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Preface

Quantitative information (“how many”, “how much”, “at what cost” etc.)
is one of the necessary elements for cognition] Information of this na-
ture results from a numeric data structure, which depicts (quantifies) the
quantitative features of real objects and processes. Quantification is al-
ways perturbed by uncertainties, therefore methods that can suppress the
imbedded uncertainty must be used to extract information from such data.
The need for information has been growing at an increasing rate and both
data and their processing are expensive.

Following the classical definition of an economic good as a good which is
scarce relative to the total amount desired and economic efficiency as pro-
ducing such goods at the lowest possible cost, then the idea of Economics
of Information as the production of the maximum output of information
given the cost (of data and of their treatment) is reasonable and leads to
economic efficiency as well.

The first requirement of a methodology to treat uncertain data is that it
must: extract the maximum amount of information from a given
collection of data. It is the goal of this book to present

1. a mathematical theory of individual uncertain data,

2. an extension of this theory to small samples of uncertain data,

3. a development of data treatment methods based on this theory,

4. some demonstrations of results achieved by using these methods to
analyzes of real data from several application fields, especially from
€CONoMics.

These elements covering both theory and its usage form what will be called
mathematical gnostic] The book should demonstrate both theoretically
and practically that the challenging task of getting maximum information
from ‘bad’ data can be solved by the methodology of mathematical gnos-

LCognition is used in the sense of the process used to obtain knowledge.
2There is only a philological relation of this notion to religious interpretation of words connected with
the Greek word gnosis (knowledge).
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tics.

The task is unusual and the approach to its accomplishment is to be
unusual, too. The theory grew up on boundaries where several scientific do-
mains contact each other: abstract algebra, measurement theory, Euclidean
and non-Euclidean geometries, both classical and relativistic mechanics,
thermodynamics, mathematical statistics both classical and robust. Read-
ing of the first two parts of the book cannot be therefore easy for all readers.
The real power of the new methodology can be vividly demonstrated by
solving practical tasks. The Part III not only summarizes theoretical re-
sults important for applications, but contains many examples which can be
understood even without a deep penetrating into the theory. Some readers
can therefore start approaching mathematical gnostics by reading the third
part.

The notion of economics of information can be considered only if the
amount of information is measurable. Because the harvesting of informa-
tion is directly related to decreasing uncertainty it is necessary to have at
hand and to be able to use a scientific model of uncertainty.

There are several concepts of uncertainty and of its paradignf] the
most popular of which is the statistical paradigm. However, the statis-
tical paradigm—as are other related concepts—is tied to the uncertainty
of mass events: statistical evaluation of a quantity of information is pos-
sible only for a sufficiently large “family” of events, not for a single event
nor for a small number of events. Moreover, in order to successfully under-
take such a task, an a priori model must be available and when the model
does not fit the reality of the data, significant damage to the quality of the
estimates can occur.

The wandering towards the information of individual data has to be
started in the real world, with real objects, quantitative features of which
data to be treated reflect.

3The notion of “paradigm” is understood to mean the prevailing opinion of the scientific community
as to the arrangement and operation of things within a certain scientific field.
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The Gnostic Theory of Individual
Uncertain Data






Chapter 1

The Ideal Quantification

1.1 Quantitative Information

The term information has many meanings depending on the context. It
is often related to such concepts as message, meaning, knowledge, text,
image, communication, data, fact and many others. In all these examples
the general definition of the http://en.wikipedia.org./wiki/Information is
satisfied: Information is the result of processing, manipulating and orga-
nizing data in a way, that adds to the knowledge of the receiver. This
book is oriented to a much narrower notion, to the quantitative informa-
tion providing numerical description of real quantities and processes. Such
descriptions are obtained by numerical data, that map the quantitative
features of qualitatively specified real objects and processes. Increasing in-
formation decreases the receiver’s uncertainty. This is why the Shannon’s
information theory measures the amount of signal’s information by the
Boltzmann’s statistical entropy and why the Fisher’s statistical measure of
the information carried by an estimate of an unobservable parameter is a
function of the variance. However, both these measures assume the avail-
ability of “mass data” to estimate a complete probabilistic model for the
former and the variance for the latter evaluation. These measures of the
amount of information cannot be therefore applied to individual data and
to small data samples. Existence of the information contained in each data
item is undoubted, it is justified by the fact, that information is carried
by data sets. Usefulness of the ability to measure the information of the
individual data and small samples results from the practical limitations
of amount and quality of the data available to the treatment in practise.
Unsuitability of the standard methods to solving this problem motivates
the quest to find a suitable alternative method enabling the quantitative

3
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recognition of the reality.

1.2 Quantification

Quantification is a procedure, which relates some real quantities to the num-
bers. The numbers resulting from the quantification will be called data.
There are two modes of the quantification, counting and measuring.

