charles D.Spielberger. It was decided to analyze the results not only by
classical statistical methods as in the original JSS, but also—at least in
part—by gnostic methods.

The JSS was administered to 209 university and corporate employees.
Differences in the perceived severity, frequency of occurrence and overall
level of occupational stress were evaluated for individuals working in these
settings. The format for responding to the JSS Severity Scale was the same
as in American JSS. Subjects first rated, on a 9-point scale, the relative
amount (severity) of stress they perceive to be associated with each of
the 30 JSS job stressors (eg ‘Excessive paperwork’, ’Working overtime’) as
compared to a standard stressor event, ‘Assignment of disagreeable duties’,
which was assigned a value of ‘5’.

The JSS took into account the assessment of anxiety by asking respon-
dents to indicate how frequently a stressor event had been experienced
during the past 6 months using a scale from 0 through 9+ (nine or more)
days. Scores of severity JSS-S and of frequency JSS-F were then obtained
as the sum of all 30 ratings of the individual JSS items. The overall Job
Stress Index (JSS-X) was calculated as the sum of cross-products of the
severity and frequency scores.

26.5.2 Initial Analysis

The application of classical statistical methods (the testing of significance
by standard deviations from the arithmetic mean, using analysis of vari-
ance, factor analysis and F-tests) raises certain questions. Are there really
good reasons to presume, that the uncertainty in human decision making
(in filling out a questionnaire about their stresses) is Gaussian? Recall,
that the idea of a normal distribution consists of a superposition of many
minor deviations from the (constant) mean with only rare outliers. Is this a
true characteristic of human psychology? How do such things as prejudices,
conservatism, momentary depression, and different triggering mechanisms
fit in this scheme? A quotation from Humberto Eco’s characterization of
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society in Paris during the Middle Ages ([21]) seems to support the idea
of a ‘nonlinearity’:

. . . as if the usual things, even if miraculous, no longer enlightened
anyone, and only the unusually uncertain or the certainly unusual
were able still to stimulate.

Consider Fig. 26.16, which shows the frequency scores of stresses.
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About a half of the respondents took extreme positions of 0
(‘never’/’unusually uncertain’) or 9 (’too much’/’certainly unusual’), while
the other half were confident enough to quantify the frequency. If a more
or less similar (‘average’) working environment in a society could be as-
sumed, then a simple interpretation of the results can be proposed: about
a third of the respondents had a ‘robust’ character insensitive to distur-
bance factors in the workplace, while about a sixth were oversensitive. If
this is true, then their judgments can be taken as either prejudiced toward
one extreme or the other, or at least, noncommittal.
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Unlike these nearly dichotomous responses, Fig. 26.17, which reviews the
extent of the stresses implies the existence of three clusters of responses,
which could be expected if there were listed only three instead of nine stress
levels: rather low, average and rather high.
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In any case, neither the frequency nor the severity results can support
the idea, that the character of the process is Gausian.

The questions which made up the questionnaire are not independent.
Some are related to the same subject and are included intentionally to
control the veracity of the respondent. The answers are therefore expected
to be interdependent. Additional interdependence in the responses can
exist due to specific personal character traits of the respondents.

An idea of the significance of individual stressors can be obtained by
considering the overall Job Stress Index (JSS-X, the sum of the cross-
products of the severity and frequency scores). The probability distribution
and density functions of the reported values of Job Stress Index are in
Fig. 26.18.
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Contrary to the normal and log-normal distributions, the data support
for this distribution is bounded (the maximum Index’s value is 0.0689).
The identification numbers of the stressors are shown as labels on the
probability function. The most significant stressors (those with probability
exceeding 0.75) are 5, 10, 7, 23, 19 and 25, and the least significant ones
(with probability below 0.25) are 20, 12, 21, 17, 26, 30 and 3. Table 26.6
identifies the nature of these stresses, both those bothering people the most
(high probability) and the least bothersome ones (low probability). The
relative frequency reported by the respondents (in per cent) is also shown
in the table.

An overview of Table 26.6 suggests, that the majority of the respon-
dents want to work, and that the most significant stresses are related to
obstructions to their effort to work. Indeed, the strongest stressors 25,
23, 7, 10 a 5 transmit the same message: ‘Let us do our work without
meaningless interruptions!’ On the other hand, personal interests are evi-
dently dampened (stressors 20, 17, 30, 3). However, there is an exception,
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The least bothersome situations
Stressor Reported

# Type Occurrence

20 Competition for careers 0.7%
12 Periods of inactivity 1.1%
21 Weak or inadequate control by the boss 1.6%
17 Personal offence 2.1%
26 Terms of meetings 2.1%
30 Conflicts with other departments 2.2%
3 Lack of opportunities for a career 2.4%

The most bothersome situations
Stressor Reported

# Type Occurrence

5 Co-workers not doing their jobs 4.1%
10 Inadequate or bad equipment 4.8%
7 Solving of crises 5.2%

23 Frequent disturbances 5.4%
19 Inadequate salary 5.5%
25 Excessive paperwork 5.6%

Tab.26.6: The most and least bothersome stressors evaluated by the Job Stress Index

a feeling that they are being inadequately paid for their efforts (19). It is
interesting, that this stressor did not have as prominent a position in the
original American survey. This difference can possibly be ascribed to the
specifics of the postcommunist development of the Czech Republic.

The results of this analysis provides information on the point of view
of the majority of the respondents and does not allow any inference about
the homogeneity of the results nor about their structure. These aspects
must be considered under a multidimensional cluster analysis.

26.5.3 Clusters in Job Stress Survey

To investigate the inner structure of the JSS’ results, a multidimensional
cluster analysis was performed using the robust implicit regression model
(see section 24.4):

1. Severity vectors were constructed from the severity questionnaire re-
sponses Sm,n, where m = 1, . . . , 30 are the (stressor numbers) and
n = 1, . . . , 209 (are the respondent’s number).

2. Frequency vectors were made up from the frequency questionnaire
answers Fm,n, where m = 1, . . . , 30 (are the stressor numbers) and
once again n = 1, . . . , 209 (are the respondent’s number).
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3. 30-dimensional vectors of the overall stress index JSS-X were calcu-
lated as products Sm,n×Fm,n (m = 1, . . . , 30) for each (n−th) respon-
dent and used as the explanatory variable.

30∑
m=1

Cm ∗ Sm,n ∗ Fm,n = 1 (n = 1, . . . , 209). (26.5)

4. The equation system 26.5 was solved by means of the gnostic robust
method with respect to the model’s parameters Cm.

5. The vector of residuals (equations’ errors) was obtained by substitut-
ing all the values of Cms and Sm,n ∗ Fm,ns in the model.

6. Six homogeneous clusters of JSS-X vectors (of respondents) were ex-
tracted from the above by repetitively extracting the ‘main’ cluster.

The local distribution function ELDF of the residuals is shown in
Fig. 26.19.
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The inhomogeneity of the JSS-X’s data is evident due to the appearance
of several local maxima.
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The structure of each cluster obtained by the multidimensional cluster
analysis is specific, the roles of stressors differ from those found in the
global analysis; they reflected only the overall tendencies. An illustration
of a cluster’s composition is shown in Fig. 26.20 for cluster 2.
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The columns are proportional to the mean impacts on the right hand
value of 1. So, eg, the first column, belonging to stressor # 24, is obtained
as C24 ∗ S24,n ∗ F24,n, where n runs through the respondents’ numbers that
form the cluster, and where the overline denotes the arithmetic mean.
The negative contributions to 1 can be interpreted as effects of mutual
dependencies over the stressors represented in the cluster. For instance,
stressor 24 characterizes the situation ‘Frequent changes from boring to
difficult tasks’, while the (most negatively acting) stressor 1 relates to
‘Assignment of unpleasant tasks.’ They both speak to task assignment
and are thus dependent on each other. Those respondents choosing # 24
(preferring it as the better formulation of the problem) increase its score,
but by leaving # 1 out, they decrease it and vice versa.
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The five strongest impacts in all six clusters are summarized in Tab. 26.7.