Every physical object has a given quality and exists in some quantity.
Quality is an aggregation of traits, which define the nature of a thing. The
first step in quantification is to establish the boundaries of a set of things
in a qualitative sense, ie to describe the thing by listing its characteris-
tics, so as to ensure the homogeneity and comparability of the underlying
quantities. To quantify a herd of sheep, one must be able to distinguish
between a sheep and a what is not a sheep and to accept as members of
the set only the members of the herd, that fit the description. This set
(flock) can be quantified either by counting or by measuring.

Counting the sheep means to assign to each animal the numeric unit (1)
and to sum up all the units.

The objects of quantification, in this case the sheep, have their own
properties, and these are separate from and independent of those of the
persons, who actually do the counting. The properties of the sheep are
fixed, and objectively given; the assignment of a unit of quantification,
the number ‘one’ to an animal, is an intellectual (and subjective) activity
performed by the “measurer”, dependent on his or her abilities, and there-
fore subject to uncertainty: how well can he/she see? How carefully will
he/she ensure, that all sheep in the flock have been located and counted?
Is he/she sure, that some small animals were not blocked from view by the
larger ones, etc.?

Measuring these same animals could consist eg of weighing the sheep.
Two necessary elements are required for a measuring procedure: a (stan-
dard) unit of measure and a measuring instrument. To weigh a sheep,
one needs a unit weight (pound, kilogram, ton) and a weighing machine
to determine, how many times the weight of the sheep exceeds the stan-
dard unit, or how many times the unit exceeds the weight of the sheep.
Measuring thus requires not only intellectual actions, but also some ma-
nipulations with physical tools. The results of a measuring process are the
positive rational numbers: again a product of an intellectual activity.

Quantification in both of its modes is thus a mapping defined over
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a delimited part of the physical world, providing values, which are ex-
pressed in terms of the ideal world of mathematical objects: in num-
bers. This constitutes the fundamental difference between the art of
the quantification and “pure” mathematics, which deals only with arti-
ficial (abstract) objects—products of the human brain. The quantifica-
tion is a real technology, developed over thousands of years as a nec-
essary element of the merchandizing. Just as with other technologies,
it has been subjected to scientific analyzes, the outcome of which re-
sulted in the establishment of a theory (the theory of measurement) ([17]).
This theory provides us with the rules, which ensure, that the quantifica-
tion procedures are consistent. However, there exists a serious limitation
of this useful theory: it considers only an ideal quantification process,
only the precise mapping and a disturbance-less measuring. Metrologists
are aware of uncertainties, but they leave the treatment of the uncer-
tain data “to statistics”. A symptomatic characteristic can be found in
http://en.wikipedia.org/wiki/Uncertainty /Measurement-Uncertainty:

Measurement uncertainties have to be estimated by means of de-
clared procedures. These procedures, however, are intrinsically
tied to the error model referred to. Currently, error models and
consequently the procedures to assess measurement uncertainties
are considered highly controversial. As a matter of fact, today
the metrological community is deeply divided over the question as
how to proceed. For the time being, all that can be done is to put
the diverging positions side by side.

A significant achievement of the measurement theory was the consider-
ing the quantification not only as a mapping of some real quantities onto
numbers, but more specifically, as a mapping of some empirical relational
structures onto the algebraic structures. This approach has been generally
accepted as fruitful. An interesting requirement results from the Kuhn’s
([65]) conception of the scientific revolution caused by a change of the
paradigm: a new scientific paradigm should reveal some hidden assump-
tions, justification of which conditioned the validity of the old paradigm.
This should make the old paradigm a special case of the new one. An
example of this is the Newtonian mechanics still applicable to sufficiently
slow movements. It could be therefore expected, that a more general theory
of the quantification including the uncertainty would be able to establish
conditions, under which the present measurement theory would hold up.

There are many assumptions about structures considered in the mea-
surement theory ([87]), under which the relations of equivalence and pref-
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erences/ordering hold. A substantial, but plausible, simplification of these
axioms was adopted in [56] about the nature of the underlying structures
being isomorphic with the abstract commutative groups. A detailed math-
ematical justification of this simplified model was presented later in [100]
and [99].

For our purposes, it is sufficient to limit the exposition of this topic to
the presentation of two special cases of the commutative groups. These
are closely connected to the structures of quantified real objects and their
mathematical images.

1.3 Empirical Structure of Quantities

1.3.1 Mathematical Structures

The aim is to develop and justify a theory of individual uncertain data.
The most reliable theories are created by the axiomatic method based on
mathematics because of the power of mathematics to prove and disprove
statements. Such a method essentially always produces a mathematical
structure.