Although the respondents, who fall into a specific cluster, answer ques-
tions related to their working conditions, they do not characterize their
workplace, because they come from different occupational environments.
Rather, they give evidence of their own subjective sense of the environ-
ment. On the other hand, occupations differ in the stresses they produce.
Therefore, the clustering reflects both objective and subjective factors.
This can be seen in Fig. 26.21, where the respondents forming the clusters
are distinguished by gender, profession and age.
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The columns are proportional to the indexes calculated as the number
of respondents in the cluster divided by the number of respondents with
the same attributes, who participated in the survey.

The easiest trait to interpret is the age: it has no role, all age indexes
are close to 1.
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# Stressors in Cluster 1 Impact
20 Competition for careers 0.55
28 Doing the work of a colleague 0.21
11 Assignment of a higher responsibility 0.06
12 Periods of inactivity 0.06
15 Insufficient staff to manage the tasks 0.05

# Stressors in Cluster 2 Impact
24 Frequent changes from boring to difficult tasks 0.62
2 Working overtime 0.27
4 Assignment of new or unusual duties 0.22
7 Solving crises 0.096

19 Inadequate salary 0.063

# Stressors in Cluster 3 Impact
15 Insufficient staff to fulfill the task 0.43
29 Inadequate motivation of co-workers 0.22
18 No participation in decision making 0.15
10 Inadequate or bad equipment 0.11
28 Doing the work of a colleague 0.08

# Stressors in Cluster 4 Impact
19 Inadequate salary 0.28
3 Lack of opportunity for promotion 0.24
4 Assignment of new or unusual duties 0.12

29 Insufficient motivation of co-workers 0.11
2 Working overtime 0.07

# Stressors in Cluster 5 Impact
6 Inadequate support from the boss 0.55
5 Co-workers not doing their jobs 0.27

22 Noisy workplace 0.13
11 Assignment of a higher responsibility 0.05
2 Working overtime 0.03

# Stressors in Cluster 6 Impact
23 Frequent disturbances 0.52
3 Lack of chances for promotion 0.22

13 Difficult relations with the boss 0.17
4 Assignment of new or unusual duties 0.10

19 Inadequate salary 0.10

Tab.26.7: The main impacts in response clusters
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An interesting comparison is offered by clusters 1 and 2, which differ
only by gender: the first is dominated by women, the second by men,
while all the other aspects are close to 1 and have no impact. Table 26.7
says, that the predominantly feminine personnel in cluster 1 tend to be
affected by ‘typically masculine’ competitiveness, they prefer to be left
alone to do their own work without being given excessive responsibility or
overburdened. The mainly masculine makeup of cluster 2 prefer steady
work at a reasonable salary with no unusual assignments.

In cluster 3 women prevail and this group are mainly clerks and per-
sonnel with a secondary education. They see the cause of their stresses
as being overloaded, underestimated both as individuals and as a team as
well being inadequately supported by their employer.

The main stress in cluster 4 is caused by the conflict between own am-
bitions and expectations of reward through promotion in view of the en-
hanced effort expended. This (largely masculine) cluster differs from the
others in that it has a high proportion of managers and workers with a
college education.

Cluster 5 is dominated by males and clerks, who express their dissatis-
faction with relations with both their supervisors and colleagues, who are
perceived to not be pulling their weight.

The (also largely masculine) cluster 6 has the largest participation from
teachers: they develop high stress levels from being interrupted in their
work or disturbed. Feelings of unsatisfied personal ambitions and diffi-
cult relations with supervisors seem to offset stresses developed from new
assignments.

This examples demonstrates, that even data obtained by a very prim-
itive and rather subjective ‘measuring’ technology of questionnaires can
reveal useful facts, when the tools of advanced analysis are applied.

26.6 Medical and Genetic Diagnostics

Most of us know of someone, if not ourselves, who have been told by their
doctors: ‘You are overweight,’ ‘Your blood pressure is high,’ ‘Your choles-
terol is at a dangerous level.’ These pronouncements all say the same thing:
‘The parameters that measure your physical well being are out of normal
bounds.’ These are all related to the problem of normality repeatedly dis-
cussed in this book. Physicians routinely must decide if the boundaries
between healthy and sick have been crossed and if so then to diagnose the
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problem and recommend a cure. Each specific illness is defined by a com-
plex set of features, which have to be compared with those, which describe
good health. Many of these characteristics are expressed in numerical form,
as some critical bounds, which have been established over the long-term.
Some of these bounds are supported by research. An important problem to
be examined is, whether this application field is sufficiently free from the
prejudices of (Gaussian) ‘normality’ to accept open minded interpretations
of experimental data. For a study to be accepted by a leading journal it
is necessary that customary classical statistical tests ‘demonstrating the
statistical significance’ of the results to be included. It must once again
be noted, that such tests as variance or factor analysis, t- and F-tests and
others are directly dependent on the acceptance of a priori assumptions
as to the data’s statistical model, which fact is—as a rule—not subject to
verification.

26.6.1 Osteoporotic Data

With currently used techniques, in medical studies, there is a danger of
misinterpreting analytical results if the distribution functions of the pa-
rameters in question are not Gaussian, and the further they extend from
statistically normal characteristics, the worse the results. To obtain a suffi-
ciently rich collection of distribution functions, data6 were obtained from a
large medical research project on osteoporosis in postmenopausal women.
There has been long-term experience in the application of gnostic methods
in this field [63]:

Calcium, one of the most important physiological regulators of parathy-
roid function, suppresses parathyroid hormone (PTH) serum levels. In
postmenopausal women relative hyperparathyroidism was found mani-
fested by a lower PTH suppressibility by exogenous hypercalcemia (Lo
et al., 1988). This condition could have a negative impact on bone
metabolism. Because it is not clear, whether this phenomenon is condi-
tioned by a drop in estrogen levels, an experiment was designed to influence
it by estradiol (E2) administration, 100 µg/d for a period of three months.
The PTH responses and attained serum calcium levels following calcium
administration were assessed several times. PTH and calcium-induced val-
ues were estimated by measuring the changes in the areas under the graphs
of both the PTH and the calcium measurements. The effect of E2 was then
determined by comparing the data for the same women before and after

6By courtesy of Doc.MUDr. Žofková, DrSc. of the Institute of Endocrinology, 116 94 Prague
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the E2 treatment. From estimates computed for 9 patients it ensued, that
E2 enhanced the PTH suppressibility, so that the decremental PTH area
in eight of the nine women after the treatment was higher than before the
treatment, despite the fact, that after the treatment, the same calcium
load produced lower calcium levels than before.

From the point of view of a professional judgement, the experiment was
undoubtedly successful, but it was not possible to reject the zero statistical
hypothesis: the expectation of a positive effect of the treatment was not
supported by the statistical test on a sufficiently significant level. Thus,
a common sense judgement on the success of the experiment appeared to
be in conflict with the statistical data analysis. When gnostic distribution
functions were applied to these data, they demonstrated their superiority
over traditional methods. The results of the new method were substan-
tially less sensitive to possible data variations and more informative. The
method enabled a reliable confirmation of the positive effect of estradiol
on suppressibility of PTH by exogenous hypercalcemia to be made. It was
possible to quantify the expectation of the success of the treatment and to
point in the direction of a more detailed investigation.

The research project has been expanded to result in a database of 114
female patients and has included the measurement of (up to) 39 medical
parameters (Tab. 26.8) and 8 genes with their alleles (Tab. 26.9). The sur-
vey had a preventive character, the patients were not ill: their health was
adequate for their ages, which were between 27 (the lower outlier) through
80 with a mean of 62.5 years.

The available data enabled the actual distribution functions of the med-
ical parameters to be estimated and analyzed. To demonstrate the in-
appropriateness of the Gaussian assumption for most of the parameters,
arithmetic means (AV G) and standard deviations (STD) were calculated
for all the variables. The data (eg Dx) were than normalized by using
the formula N(Dx) = (Dx − AV Gx)/STDx, where N(Dx) is the normal-
ized value of Dx and AV Gx with STDx its mean and standard deviation.
Gnostic distribution functions of normalized data were then calculated, the
homogeneous part of each data sample was determined together with its
membership bounds LSB and USB. This allowed the lower and upper
outliers (data out of the membership interval) to be determined. All these
results are reviewed in Tab. 26.8.