A mathematical structure is a seffl] (or several sets) of objects endowed
with some relations and operations satisfying various assumptions (ax-
ioms). Identity of the elements of a set, as well as the rules to which
the relations and operations are subjected, are uniquely and consistently
established in mathematics by definitions. However, subjects of quantifi-
cation are not abstract notions, but traits of the real world thought of as
empirical structures. Moreover, as already mentioned, quantification is not
a purely intellectual activity of men, but a technology including manipu-
lation with real objects and instruments. To warrant consistency of the
mapping of the empirical structures into the abstract world of mathemat-
ics, the measurement theory used the mathematical language to establish
rules for empirical relations and operations. These correspond to the rules
governing the relations and operations in mathematical structures, which
represent the empirical structures.

To illustrate this thought, the notion of the structure of cash flows is
introduced.

LA mathematical set is a collection of distinct objects considered as a whole. The extraordinary
complex problem of deciding if an object is a member of a specific set (the “membership” problem) is to
be postponed until particular sets and structures are considered.
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1.3.2 Additive Group

Amount is one of basic quantitative characteristics of the elements of real
sets. The number of a set’s elements can be increased as well as decreased.
Balance of incomes and expenses is a well-known worry in personal life,
as well as, in the activity of enterprizes and institutions. An individual
financial transaction realized in cash denoted as Aj; can be thought of as
an element of the cash flow. It has an empirical nature and a collection
of all such elements forms an empirical set of cash flows (denoted A).
The adjective “empirical” is used to emphasize the material, and not only
abstract, character of the objects. The fact of the membership in the set
A will be denoted A; € A.

The relation of the equivalence (A4; = Aj) of two elements A; and
A, and the relation of preceding/preference (A4,, < A,) for some other
elements of the cash flow can be accepted as natural as the binary operation
of cumulation (the additive aggregation rule) written as A, & A, for each
pair of the elements A, and A, of cash flows (denoted as A4,, A, € A).
Consider following requirements related not only to cash flows, but to all
structures, which satisfy these conditions:

Closedness: Let A, and A, be two arbitrary elements of the structure
(A, A, € A). Then the aggregation of these elements is also an
element of the structure:

A, @A, €A (1.1)

Associativity: For each triple of elements Ag, A,,, A,,, € A, it holds, that
(Ar @A) @A, =A:® (A © Ay). (1.2)

Commutativity: The order of operands does not change the aggregation:
A, DA, =A, DA, (1.3)

for all pairs of elements A,, and A,,.

Neutral element: There exists in .4 an element (the “zero element” de-
noted by O € A), so that its aggregation with an arbitrary element
(A, € A) does not change the value:

Ap @O = A, (1.4)

Invertibility: There is also an element ©A,, € A to an arbitrary element
A,, € A such that
A, ® (6A,) =0, (1.5)
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The pair (A, ®), of the empirical set A and of the aggregation oper-
ator @ satisfying these requirements, can be called the additive empirical
structure. Mathematicians like to deal with the abstract (“dematerialized”)
objects; they call these abstract structures obeying the rules of closedness,
associativity and commutativity, having a neutral element, and inversions
to all elements, the commutative group. A wellknown example of such a
group is Abel’s group of real numbers

G. == (R, +) (L.6)

where R! denotes the set of real numbers and the + is the operator of
“ordinary” (numeric) addition of real numbers.

The numbers obtained by quantification of an additive group of empir-
ical quantities will be called additive data.

This model is broadly applicable, but only to structures really obey-
ing the formulated assumptions. Before the start of a data analysis, it is
necessary to verify the additive nature of the structure quantified by the
considered data, as they may represent an alternative, multiplicative, or
even a more complex structure. Additivity of data, as well as of quantita-
tive characteristics of real objects, is not a trivial problem. So, for example,
velocities of real objects are not aggregated additively like in Newtonian
mechanics, but in a nonlinear way respecting the limit of the speed of light.
It will be shown below, that data uncertainty should be also aggregated
by addition of certain nonlinear functions of uncertain data and not by
additive aggregation of data like in statistics.

1.3.3 Multiplicative Groups

The task of measuring establishes how many times the measured quantity
exceeds the quantity accepted as a unit, or how many times is the quantity
smaller than the unit. The measurement’s result is thus a ratio (multiplier),
but this is a notion borrowed from the mathematics connected with numeric
multiplication or division. A question may arise as to what is the real
sense of the empirical operations of “multiplication” or “division”. Their
historical roots can be found in the distant past, in the development of
barter markets. An example of a barter exchange can be the transaction
“five arrows for one skin” written as

t1 := (5 arrows) = (1 skin). (1.7)
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This expression establishes a relation (equivalence) between the values
of two assets, ie their prices. Another transaction may follow:

to := (1 skin) = (20 eggs). (1.8)
The resulting “price” of arrows expressed in eggs is
t1 ® ty := (5 arrows) = (20 eggs). (1.9)