Note, that statistics AV G and STD are expressed by using the vari-
ables’ natural scale, while the bounds LSB and USB are normalized (cen-
tered and shown as multipliers of STD). This means, that if the nor-
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Para- Natural Scale Normalized Scale Description
meter AV G STD LSB USB of the parameter

Age 62.5 9.0 -1.86 1.97 Age
BMI 25.7 3.5 -1.94 3.46 Body Mass Index
YAMP 13.5 8.5 -1.72 2.92 Years after the menopause

or OOX
IonCa 1.3 0.05 -4.11 2.52 Ionized calcium
AF 1.8 0.59 -1.95 17.6 AF total
YSM 13.4 8.35 -1.84 2.97 YSM
BMDWT 0.6 0.15 -2.05 3.74 BMD at the Wards Triangle
WardT -2.3 1.34 -1.91 3.52 Wards T-score
WardZ 0.23 1.32 -1.67 2.68 Ward’s Z-score
Beta2 2.3 0.79 -1.31 5.62 Beta2 microglobulin
IRI 11.3 6.6 -1.36 3.15 Insulin (IRI)
IGFI 153.6 59.2 -2.04 6.71 IGF - I
Estrad 0.08 0.10 -0.93 5.37 Estradiol
Calcit 14.8 16.7 -0.97 5.64 Calcitonin
Ostkalc 12.1 7.9 -1.56 3.60 Osteocalcin
Int.PTH 38.7 22.6 -1.62 18.9 Intact PTH - IRMA
Calcid 24.3 32.5 -0.78 8.42 Calcidiol
DPYD 7.1 3.9 -1.24 2.86 DPYD in urine/ 2 h.
ABMDts 0.86 0.15 -2.63 7.12 A - BMD Total Spine
PMBD 0.79 0.13 -1.55 3.50 P - BMD mean diameter

of both extremities
ABMDT -1.7 1.4 -2.43 5.78 A - BMD T-score
PBMDT -1.5 1.1 -1.54 3.22 P - BMD T-score
ABMDZ -0.12 1.40 -3.47 17.0 A - BMD Z-score
PBMDZ -0.25 1.01 -1.93 7.85 P - BMD Z-score
CBUAT -1.8 1.04 -1.72 3.81 Cuba BUA T-score
CBUAZ 0.02 0.89 -1.92 5.72 Cuba BUA Z-score
sPICP 125.7 38.1 -2.48 3.77 Serum PICP
CBUA 66.8 18.4 -1.69 3.89 Cuba BUA (PK+LK)/2
Dvit 44.5 19.2 -1.75 6.41 1.25 (OH) D vit. calcitriol
Testst 1.5 0.7 -2.19 3.05 Testosterone
DHEAS 2.3 1.6 -1.41 14.9 DHEAS
DHEAN 8.1 5.4 -1.49 14.1 DHEA unconjug.
Andrst 2.3 1.4 -1.45 20.5 Androstendion
SHBG 60.2 28.7 -1.87 3.11 HBG
Ca24 4.6 2.4 -1.90 2.70 Calcium in urine/24 h.
sICTP 3.1 1.0 -1.93 4.18 Serum ICTP
IGFBP 5.5 2.0 -1.63 3.31 IGFBP-3
FTI 3.3 2.5 -1.26 10.97 FTI = (free testosterone

divided by SHBG)x100
FEI 0.23 0.28 -0.81 5.44 FEI = (free estradiol

divided by SHBG)x100

Tab. 26.8: Statistics (arithmetic mean AV G and standard deviation STD) of
osteoporotic patients in original scales and gnostic critical values (bounds of the

membership intervals) in normalized scale (X − AV G)/STD
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malized distributions of all variables were ‘the same’, all LSBs would be
closely concentrated about a constant; analogous effects were observed for
all USBs. The fact, that nothing like this appears in Tab. 26.8 is due to
the widely differing form of the distributions: the lower bound LSB ranges
from -4.11∗STD (Ionized Calcium) through -0.78∗STD (Calcidiol), while
the upper bound USB can be as small as 2.70∗STD (Calcium in urine)
and as large as 20.51∗STD (Androstendion).

Examples of the probability distribution functions are in Figs. 26.22 and
of their densities in Fig. 26.23.

Only one of the distributions is reminiscent of the Gaussian form (AB-
MDZ), but as seen in Tab. 28.8 even in this case the membership interval
is bounded (-3.47∗STD, 17.0∗STD). It can be seen, that the cut-offs of
the distribution definition ranges causes their asymmetry. All lower and
upper bounds of data support for all the analyzed medical parameters are
finite and asymmetric.



26.6. MEDICAL AND GENETIC DIAGNOSTICS 665

��

����

����

����

����

��

	�� 	
� 	�� 	�� �� �� �� 
� ��
�������������������������

����� ����� �� !" #$�

#�%�����
&� $!���'���(� $)$(*
����������+�,����-����.���������

All of this supports the thesis on the necessity of not basing ones di-
agnostic judgments on assumptions/prejudices, but on the real specific
form of the distribution of the parameter being considered. The diagnos-
tic thresholds should be established individually for each of the medical
parameters.

26.6.2 Genetic Impacts

An important aspect of the survey, which addresses osteoporosis, deals with
the level of several hormones. However, the analysis of survey data found
significant correlations only between hormones, but not between hormones
and other medical parameters. The focus was then turned to the genetic
characteristics of the participants.

Eight genes were identified within the framework of the survey and they
are described in Tab. 26.9 together with their alleles7.

7One of two or more different genes containing specific inheritable characteristics, that occupy corre-
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Genes Description
Symbol Name Symbols of Alleles in Tab. 26.10

G1 VDR/FOK I A1...FF, A2...Ff, A3...ff
G2 VDR/Apa I A1...AA, A2...Aa, A3...aa
G3 VDR/Taq I A1...TT, A2...Tt, A3...tt
G4 VDR/Bsm I A1...BB, A2...Bb, A3...bb
G5 ESR-1/Pvu II A1...PP, A2...Pp, A3...pp
G6 ESR-1/Xba I A1...XX, A2...Xx, A3...xx
G7 CALCR/Alu I A1...TT, A2...TC, A3...CC

Tab. 26.9: Genes and their alleles identified in the patients

The objective here was to find possible relations between the genotypes
and the other medical parameters. A useful result was obtained by using
the gnostic concept of unidimensional cluster analysis: ‘normal values dx
of a data sample X are those satisfying the conditions LSBx ≤ dx and
dx ≤ USBx’, where LSBx and USBx are the bounds of the X’s member-
ship interval. This rule was applied to the osteoporotic survey to classify a
patient as normal if all her’s parameters fell within the bounds. This cluster
contained 54 patients and was denoted M; the rest of the 114 respondents
formed the lower or upper cluster (L or U). The relative incidence of each of
the alleles in all of the clusters was counted and showed a strong nonunifor-
mity. Therefore the ratios of these relative incidences (in ‘normal’ patients
divided by the rest) was calculated for 21 genotypes. The results are in
Fig. 26.24.

It can be shown, that in at least 6 cases of genotypes the relative inci-
dence in normal patients versus the rest is statistically significant. Taking
into account, that the identification of normal patients was realized by
gnostic diagnostics, the result can be interpreted as statistical support for
the gnostic method of identification of ‘normal’ patients.

The membership bounds in Tab. 26.8 were established by the univariate
analysis. The incidences of genes in the ‘M’ cluster motivates a further step
in the analysis to answer the question as to the impacts of genotypes on
the probability distribution of hormones. Such an impact really exists as
is shown in Fig. 26.25, where the probability distributions of parathyroid
hormone (PTH) is presented for three alleles of the gene G1: the form of
the distribution can be strongly dependent on the allele.

Even stronger impacts can be found in the bounds of membership in-
tervals as can be seen in Tab. 26,10.

sponding positions on paired chromosomes.
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The above leads to the conclusion, that it would be impossible to estab-
lish diagnostic PTH thresholds for all patients without taking into account
their genetic makeup.

Gene’s Alleles
Gene’s A1 A2 A3
Symbol LSB USB LSB USB LSB USB

G1 9.59 104.91 8.40 621.82 10.71 94.91
G2 12.01 92.19 5.92 198.31 9.92 122.27
G3 5.91 997.92 11.14 97.22 12.70 54.03
G4 12.55 88.38 9.02 94.68 4.24 4008.67
G5 17.07 118.47 16.68 111.74 7.95 112.47
G6 16.11 97.64 16.64 112.38 7.53 111.65
G7 5.92 116.16 12.90 120.02 0.70 44334.89
G8 19.76 124.38 6.00 138.08 26.14 1111.50

Tab. 26.10: Membership bounds LSB and USB for the parathyroid hormone in
dependence on the genes and their alleles
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26.7 Summary

All application fields, which use numerical data contaminated by uncer-
tainty, require an economical methodology for data treatment. Given
the cost of data, maximization of the information contained therein is a
mandatory requirement. This chapter used a varied number of examples
to demonstrate the importance of this task and to show how the use of
advanced analytical methods can yield vastly superior results. The range
of potential applications, which are suitable for the use of gnostics is very
broad. This was shown by illustrations from such diverse fields as a ge-
ological survey, techniques of physical measurement, historical numismat-
ics, production quality assessment in the chemical industry, mechanical
engineering, computer chip production, psychology and medical genetics
applications. Common problems exist in all these fields: the requirement
for both unconditional and conditioned probability distribution functions
completely determined by data, robust uni- and multidimensional cluster
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analysis, specific distribution-based diagnostic thresholds and other robust
methods of mathematical gnostics, all of which maximize the information
obtained by the results. The gnostic paradigm of uncertainty proves its
viability by the efficiency of its applications.
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CX/TA

clusters, 472
correlations, 494
homogeneity, 475
normality, 478
quantiles, 477

quartiles, 476
DA. . . Depreciation and Amortization, 415
DA/TA

heteroscedasticity, 465
homogeneity, 475
normality, 478

DIV
. . . Dividends, 415
causality, 496
correlations, 490, 494

DIV/PS
clusters, 472
inhomogeneity, 475
quantiles, 477
quartiles, 476

E/P
. . . Earnings/Price ratio, 427
clusters, 472

E/P%

causality, 496
distribution, 456, 457
heteroscedasticity, 465
intervals, 485
variable S, 463

E/P%

distribution, 451
formula, 427

EAT . . . Earnings After Taxes, 415
EAT/TA

distribution, 465
intervals, 485, 487

EBIT . . . Earnings Before Interests and
Taxes, 415

EBIT/TA
in an MD-model, 527
interval bounds, 555
MD-rating, 504

EBITDA. . .EBIT +DA, 454
EBT . . . Earnings Before Taxes, 415
EP

682
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quantiles, 477
quartiles, 476

EPS, 427
. . . earnings per share, 419
causality, 496
clusters, 472
correlations, 490, 494
heteroscedasticity, 465
inhomogeneity, 475
normality, 478
quantiles, 477
quartiles, 476
robustness, 478

G− irrelevance(q), 98
G− irrelevance(y/x), 97
G− weight(q), 98
G− weight(y/x), 97
GEL, 284
IE. . . Interest Expense, 415
INV . . . Inventory, 415
InfQ. . . information quality, 464
LB, 458, 459, 466

estimation, 402
inter-industrial comparison, 573

LEL, 284
LP inter-industrial comparison, 573
LSB, 472, 477, 478

estimation, 402
inter-industrial comparison, 573

LTD/TA
impact on the return, 509

Max
inter-industrial comparison, 573

Min
inter-industrial comparison, 573

N/D, 472
NS. . . Net Sales, 415
NSO. . . Number of Shares Outstanding,

415
P/E, 501

. . . price-earnings ratio, 419
distribution, 451, 457
versus E/P , 426

PS, 427
. . . Share Price, 415
causality, 496
clusters, 472
correlations, 490, 495
inhomogeneity, 475

quantiles, 477
quartiles, 476

RD/TA
clusters, 472
correlations, 494
distribution, 461
heteroscedasticity, 465
homogeneity, 475
normality, 478
quantiles, 477
quartiles, 476

RE. . . Retained Earnings, 415
RE/TA

clusters, 472
correlations, 494
inhomogeneity, 475
quantiles, 477
quartiles, 476

RMed
inter-industrial comparison, 573

ROA
causality, 496
clusters, 472
correlations, 490, 494, 575
definition, 418
inhomogeneity, 475
inter-industrial comparison, 572
intervals, 485
probability, 483
quantiles, 477
quartiles, 476

ROA MD-rating, 504
ROE

definition, 418
ROE misusing, 424, 425
ROE. . . Return on Equity, 424
ROI. . . Return on Investment, 427
RWC, 458

. . . relative working capital, 424
clusters, 466, 472
correlations, 494, 575
definition, 418
distribution, 443
formula, 424
impact, 513
impact on the return, 508
in an MD-model, 527
inter-industrial comparison, 572
probability, 483
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quantiles, 477
quartiles, 476

SG,KS, 405
SG,L1, 405
SG,ME, 405
SG,MF , 405
SRF , 405
Sloc(Z0), 405
Srec(Z0), 405
TA. . . Total Assets, 415
TA/TEQ

definition, 418
distribution, 458

TATO
clusters, 472
correlations, 494, 575
definition, 418
distribution, 448, 456, 457
impact, 552
in an MD-model, 527
inter-industrial comparison, 572
interval bounds, 555
intervals, 485, 487
MD-rating, 504
probability, 483
quantiles, 477
quartiles, 476

TEQ. . . Total Common Equity, 415
TL. . . Total Liability, 415, 454
TL/TA

causality, 496
clusters, 472
correlations, 494, 575
heteroscedasticity, 465
impact on the return, 509
in an MD-model, 527
inter-industrial comparison, 572
interval bounds, 555
MD-rating, 504
probability, 483
quantiles, 477
quartiles, 476

TLTO
definition, 454
distribution, 455

TOTR
clusters, 472
normality, 478
quantiles, 477

quartiles, 476
TR, 502

. . . total return, 419
comparison distributions, 569
correlations, 495, 575
formula, 428
homogeneity, 475
industry’s development, 565
inter-industrial comparison, 572
marginal comparison, 571
MD-model, 589

UB, 458, 459, 466
estimation, 402
inter-industrial comparison, 573

USB, 472, 477, 478
estimation, 402
inter-industrial comparison, 573

2-algebra, 86

DA/TA
clusters, 472
quantiles, 477
quartiles, 476

a priori
assumptions, 263
model, 169, 383, 395, 567
weight, 232

Abel’s group, 8
absolute insolvency, 557
abstract structure, 8
acceleration, 334
accounting

measurement, 20
measurements, 20
prudence, 367
recognition, 22
uncertainty, 21

activity in clusters, 532
additive

composition, 7, 195
data, 8, 58, 385

definition, 56
group, 8
residual, 313
structure, 8

advanced
data analysis, 394, 397

universal applicability, 621
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advanced data analysis, 588
affine transformations, 31
agnostic, 48
agnosticism, 40
airborne particles, 650
algebra

dimension 2, 86
pair numbers, 86

algebraic structure, 5
algorithmization, 414
alternative path, 179
alternatives to statistics, 274
Altman’s method, 416, 421
amortization, 415
analysis

advanced, 588
fundamental, 586
of historical coins, 633
restrictions, 599
steps, 600
technical, 586

analyticity
conditions, 92
pair numbers, 91

analyzer, 341
angle geometry, 71
anti-quantification, 130
anti-S form distribution, 158
arithmetical mean, 285
ask, 372, 592
asked price, 370
asset, 415
associativity, 7, 11
autocovariance, 346, 406
axiom, 382
axiom1, 56

balance, 335
entropy and information, 167
sheet, 415

bandwidth filter, 347
barter

trading, 8
basis

of a subspace, 338
periodical, 346
polynomial, 345

Beta analysis, 217
bi-modality, 467

bias, 357
biased information, 584
bid, 372, 592

price, 370
BLUE, 336

estimator, 341
Boltzmann’s entropy, 231
book value

per share, 419
boundedly variated path, 180
bounds of data support, 395, 434

Capital Asset Pricing Model, 217
CAPM, 217
caprolactam quality, 643
car

interval analysis, 603
market, 596

structure, 613
market example, 597
MD-ordering, 605
ordering by premiums, 611
ordering by utility, 611
parameter