Ratios of exchanging things according to [1.7], and were different
not only numerically (1/5, 1/20 and 5/20), but also with respect to the
“measuring unit” or “dimension”, the “price” being expressed in units of
arrows, skins and eggs. Chaining the barter operations led to the changing
of the units of measurement. A significant simplification of barter opera-
tion modes resulted from introducing of some kinds of currency as “units
of the values of things”. Worth of things could thus be expressed as a price
determined by the ratio of the amount of a thing divided by by the amount
of money. Necessity to determine the amount of things led to introduction
of measuring units and to the development of instruments and measuring
procedures providing the ratios of quantity/unit. Expressing the quan-
tities in the same units allowed the quantitative features of things to be
multiplicatively related by dimensionless ratios (multipliers). Pharmaceu-
tical scales are real objects and when they determine, that two quantities’
weights are W7 and W, gram, then the relation Wy = Wy /Wi « Wy be-
comes a mathematical model of the empirical relation existing between two
quantities saying, that the empirical quantity W5 is W5 /Wi-times larger or
smaller than Wj.

The Empirical Multiplication Factor (EMF), depicted by the multiplier
W5 /W1, can be defined by the relation

EMF, =W, © Wi (110)

where quantities W) and Wj_; are ‘empirical originals’ mapped to the
numbers and where @ is the symbol of the empirical operation represented
in mathematics by the operation of numeric division. This extremely sim-
plifying representation of a relation is borrowed from cybernetics. Such
an operation is presented as a black-box, the only interesting feature of
which is its multiplication of the input values. It can serve as an impor-
tant example of the multiplicative group. It is obvious that the output
of a black-box can be used as the input for another black-box. The mul-
tiplicative factors defined by three quantities Wi, W5 and W3 can be thus
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chained multiplicatively:
EMF; @ EMFEF, ==W3 @ Wo@ Wy © Wl, (1.11)

where ® is a symbol of empirical multiplication.

There are factors in economics, which have similar multiplicative na-
ture: the examples of these characterize inflation/deflation, discounting,
indexing, and interest factors among others. Prices viewed as multipliers

can also be chained in a multiplicative manner: if price P1 is 3-times
higher then P0, and price P2 is 4-times higher than P1, then P2 is 12-
times greater than P0. Another important example relates to measuring
by the application of a physical or chemical unit. Results of measurements
viewed as multipliers (or ratios) can also be chained in the multiplicative
manner: if a quantity ()7 is exceeding the unit (), 3-times, and quantity
()2 is 4-times larger than ()1, then ()5 is 12-times larger than @),.

We have considered in both and the empirical values W and
empirical multiplication factors EMF. Quantifying mapping (counting
or measuring) enabled the empirical inputs and outputs of operations to
be numerically depicted and the multiplicative factors to be chained in a
manner recalling numeric multiplication and division. The multiplication
factors can be thus thought of as elements of a structure similar to the
structure G, formed by the set R, of positive real numbers, over which
the numeric multiplication () is defined along with its inversion (division
(C/))):

G = (Ry,%). (1.12)

This structure is the multiplicative commutative group. However, numeric
values of quantities viewed as multipliers, and other numeric multiplication
factors, are abstract images of quantitative features of real things. As such,
they are results of quantification. The structure G, is thus a mathematical
image of an empirical structure of the real quantities. So as not to limit
ourselves to a single specific type of subject, we shall denote a multiplica-
tion factor of a general type by M and a set of such elements of the same
kind by M. To ensure consistency in quantification, we assume that there
is an empirical aggregation rule (operation) ® defined over the set M, for
which the following relations hold:

Closedness: Let M,, and M, be two arbitrary elements of M. Then the
result of the aggregation is also an element of this set:

M, ® M, € M. (1.13)
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Associativity: For each triple of elements M, M,,, M, € M it holds,
that

Commutativity: The order of operands does not change the aggregation:
M,, @ M,, = M, ® M,, (1.15)

for all pairs of elements M, and M,, of the set M.

Neutral element: There exists in M an element (called “unit” and de-
noted I € M) such that its aggregation with an arbitrary element
M,, € M does not change its value:

My, @ I = M,,. (1.16)

Invertibility: There exists an element @ M,,, € M to an arbitrary element
M, € M such that

M, ® (oMy,,) =1I. (1.17)

The pair (M, ®), of the empirical set M and of the aggregation operator
®, which obeys the above defined conditions can be called the multiplica-
tive group. It is obvious that all five of the above conditions are satisfied
for the mathematical structure G,, which is called the multiplicative group
of positive real numbers. Note that not all multiplicative groups are neces-
sarily commutative, but these particular groups are.

The concept of the multiplicative group is thus general enough to be
applied to the measuring of quantities belonging to very different sets en-
dowed with the operations ® and @ of various nature.