classes, 604
cost, 602
marginal analysis, 602
MD-analysis, 602
utility, 602

parameters, 597
parameters range, 597
price

impact of parameters, 608
MD-ordering by manufactures, 605
premium, 610

price distribution, 597
utility MD-model, 602
utility parameters, 614

cash flow, 6, 334, 415
statement, 415

catalogue MD-models, 576
Cauchyan disturbance, 322
censored data, 365, 366, 392, 395, 487, 594
censoring, 365
Central Limit Theorem, 41, 385
centralization, 338
centralized control, 349
chance, 437
characteristic
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additive, 222
gnostic, 96
non-additive, 222

choice of a car, 596
circle

Euclidean, 77
geometry, 71
Minkowskian, 77
radius, 77

civil government, 582
civil regulation, 581
class pair number, 87
classification

by stock prices, 535
by total returns, 536

cleanroom, 650
closedness, 7, 10
cluster, 246, 306, 389, 390, 395, 432, 468

domination, 550
models, 530
ratio means, 531
volatility, 550

cobalt in granite, 625
coins’

degradation, 636
purity, 634
quality, 635
weight, 634

Common Equity, 415
common size statements, 416
commutative group, 8
commutativity, 7, 11
comparability, 395, 410, 421, 436

factors, 436
of firms, 419, 518, 549

comparable firms, 436
comparison

TR distributions, 569
by interval analysis, 555
by odds, 543
correlations, 574
distributions, 569
external impacts, 569
interval analysis, 577
MD-models, 576
of distributions, 266
of industries, 567
performance, 568
technologies, 641

time lag, 569
volatility, 568

competition, 581
restriction, 581

competitive market, 580
complex number, 85
composition

axiom, 203
law, 399
operator, 56

Compustat tape, 416
concatenated samples, 209
conditioned

distribution, 649
probability, 166

conflicting measurements, 625
conjugate event, 99
conjugation, 87
Conservation Law, 81, 197, 199
constraints, 241
contraction, 109

path, 116
contraction path, 179, 181
contribution, 512

sign, 551
control

centralized, 349
environmental, 351
local, 350

convergence to statistics, 221
convolution, 339
coordinate, 30, 32
coordinates

exchange, 64
replacement, 64
subjectivity, 65

correlation
coefficients, 489
matrix, 354
robustness, 406

cost, 369, 415, 580
Cost of Goods Sold, 415
costless information, 585
counting, 4
covariance, 198, 335

robustness, 406
criterion function, 171, 234, 407, 500
cross-section, 331, 503

analysis, 417, 565
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dynamics, 332
filtering, 269, 401, 408
ordering, 503
regression, 307

crosscovariance, 406
cumulative frequency polygon, 226
currency market, 371
Current Assets, 415
Current Liability, 415
curvature, 236, 321, 407

data, 35, 56
classes of errors, 173
objective treatment, 381
a priori weight, 232
accounting, 18
additive, 8, 58
additivity, 385
analysis

advanced, 394
availability, 621
axiom1, 56
bounded, 384
boundedness, 457
censored, 366, 392, 487
censoring, 365
classes of errors, 174
cluster, 472
clustering, 472
collective weight, 194
composition, 193, 380

additive, 194
in statistics, 194
Newtonian, 196
statistical, 198

costs, 621
domain, 56, 59, 238
error, 379
financial, 40, 387
finiteness, 384, 395
hard bound, 460
heteroscedastic, 405, 465
homogeneity, 237, 254, 306, 470
homoscedastic, 465
individual, 379
inhomogeneity, 625
inlying, 223
interval, 369, 401
irrelevance, 398

left-censored, 368, 401
matrix model, 63
membership, 628
model, 56
multiplicative, 11, 58
multiplicativity, 385
normal, 487
normality, 474
normalization, 664
observed, 55, 57
origin, 4
outlying, 223
pair symmetry, 55
quality, 102
random, 387
range, 56, 59
real, 379
regularity, 379
right-censored, 366, 401
sample, 201

definition, 202
equivalent, 205, 220
location, 211

scoring, 416
similarity, 486
small samples, 379
speaking for themselves, 321, 377, 630
structure, 56
support, 61, 152, 227, 384, 386

bounds, 239
finite, 238
infinite, 238
transformation, 238
transformations, 158
transformations formulae, 238

survival, 367
trimmed, 392
trimming, 395
typical, 293, 404, 483, 487
uncensored, 366
uncertainty, 53, 378, 621
volatility, 58
weighing, 194
weight, 29, 379, 395, 398
weights

composition, 201
zero, 385
censoring, 16

DDF, 225
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de-meaning, 346
decision buy/sell, 594
decision making, 383, 414
deflation, 10
degree of robustness, 222
delta function, 365
density distribution, 225
dependence, 388
dependent variable, 305
depreciation, 415
detrending, 346
diagnostic formulae, 421
dichotomous variables, 647
dirty financing, 556
discounting, 10
discrete

distribution function, 225
probability, 240

discriminant
analysis, 421
surface, 421

Discriminant Analysis, 407
distance, 69, 178, 500, 502, 623

between firms, 550
Euclidean, 71, 73
geometry, 71

distribution
anti-S form, 157, 158
Cauchy, 42
change, 629
chi-square, 43
conditioned, 649
Fisher, 43
function, 148, 399, 441

invariance, 448
robustness, 457
sensitivity, 457
symmetry, 567
variability, 567

functions, 395
Gauss, 41
multimodal, 43
S-form, 157
scale dependence, 161
Student, 43
symmetry, 435
U-form, 157
unimodal, 43

distribution-free methods, 275

distributions incompatibility, 628
dividend, 415

paid dynamics, 468
payout ratio, 419
yield, 419

domain, 153
domination in a cluster, 550
double number, 85

angle, 91
conjugation, 114
kinds, 113
modulus, 91, 113
quantification, 90
rotation operator, 91
transposition, 114

double symmetry matrix model, 93
dynamics, 332

E-angle, 97
E-characteristic, 96
E-entropy, 314

criterion, 407
source, 134

E-information, 139, 213, 314
criterion, 407
formula, 135

E-irrelevance, 134, 213
behavior, 102
robustness, 103, 105

E-kernel, 148, 151
E-median, 212
E-path, 117, 128
E-variance

criterion, 407
E-weight, 212, 314

behavior, 100
earnings, 415
Earnings After Taxes, 415
Earnings Before Taxes, 415
Earnings Before Taxis and Interest, 415
econometrics, 38, 39
economic comparability, 436
economics of information, 621
EDF, 226, 227, 459

. . . empirical distribution function, 443
efficient market, 585
efficient price, 587
EGDF, 238

RD/TA, 461
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RWC, 459
TA/TEQ, 458
TATO, 457
application, 443, 448, 451, 452, 457, 470,

477, 488, 505, 507, 528, 536, 543,
554, 558, 560, 636, 642, 643, 664

bounds estimation, 239
censoring, 488
cross-section filtering, 409
curvature, 465
definition, 242
density function, 243
example, 442, 443
formula, 242
hard bound, 461
heteroscedasticity, 463
homogeneity, 470
homogeneity testing, 254
homogeneous cluster, 471
membership bounds, 476
parameters, 400
robust estimation, 474
robustness, 243, 256
sample bounds, 257
specific usage, 401
uniqueness, 253

ELDF, 238
RD/TA, 462
RWC, 459
TA/TEQ, 458
application, 444, 480, 528, 529, 541, 554,

658
density formula, 241
example, 442, 444
fitting errors, 252
flexibility, 245
formula, 241
intervals, 483
marginal analysis, 465
MD-clusters, 410
parameters, 400
robustness, 252, 485
specific usage, 403
universal applicability, 242

ELDF definition, 241
empirical

distribution function, 227
set, 7
structure, 5

empirical distribution function, 443
empty set, 384
energy attached to a number, 122
energy-momentum

conservation, 82
tensor, 82, 199

entropy, 395
attached to a number, 124
Boltzmann, 169, 231
Boltzmann , 123
change, 398
Clausius, 169
Clausius , 123
determination of metric, 125
field, 125

gradient, 127
source, 133

gnostic, 124
increase, 126, 166
quality of energy, 167
Shannon, 169
Shannon , 123
statistical, 123

entropy ⇔ information conversion, 141
entropy⇔information conversion, 170
equity, 415
equivalence, 500

of ratios, 420
equivalent, 205
equivariance, 152
ergodicity, 462
error

function, 314
measurement, 30

estimate, 70
efficiency, 171
sufficiency, 171, 434
unbiased, 171

estimating
characteristics, 398
data weight, 407
irrelevance, 328

estimation, 46, 95
data support bounds, 402
density, 401
derivatives of distributions, 401
equation, 402
extreme probabilities, 401
extreme quantiles, 401
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location, 401
location parameter, 401
membership bounds, 402
optimality, 132
path, 116, 130, 179
period, 333
probability, 400
quantile, 400
rotation, 96
sample’s bounds, 402
scale parameter, 402, 405

estimator
BLUE, 341
Gauss-Markov, 341
minimum penalty, 338
Neumann-David, 341
Semyonov, 342
Zadeh-Ragazzini, 342

Euclidean
error, 316
errors, 194
geometry, 28, 178, 394, 407, 423
metric, 73
paradigm, 75
similarity, 217

event
gnostic, 96
quantification, 96
random, 35

ex ante, 333
ex post, 333
expansion, 109
expense, 415
explanatory variable, 305, 313
explanatory variables roles, 512
explicit regression, 306, 325, 327
exponential forgetting, 332
external

appreciation, 429
factor, 518
information, 520
point of view, 503, 574
valuation, 518

extremal, 178
path, 179, 183

extremality, 184

Factor Analysis, 407
fatigue crack, 641

feed-back, 158, 325, 389, 438
feedback, 334

control, 640
fidelity, 235
filtering, 333, 335

time-series, 408
weight, 313, 314

financial
control, 413
data, 40
diagnostics, 413
health, 413
leverage, 418, 458

in clusters, 532
position trend, 481
ratio, 472, 476, 477, 483

causality, 495
clusters, 472
correlations, 495
formulae, 418

statement
analysis, 41, 386, 413
data, 415

stress, 509
structure, 418

finite data support, 158, 238
firm’s size problem, 419, 422
fiscal category, 598
forecast, 587
foreign exchange market, 371, 591
forgetting, 332

factor, 332
fractile, 211
freedom, 584
frequency polygon, 226
function double argument, 90
fundamental analysis, 586
future position, 481
fuzziness, 151
fuzzy-set

approach, 390
theory, 44

G-angle, 97
geometric interpretation, 98

G-center, 215
definition, 214

G-characteristic definition, 96
G-covariance, 210
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G-event polar form, 98
G-irrelevance, 214

definition, 96
robustness, 100

G-median, 212
G-variance

formula, 213
G-weight, 213, 232

definition, 96
metric matrix, 99
robustness, 100

Galileo, 198
Gaussian distribution, 41, 388, 622
GDF, 225
Gedanken-experiment, 122, 147
gedankenscience, 39
genetic impacts, 667
geodesic line, 184
geological survey, 624
geometric movement, 30, 64
geometry, 27, 69, 219, 379, 391, 623

angle, 28, 71
circle, 71
distance, 30, 71
Euclidean, 28, 70, 73
Galilean, 79
length, 28
Minkowskian, 29, 73, 75
paradigm, 27, 30
Riemannian, 29, 73, 184
weighing function, 70

global
distribution function, 238
interval analysis, 402
location parameter, 284
scale parameter, 276, 405

gnostic
analysis, 397
autocovariance definition, 210
characteristic, 96

definition, 203
limits, 220

composition axiom, 203
correlation coefficient, 219
covariance, 99, 210
criterion function, 313

review, 314
criterion functions, 235
criterions, 407

crosscorrelation formula, 213
crosscovariance definition, 210
crosscovariance formulae, 214
distribution function

formulae, 238
distribution functions, 399, 441
distributions

applications, 400
entropy formula, 124
event formulae, 96
filter, 321
information applicability, 168
irrelevance , 96
kernel, 147, 148

applications, 150
MD-model, 527
median, 211
membership test, 629
movement

integral, 140
paradigm, 37
path, 179
probability, 135
regression

robustness, 313
robust correlations, 490
similarity, 218
standard deviation, 220
system, 44
theory

goal, 167
novelty, 111
specifics, 111

virtual movement, 181
weight, 96, 359, 470

gnostic criterion functions, 306
gnostics, 47, 377, 378, 380

consistency with statistics, 105
duality of notions, 112
elements, 49
individual data, 112
maximum information, 622
origin of probability, 112
relations to statistics, 381
summary, 49
the name, 48

goodness-of-fit, 225
gradient, 127

contra-variant, 128
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covariant, 128
gravitation theory, 29
Grossi Pragensis, 633
group, 8

additive, 8
commutative, 57
matrix operator, 64
multiplicative, 9–11

hard bounds, 239
hard data bound, 460
heterogeneous data, 203
heteroscedastic data, 405
heteroscedasticity, 282, 462
heuristic scoring, 416
heuristics, 44
histogram, 226
historical analysis, 638
holomorphy, 91
homogeneity, 388–390, 395, 472, 474

test, 254, 260, 297, 402
homogeneous

data, 470
data cluster, 471
sample, 389

homogeneous data, 203
homoscedasticity, 463
horizontal analysis, 416
hormons, 663

ideal, 384
gnostic cycle, 116
quantification, 57

mapping, 56
quantity, 57
value, 56, 57, 70

IGC
approximate reversibility, 172
definition, 116
irreversibility, 127, 142, 168
optimality, 170, 182
residuals, 143

IGC path, 130
imaginary

length, 76
impact, 512
imperfect appraisal, 589
implicit

MD-clustering, 539

MD-model, 540
model , 559
regression, 323, 327

formula, 326
monitoring, 522

improbability, 136, 163, 170, 213, 219, 398
features, 138
formula, 134

impulse function, 365
income statement, 415
indeterminate

complex number, 85
double number, 85
pair number, 86

index fund, 586
indexing, 10
individual data, 379
individual datum probability, 135
industries comparison, 567
industry composite measure, 503
inequality, 581
infinite

data support, 238
population, 42

infinity, 383
inflation, 10
inflator, 54
influence function, 313
information, 379, 395

balance with entropy, 166
bias, 584
carrier, 167
channel, 80, 81, 165
costs, 585, 586
economics, 621
extraction, 621
flow, 584
function, 166
historical, 634
loss, 379
maximum, 394
measuring, 166
quality, 464
rationing, 584
role, 587
system, 563
theory, 165
timeliness, 585
underestimating, 585
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utility, 622
inhomogeneity, 390, 526
inlier, 102, 173, 223, 380, 395, 407
inner

point of view, 506
robustness, 257, 264, 315, 317, 395

inner point of view, 503, 518
input variable, 307
insolvency

absolute, 557
practical, 557
relative, 557

intelligent sensor, 349
inter-industrial comparability, 546, 567
intercept, 431, 515
interdependence, 655
Interest Expense, 415
interest factors, 10
internal

point of view, 574
variable, 429

interpretation, 383
interval

analysis, 290, 297, 483
global, 402
local, 404

data, 369, 401
interval analysis

comparison, 555, 577
examples, 554

interval bounds definitions, 555
intra-industrial

comparability, 567
incomparability, 534

invariance, 152, 198, 447
exchange of coordinates, 64

invariant, 27, 31, 32, 447
rotation, 77
scalar product, 76
transformation, 30

inventory, 415
invertibility, 7, 11
invisible hand, 579, 584
irrelevance, 134, 219, 359, 379, 470, 491

composition, 200
error measure, 99
formulae, 214
geometric

formula, 96

interpretation, 398
Riemannian distance, 99
rotation, 398

irreversibility of the IGC, 142
isoentropy lines, 125
isomorphic mapping, 57
isomorphism, 11

gnostics ⇔ relativistic physics, 399
gnostics ⇔ special relativity, 81
of groups, 12
of structures, 11

job stress survey, 652

K-path, 118, 130
kernel, 366

choice, 149
estimate, 148, 226

Riemannian interpretation, 149
estimation, 229
optimality, 151

kinship syndrome, 584
Kolmogorov and Smirnov, 228
Kolmogorov-Smirnov

statistic, 228
test, 228

KS-points, 229
KSDDF, 226

L1-optimality, 405
lack of knowledge, 388
Landau’s symbol, 221
Law of Large Numbers, 41, 263, 379, 385
Law of Nature, 447
Least Squares Method, 171
least-squares

problem, 336
regression, 315
solution, 312

left-censored, 366
left-censored data, 401

examples, 368
liabilities, 415
liability

in clusters, 532
life-time, 367
LIFO, 368
limited flexibility of distributions, 262
linear operation, 334
liquidity, 417
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local
distribution function, 238
interval analysis, 404
location parameter, 284
scale parameter, 278, 405

location
equivariance, 152
estimator, 287
parameter, 212, 215, 283, 434
parameter comparison, 287