The numbers obtained by the quantification of a multiplicative group
of empirical quantities will be called multiplicative data.

1.4 Isomorphism

From iso = same and morph = form. Let us consider two structures
(S1,01) and (Sy,09) where S; and Sy are sets of elements s1,, (or sa,,)
for m,n = 1,...N. Symbols o; and oy identify structural operations over
the corresponding sets. A characteristic of these structures will be called
an isomorphism if the following conditions are satisfied:

1. A one-to-one mapping 7s : S; = S» exists, so that s, = 75(s1,,) and
S1m = Tg (s2,,) forallm=1,...,N.
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2. For each pair of indices m and n (m=1,..., N and n = 1,..., N) the
following implication holds:

32,m0232,n = TS(Sl,malsl,n)- (118)

This definition can be illustrated by a simple example. We have already
introduced the additive group of real numbers G, in equation [I.6] Denote
s1; an arbitrary element of this group. Consider the relation

So.m = €xp(S1.m)- (1.19)

The real number sy, is strictly positive for all s;,,. Moreover, it holds,
that
Som * Sop = €XpP (S1.m + S1.n) (1.20)

for all m and n. This means that the commutative group G, is isomorphic
with the additive group G,. The role of the mapping 79 : G, — G, is
played by the exponential function. The inverse mapping is the natural
logarithm.

The power of the concept of isomorphism comes from focusing on the
fundamental algebraic features of a large number of different structures and
in omitting all their special characteristics. This thought can be illustrated
by considering the group of cash flows. It is isomorphic with the abstract
additive group G,: Fach (material) cash flow has its (numeric) image (a
numeric value). Each pair of cash flows produced by the aggregation op-
erator @ has as its (numeric) image the (numeric) sum of images of both
cash flows obtained by the application of the numeric operator 4. The
numerical 0 corresponds to the neutral (zero) asset flow O. The inversions
of cash flows are represented by negative images of cash flows.

Analogously, the group of measuring ratios (multipliers) is isomorphic
with the abstract multiplicative group G.. Images of the multipliers are
positive real numbers. The operator ® is represented by the numeric oper-
ator of multiplication (x) and the inversion is represented by the reciprocal
values of the ratios. We have already noted that the two abstract groups
G+ and G, are isomorphic. The group of measuring multipliers is thus
isomorphic with the group of cash flows although their “material” natures
substantially differ.

Note the differences between an additive an a multiplicative numeric
group. Elements of the former can be positive, as well as negative or zero.
Elements of the latter can only be strictly positive while zero element
cannot exist.
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The typical movement in the additive group is linear (repeated addition
or subtraction of a constant). In contrast, the typical movement in the
multiplicative group is exponential (repeated multiplication or division by
a constant). Members of the additive group can be ‘named’ by having a
measuring, such as eg physical, dimension: kilogram, meter. The group
operation is not prevented by the (same) ‘name’: three meters plus two
meters are five meters. However, the structure operation is not defined for
elements having different dimensions. Unlike this, elements of a multiplica-
tive group are dimensionless. This means, that results of measurements of
quantities, which were expressed in the same measuring units, are to be
viewed as measuring ratios (multipliers).

1.5 Ideal quantification

Using the notion of the isomorphism of groups, we can come to a more
precise definition of quantification. This step is necessary in order to dis-
tinguish between ideal and practical quantification. The notion of ideal
quantification is defined as an isomorphism between a group of empirical
quantities and a group of real numbers. To explain:

It was already demonstrated by the example, that the historical origins
of quantification (counting and measuring) were closely connected with
the development of goods markets. The roots of mathematics are in these
same practical needs of “ordinary life.” Mathematics was primarily cre-
ated to serve such plebeian, but necessary, activities. Due to its power
and its universal generality, it developed as an abstract science completely
isolated from everyday reality. Some of the “rich fruits” of mathematics
were gathered by non-mathematicians: physicists, technicians, economists
and other “practical” people. The idea of quantification is just another
example of such an application. It clearly extends the borders of mathe-
matics because of its reference to structures of a non-mathematical nature:
the empirical quantities. On the other hand, it makes use of such a strictly
mathematical notion as a group to describe the fundamental features of
these non-mathematical structures. We shall see, that this mixture of the
mathematical /non-mathematical approaches is very useful.