Lorentz
group, 79
invariance, 80, 199
invariant, 80, 83
matrix, 80
transformation, 79, 80, 199

formula, 79
LSB, 476

M-estimator, 298
main cluster, 474, 528
MAPE, 464
marginal

analysis, 441, 465
cluster analysis, 247, 403, 445
comparability, 571
rating, 479

market
analysis, 596
appraisal, 588
beating, 586
chaos, 585
efficiency, 585
expectation, 587
foreign exchange, 371
imperfections, 584
position, 418
price, 370, 502, 581
regulation, 583
trend, 588
valuation, 574

market’s chaos, 518
marketing, 596
mathematical

difficulty, 414
expectation, 337
gnostics, 47
rating, 499
theory, 378

mathematics, 5, 13, 378
matrix

model, 62
uniqueness, 66

signal-to-noise, 339
maximum

entropy fit, 230
information, 394
likelihood, 171

Maxwell’s demon, 141
MD-

analysis, 410
automatic analysis, 546
cluster analysis, 646, 657
cluster structure, 553
clustering, 529
clusters usage, 538
comparability, 410, 549
model, 391, 410
models catalogue, 576
models comparison, 576
ordering, 411
rating, 504
rating steps, 505
similarity, 410
clusters, 526
comparability, 526
model dynamics, 522
models comparison, 527
rating, 503

MD- (multidimensional) analysis, 409
MD-rating

causality, 508
dynamics, 510
examples, 506
financial history, 507
interpretation, 507
sensitivity, 511

ME-points, 231
mean ratio, 419
measurement

basis, 20, 22
theory, 58, 378
theory, 5

measurements
low sensitivity, 369
off the scale, 367

measuring, 4
instrument, 4
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methods
incompatibility, 626

results, 4
zero, 385

mechanics, 380
Einsteinian, 44
Newtonian, 44, 198
relativistic, 80, 199

MEDDF, 226
median, 283, 285

of ratios, 419
medical diagnostics, 662
membership, 297, 389

bounds, 302, 477
in medicine, 664

function, 44
interval, 390, 487

bounds, 260
problem, 299, 390, 395
test, 260

message, 165
method

distribution free, 275
kernel estimation, 275
non-parametric, 274
parametric, 274
robustness, 417

metric, 29, 236, 395, 632
entropy, 125
matrix, 72, 73
Minkowskian, 75
Riemannian, 99
tensor, 623

minimum penalty estimator, 338
minimum variance, 306
Minkowskian

geometry, 29, 178
plane, 75
rotation, 81

mirror
image, 99
reflection, 114, 118

mode, 284, 285, 292
model, 25, 391

data, 56
identification, 351
matrix, 62
quality, 306
realism, 59

robustness, 391
structure, 306

modulus, 205, 206, 210, 406, 470
double number, 90
pair number, 87

monitoring, 348
a cross-section, 507
a MD-series, 521
a single firm, 521
process changes, 570

monopoly, 582
price, 582

movement
exponential, 13
geometric, 30, 64
linear, 13
modeling, 31
physical, 31
real, 31, 91, 106
virtual, 31, 64, 78, 91, 106

moving window, 347
multi-marginal ordering, 515
multidimensional

analysis, 441
cluster analysis, 409

multidimensionality, 391
multiplication factor, 9
multiplicative

data, 11, 385
definition, 58

group, 9
of positive numbers, 11

nature, 10
residual, 313

multiplier, 10
multivariate

cluster analysis, 403
model, 433
ordering, 500

Murphology, 26

natural
effort, 584
liberty, 583
price, 580
rate, 580

Nature’s game, 108
negligible data, 395
Net Sales, 415
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neutral element, 7, 11
Newtonian

composition law, 195
noise, 165, 167
non-Euclidean geometry, 394
non-parametric

estimation, 147
method, 275

non-robustness, 431
non-smooth behavior, 395
non-statistical

methods, 395
non-statistical uncertainty, 188
nonlinear filter, 313
nonstatistical

paradigms, 36
normal

data, 474, 487
distribution, 41, 386, 388, 434, 622
distribution function, 443
product, 479
ratio, 475

normality, 383, 386, 462, 472, 479, 622, 633,
662

assumptions, 622
number

complex, 85
conjugate, 87
double, 85
pair, 86
transposed, 87

Number of Shares Outstanding, 415
numerical operator, 331, 334, 337

object’s
history, 332
state, 331

objective
rating, 499

objectivity, 381
observed data, 55
OLS, 316, 341, 407

. . . Ordinary Least Squares, 431
MD-model, 527

operational policy, 533
operator, 331

differentiation, 352
rotation, 95

oppression, 583, 584

optimality, 182, 187, 218, 219, 393, 399
criterion, 379

optimization, 334
optimum operator formula, 338
optimum path, 394, 395
ordering

by stock prices, 535
by total returns, 536
of MD objects, 500

Ordinary Least Squares, 316, 341
orthogonality, 120
osteoporosis, 663
outer robustness, 265, 315, 317, 395
outlier, 102, 173, 223, 255, 285, 380, 386,

388, 395, 407, 432, 623
identification, 628

output variable, 313
oversimplification, 397

pair
analysis, 441
function

analyticity, 115
number, 86

analyticity, 91
geometry, 88
representation, 88

paradigm, 25
gnostic, 37
nonstatistical, 36
statistics, 35
Galilean, 27
parts, 25
problems, 26
Ptolemaic, 27
risks, 26

parameter, 201
of location, 283
of scale, 276
scale, 58

parametric methods, 274
partial

contribution, 512
impact, 513

Parzen’s
estimator, 147
kernel conditions, 147
method, 226

past position, 481
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path, 28, 70, 179, 394
alternative, 179
anti-quantification, 130
boundedly variated, 180
contraction, 179
estimation, 179
extremal, 183
imaginary, 76
integral, 179
integration, 69
length, 76
quantification, 78
quantification , 179
variated, 180

payout clusters, 468
penalty formula, 338
percentage analysis, 416
Perez A. notion of information, 165
perfect market, 584
periodogram, 346
physical movement, 31
plane

Euclidean, 73, 85
Gaussian, 85
Minkowskian, 85

point estimate, 395, 420, 434, 444
examples, 434, 435

popular financial ratios, 418
population, 201, 274
population infinite, 42
post-mortem record, 350
posterior weight, 233
practical insolvency, 557
pragmatic, 177

theory, 177
precedence, 500
precise data, 220
prediction, 333
present value, 21
price, 9, 10

efficiency, 587
market, 581
MD-model, 600
monopoly, 582
natural, 580
predetermined, 584
random walk, 585
triggered, 584
volatility, 372

primitive notion, 20
Principal Component Analysis, 407
probability, 213, 219, 398

conditioned, 166, 168
density, 147, 623
distribution, 147, 623
expectation, 154
features, 138
formula, 134
graph, 154
quantification, 437
theories, 36

reservations, 36
process monitor, 348
product’s quality, 370
production

costs, 580
profitability, 417

in clusters, 532
proforma statement, 415
program trading, 584
prosperity, 584
pseudo-inverse, 310, 336
pyramidal decomposition, 416