At this point we need to recall the one-to-one character of the map-
ping, which defined isomorphism and quantification. This was necessary
to ensure the consistency of the ideal quantification. When the outcome
of counting is five, we want to be sure, that there is a group of exactly
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five sheep in the flock, and that they correspond to number 5 and not to a
greater or smaller number. This means, that the ideal quantification is a
precise mapping. We now come to a difficult point: It is, at least at first
sight, easy to imagine an accurate real number. It is much more difficult
to do the same with real structures. As already stated, qualitative identi-
fication must precede the quantification. Perfect identification of objects
subjected to quantification is difficult or even impossible. The same relates
to quantification because of its necessity to involve real processes and ob-
jects. Imperfections play role in both cases making the results uncertain.
The concept of ideal quantification can be seen as a simplified view of the
way the quantitative features of the real world are observed and measured.
What is urgently needed is a notion of uncertainty.

1.6 Summary

Real data can be considered as an outcome of a quantification process, as
a collection of numeric images of real quantities. These quantities can be
thought of under certain conditions as belonging to one of two (empiri-
cal) structures, the additive and/or multiplicative groups. An example of
an empirical additive group is a set of cash flows over which the additive
aggregation rule is defined. A mathematical model of empirical additive
groups is the commutative Abel’s group. An example of the empirical
multiplicative group is a set of measuring ratios endowed with the mul-
tiplicative aggregation rule. Such groups are represented in mathematics
by the abstract multiplicative group, which is isomorphic with the Abelian
commutative group. Real data can thus be viewed from one of two points
of view:

1. The additive group, that quantifies an empirical additive group of real
quantities.

2. The multiplicative group, that quantifies tan empirical multiplicative
group of real quantities.

Both these views are simplified. They are based on the assumption, that
quantification is ideal, ie, that there is no uncertainty.
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Uncertainty

Unlike ideal quantification, the process of counting or measuring real quan-
tities involves uncertain factors. To prepare mathematical modeling of the
quantitative uncertainty as a component of real quantification, it is useful
to start with consideration of some sources of the uncertainty.

2.1 Nature of Quantitative Uncertainty

G.W.F.Hegel in his Book One of “The Doctrine of Being” considers quality,
quantity and measure as three grades of Being:

Quality is, in the first place, character identical with being: so
wdentical, that a thing ceases to be what it is, if it loses its quality.
Quantity, on the contrary, is the character external to being, and
does not affect the being at all. Thus, a house remains what it is,
whether it be greater or smaller; and red remains red, whether it
be brighter or darker.

Measure, the third grade of being, which is the unity of the first
two, is a qualitative quantity. All things have their measure: ie
the quantitative terms of their existence, their being so or so great,
does not matter within certain limits; but when these limits are
exceeded by an additional more or less, the things cease to be what
they were.

The last sentence points in the direction developed later in Marxist dialec-
tic materialism in the form of the Law of Transformation allowing for the
reverse with quality affecting quantity: “Continuous quantitative devel-
opment results in qualitative ‘leaps’ in nature, whereby a completely new
form or entity is produced.”

15
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This complex interdependence of the “three grades of Being” is reflected
by complexity of the uncertainty: mistaken qualitative identification con-
tributes to quantitative determination and distortion of the measure. Even
the seemingly simple task of “counting sheep” can be difficult, when the
qualitative recognition fails as demonstrated in Homer’s Odyssea by the
blinded Cyclope Polyphemus incapable to distinguish between sheep and
members of the Odysseus’ crew masked by sheep skins.

Data uncertainty can occur everywhere on their path from the observed
quantity to the analyst’s computer. Its nature can be different in depen-
dence on the essence of the particular field.

To make the notions to be considered below sufficiently specific, we
narrowed the vast idea of information by focusing to its quantitative char-
acter numerically expressible. This information is contained in numeric
data along with disturbances derived from uncertainty.

2.2 Uncertainty in Numeric Data

Numeric data resulting from quantification can be uncertain due to many
different causes:

e Imperfect identification of the quantified object or process.
e Imperfect observation or design of experiment:
— Instability of observed objects or volatility of the process.
— Impacts of environment.
— Insufficient number of repeated measurements.
— Insufficient isolation of the observed quantity from impacts of
other quantities.
— Overlooked or neglected interactions between measured objects.
e Instable or faulty measuring instruments.
e Transformation errors.
e Communication errors.
e Incompleteness of measuring (data censoring).
e Geometric errors.
e Events or data aggregation errors.

Transformation errors can result from the necessity to exchange
information-bearing media: many physical and chemical quantities are ul-
timately measured using electric instruments, but this requires conversion
of the original quantities into electric currents, voltages, impulses or codes.
These conversions can be imprecise and noisy. Further contributions to
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the uncertainty can result from the transmission of these signals. Chemi-
cal measuring can include dilution or concentration of liquids, distillation
and other transformations, which distort the quality of the measurement.

All measuring instruments operate only within a limited scale. Values
of some quantities can occur below the limit of detection, others can ex-
ceed the upper bound of the measuring range. Measurement can be then
interpreted only in terms of an inequality instead of a discrete number.
Neglecting such data would be a bad idea, because these (censored) data
can be the best ones (when signalling, that there is only a small danger)
as well as the vitally important ones (a danger exceeded a limit). Some
censored data can have only an interval nature. All censored data contain
some information in spite of their special uncertainty.

Geometric errors can result from application of an unsuitable geometry
to measuring. A nearly trivial example is using plane maps to quantify
distances and angles in the real three-dimensional word. Nontrivial exam-
ples of the necessary application of non-Euclidean geometries to measure
some real processes and objects are known from physics, but relevance of
the non-Euclidean geometries to measuring uncertain data also exists and
will be considered in the sequel.

The simplest (additive) way used to aggregate events and/or data can-
not always be adopted. Sometimes either weighted aggregation or an even
more complex method is to be applied.

Examples of uncertainty in measurements can be seen in systems of the
Quality Assessment Control broadly used in the technology for maintaining
quality standards of industrial products. These standards are defined by
sets of measurable parameters checked by the system. Quality can be dis-
turbed by many factors, causing the uncertainty in the parameters’ values:
bad quality of the raw materials used for production, tools and machin-
ery, deviations from the prescribed technology of production or storing,
malfunction of instruments, human factors and others.

Fundamentally different types of uncertainty exist in economics and in
economic data.

2.3 Uncertainty in Economic Data

An old proverb goes: “When two people do the same thing, it isn’t the
same thing at all.” Applying this thought to “measurement” one could
say: “When an economist measures something, it is not the same process
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as that used by a physicist.” In the methodology of physics, chemistry,
engineering and biology, measurement frequently produces a high level of
precision, perhaps resulting in the convergence of the outcome to a unique
value. This value exists objectively, it is the same for all observers and for
their measuring tools. Trying to emulate this technique in accounting or
in the collection of other economic data is a waste of time. The objective
existence of worth or value of things is for an economist proven only in
terms of philosophy: “Yes, a value exists always, if the thing can be sold or
exchanged.” Divergence of opinions inevitably starts with quantification
of the value, because there is no objective economic value of a thing. The
first problem stems from the use of the same word “measurement” and the
manner, in which it may be understood by economists. Another problem
is connected with uncertainty.

Paul A. Samuelson [97] introduces uncertainty in economic behavior in
the following way:

... No study of the realities of economic life is complete without
a thorough study of the fascinating interplay of uncertainty and
strateqy . ..

... In reality, business life is teeming with risk and uncertainty.
The demand for a firm’s output will fluctuate from month to
month; input prices of labor, land, machines, and fuel are of-
ten highly volatile; the behavior of competitors cannot be forecast
in advance . .. Life is a risky business . ..

A fundamental role in providing the economics with data is that of
accountancy. The layman’s view, that accounting data represents true
values, is not correct. This is due to the fact, that accounting documents
reflect adjusted historical costs. Prices (or current market values), on the
other hand, reflect the analyst’s or investor’s perception of the present value
of the future, and therefore unknown, cash flows. Problems can be seen
already in the definition of the accounting ([23]):

Accounting is the process of identifying, measuring and communi-
cating economic information to permit informed judgements and
decisions by users of the information.

There are two similar definitions in [23]. They leave some fundamental
questions opened: what should be identified and measured to get and
communicate the information about it? One of these definitions tries to
be more specific by description of the object as “quantitative information,
primarily financial in nature, about economic entities, that is intended to
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be useful in making economic decisions ...”. However, this is a tautology.
The missing notion is worth or - as reflected by accounting - value. This
notion is an agelong worry of economists as can be seen in the book [102]
first published in 1776:

The word VALUE, it is to be observed, has two different mean-
ings, and sometimes expresses the utility of some particular ob-
ject, and sometimes the power of purchasing other goods, which
the possession of that object conveys. The one may be called
‘value in use’; the other ‘value in exchange’.

It is worth mentioning, that this dual viewing was introduced ages ago by
Aristotle (384-322 B.C.). It is not less noteworthy, that it is applied even
recently, when the valuation problem became an object of international
efforts directed to standardization of valuation ([37]). International Valua-
tion Standards distinguish nonmarket and market approaches. Nonmarket
values include:

e Value in Use: worth for a particular owner.

e Value in Exchange: a value acknowledged by the market, where could
be a hypothetical exchange of the asset realized.

o [nvestment Worth: a value for an investor following his specific goals.

e Going Concern Value: worth of an enterprise as a whole.

e Insurable Value: value specified in an contract of insurance.

o Assessed, Rateable or Taxable Value: values defined by corresponding
legal regulation.

e Salvage Value: the net realizable value.

o Liquidation Value or Forced Sale Value: value in a situation, when
the application of the market value is impossible.

e Special Value: value regarding some specific factors distinguishing the
transaction from the current market conditions.

e Mortgage Lending Value: evaluation for securing a mortgage.