Q-angle, 97
Q-characteristic, 96
Q-entropy, 314, 407

criterion, 407
field, 134
source, 134

Q-information, 136, 139, 170, 314
criterion, 407
formula, 136

Q-irrelevance, 134, 212
behavior, 102
robustness, 103

Q-kernels, 162
Q-median, 212
Q-path, 117, 126
Q-regression, 315
Q-variance

criterion, 407
Q-weight, 212, 314

behavior, 100
QGDF, 238

definition, 245
density function, 245
formula, 245
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parameters, 400
QLDF, 238

definition, 243
density function, 244
formula, 244
parameters, 400
robustness, 244

quadratic criterion function, 393
quality, 4

assessment, 387, 479, 638, 641, 643
certification, 638
costs, 621
impacts, 650
of coins, 635
parameters, 643
requirements, 639
assessment control, 17

quantification, 45, 378
channel, 167
consistency, 5
definition, 4
domain, 58
double numbers, 90
event, 96
ideal, 13
ideal, definition, 56
mapping, 4
path, 64, 78, 116, 179
range, 58
real, 55
real, definition, 56
rotation, 95
technology, 5, 621

quantifying
characteristics, 398
data weight, 407
distribution

flexibility, 262
distributions

robustness, 262
irrelevance, 328

quantile, 211
line, 454

quantitative recognition, 381
quantity, 4
quartile, 283

random
coefficients, 336

event, 35
matrix, 337
noise, 336
sequence, 335

randomness, 40, 50, 202, 378, 387, 395
rating

agency, 576
automation, 577
catalogue, 576
objective, mathematical, 499

ratio
“normal value”, 475
“recommended value”, 433
“standard value”, 433
analysis, 416

assumptions, 423
basics, 417
denominator problem, 424
illusions, 419
popularity, 397
problems, 419, 422
sign problem, 425

clusters, 472
consolidated value, 431
contributions, 514
extremes, 480
geometric interpretation, 429
impacts, 553
interval analysis, 554
marginal ordering, 517
mean value, 430
median, 431
model, 419, 420
non-robustness, 431
probability, 480
regression model, 431
role in an MD-model, 541
typical values, 485

rationing information, 584
ratios

correlations, 493
crosscorrelations, 575
distances, 483
inertia, 492
spread, 483
time aspect, 483
time aspects, 481

real
data, 379
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movement, 31, 91, 106, 108
movement integral, 140
quantification, 55, 57

mapping, 56
real-time trading, 591
realism, 382, 383, 398
realistic axioms, 382
reappraisal of shares, 589
receivables, 415
recent position, 481
reciprocal ratio, 426
recognition, 45, 381
recommended ratio value, 433
recursive filter, 335
redescent function, 319
redundancy, 334
regression, 305

explicit, 327
implicit, 327
in probabilities, 327, 328
iterative solution, 308
optimality, 308
robustness, 306

regularity, 379
relation, 9
relative

frequency, 35
insolvency, 557

example, 558
velocity, 83

relativistic observation, 83
relativity theory, 29
required features, 597
requirements costs, 597
residual error, 313
resolution power, 250
restrictions, 582
Retained Earnings, 415
retention, 468
return, 417
Return on Equity, 424
reverse S-form, 267
reversibility, 127
ridge regression, 342
Riemannian

geometry, 29, 73, 99, 184, 195, 398, 623
metric, 236, 317, 359
scalar product, 72

Riemannian metric form, 72

right-censored, 366
data, 401

examples, 366
risk, 437
robust

cluster analysis, 409
correlation, 406
correlations, 489
covariance, 406
filtering, 270, 335, 408, 592
model, 391
modeling, 407
ordering, 411
prediction, 408
statistics, 194
variance, 406

robustness, 136, 173, 219, 350, 380, 388,
395, 450

E-irrelevance, 103, 105
MD-rating, 505
measure, 222
of quantifying distributions, 262
regression, 306
scale parameter, 406
to inliers, 102
to outliers, 101

rotation, 77, 206
operator, 95, 207

formula, 96

S-form, 267
distribution, 157, 385

sales, 415
sample, 274

bounds, 260, 474
bounds estimation, 257
concatenation, 209
size, 385
statistic

examples, 434
statistics, 434

saturating function, 319
scalar

product, 71, 73
Riemannian, 72

scale
invariance, 152
parameter, 58, 102, 205, 236, 276, 444
SG,KS, 276
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SG,ME, 277
SG,MF , 278
SL1, 278
SRF , 281
estimation, 405
global, 276
local, 278, 405
recursive, 405
required fidelity, 281, 405
robustness, 406
variable, 405

parameters review, 304
scores, 655
selling price, 369
semiorthonormality, 312
sensitivity, 450

measure, 222
Shannon’s

formula heuristic origin, 169
information, 379

formula, 168
Share Price, 415
shares reappraisal, 588
signal, 165, 167
signal-to-noise, 357

ratio matrix, 339
similarity, 215, 219, 297, 390, 395, 450

Euclidean, 217
gnostic, 218
of processes, 516

small error approximation, 143
small samples, 379
smoothing, 334
soft bounds, 239
software, 586
source

of estimating entropy, 134
of quantifying entropy, 134
of the entropy field, 314

space, 27
transformation, 30

space-time, 199
speed of light, 31, 199
standard ratio, 419, 420, 429
standard unit, 4
static programing, 343
stationarity, 566
statistic, 201
statistical

membership test, 628
normality, 386
paradigm, 36
prejudices, 640
robust correlations, 490
test, 43

statistics, 35, 273, 359, 380
Bayesian, 43
classical, 193
Euclidean, 74
robust, 43, 193
special case of gnostics, 106
successes, 37

stock
market

analysis, 578
structure

abstract, 8
multiplicative, 10
non-mathematical, 13
of cash flows, 7
operation, 57

subjective
choice of geometry, 629
test, 629

subjectivity, 381, 624
successful reappraisal, 589
sufficient estimate, 434
survival problem, 642
SVD (Singular Value Decomposition), 310
symbiosis banking/investment, 584
symmetric

density, 465
symmetry, 219

of a distribution, 435
system

emitting, 166
entropy, 166
receiving, 166

T-Bill Rate, 513
tangential plane, 381
tantalum content, 626
task of modeling, 391
tax expense, 367
tax expenses, 488
technical analysis, 586
temperature attached to a number, 122
tensor, 32
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theorem Pythagorean, 75
theory

fuzzy-set, 44
measurement, 58
special relativity, 80

Three-month T-Bill rate, 456
time series, 333, 334
time series analysis, 417
time-homogeneous space, 198
timely information, 585
tolerance interval, 297, 483
Total Asset

Turnover, 456
Total Assets, 415
Total Liabilities, 415
Total Liability, 454
Total Liability Turnover, 454
trading

costs, 586
transformation, 27, 76

affine, 31
transposition, 72, 87
trend prediction, 588
trimmed mean, 263, 285
trimming, 392, 490
trivial

prediction, 590
ratio analysis, 419

true and fair
accounting, 584
view, 419

true and fair view, 419
truthfulness, 382
turnover, 417
typical

car prices, 603
data, 293, 296, 404, 483
data interval, 296

typicality, 484

U-shape density, 459, 465
unbiased estimate, 336, 341
unbiasedness, 211, 216, 306
uncensored data, 366
uncertain data composition, 193
uncertainty, 4, 14, 50, 56, 378, 382

composition, 193
group, 54
measuring, 193

model, 57
nature, 53
paradigm, 27, 30
random, 95

unconstrained variance, 336
underestimated information, 585
underestimation, 369
unimodality, 443, 471
uniqueness of the test, 260
unrobust

methods, 417
test, 629

unrobustness, 346
USB, 476

value
ideal, 46, 53, 56
present, 21

variability, 567
of distributions, 567

variable
dependent, 305
explanatory, 305
scale parameter, 282, 464

variance, 194
analysis, 305
robustness, 406

variated path, 180
variational

principles, 183
theorem, 184, 190, 399

entropy, 185
Euclidean, 180
gnostic, 182
information, 186, 187
Minkowskian, 180

principle, 28
vector representation, 336
vertical analysis, 416
view

from the inside, 502
from the outside, 502

virtual
movement, 31, 64, 78, 91, 106, 108

three paths, 116
velocity, 119

volatility, 302, 372, 502
in a cluster, 550

Volterra world, 631
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wealth, 584
WEDF, 232, 234, 367

. . . Weighted Empirical Distribution
Function, 464

example, 371
left-censored data, 369
right-censored data, 367

weighing function, 70
weight, 379, 398

geometric formula, 96
variable, 70

weighted
average, 70
EDF, 232

white noise, 315
window dressing, 420

zero, 383, 384
data, 385
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