The market value is specified as an estimate of the price obtainable in
a hypothetical transaction on a specified date or a measure of the value,
that will accrue from ownership by a particular party. This value depends
on the valuation basis adopted and the required valuation premise.

It is obvious, that all these quantities are evaluated subjectively, being
dependent on the needs of subjects, on the conditions of the market, on
intentions of investors, on the policy of banks and insurance companies,
on law making and especially on judgements of specialists performing the
valuation.
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Fundamental information used for economic valuation stems from ac-
countancy.

2.4 Measuring in Accountancy

To measure, a physicist or engineer applies a measuring tool or apparatus.
Such material instruments do not exist to be used in accountancy. Instead,
“measuring tasks” are realized by “generally accepted” procedures formu-
lated as national and international standards ([35], [36]). Such “measuring
manuals” are not simple, the former has 1265 pages.

It is remarkable, that the International Accounting Standards do not
consider the notion of measurement as a primitivd't a definition is pro-
vided ([35]), and the idea is further clarified by the inclusion of specific
measurement bases:

Measurement is the process of determining the monetary
amounts, at which the elements of the financial statements are
to be recognized and carried in the balance sheet and income
statement. This involves the selection of the particular basis of
measurement.

A number of measurement bases are employed and these are applied to
various portions of financial statements in varying degrees. They include
the following:

(a) Historical cost. The amount of cash or cash equivalents paid, or the
fair value of the consideration given at the time of acquisition.

(b) Current cost. The amount of cash or cash equivalents, that would have
to be paid, if the same or an equivalent asset was acquired currently.
Liabilities are carried at the undiscounted amount of cash or cash
equivalents, that would be required to settle the obligation currently.

(c) Realizable (settlement) value. The amount of cash or cash equivalents,
that could currently be obtained by selling the asset in an orderly
market. Liabilities are carried at their settlement values; that is, the
undiscounted amount of cash or cash equivalents expected to be paid
to satisfy the liabilities in the normal course of business.

(d) Present value. Assets are carried at the present discounted value of
the future net cash inflows, that the item is expected to generate.

'In mathematics, ‘primitive’ is a notion, which does not require a definition because “everybody knows,
what it means.”
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This latter idea attempts to inject the notion of market value. One
should be willing to pay just enough for an asset to offset the future value
of the cash flow, which it is expected to contribute. As satisfying as this
thought may be, it brings along as extra baggage several additional sources
of uncertainty.

First of all, the future cash flows are unknown, therefore risky, and they
are represented by a best guess of their magnitudd’] Then the present
value of these flows must be estimated using an uncertain discount rate,
which reflects that risk.

Another issue is the relative risk of certain elements in the cash flow
stream. Operational flows are one thing, but once an asset has been ac-
quired, how certain is the depreciation, that will be taken? What about
the resale value of the asset at the end of its useful life?

Another source of uncertainty comes from the fact, that today’s market
rates, whether they are short, intermediate, or long term, all imbed current
perceptions of expected future market conditions. However, for example,
the second year’s risky cash flow should be discounted at the second year’s
relevant rate, but this rate will not be known until the second year, when
the cash flow is actually received. The rates, that were expected, will
probably not be the ones, that actually occur, and the true value of the
cash flow at the end of the second year will not be that same value, which
was estimated, when the asset was purchased.

Most commonly, enterprises use historical cost when preparing their fi-
nancial statements. However, this is usually combined with other bases
(inventory is usually carried at the lower of cost or market value, mar-
ketable securities can be carried at market value, pension liabilities and
capital lease obligations are carried at their present value, etc.). When
inflation is a persistent and recurrent problem, and where it is permitted,
some firms turn to the use of current cost basis in response to the inabil-
ity of the historical cost accounting model to deal with the effect of the
changing prices of nonmonetary assets. In some countries, accountancy
law specifies the use of different measurement bases for different elements
of financial statements.

There are further sources of accounting uncertainty:

Vagueness of definitions: Complexity of the problems and diversity of
the processes do not enable creation of uniquely interpretable defini-
tions. Neither the basic accounting notion of recognition cannot be

2There are many techniques, which can be used to refine these estimates.
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described precisely. According to Standards, an item is recognized if:

e (a) it is probable, that any future economic benefit associated
with the item will flow to or from the enterprise; and

e (b) the item has a cost or value, that can be measured with reli-

ability.
Ambiguity in terminology: Expressions like ...fair value..., ...expected
to be paid..., ...equivalent asset..., ...expected to generate..., the nor-
mal course of business..., ...expected to be required... are more or less

fuzzy and are permanently discussed by specialists of the field.

A degree of tolerance in selection of the particular basis of measure-
ment for a particular task must exist. However, different measurement
bases — different results from measurement.

Subjectivity: Unlike ‘technical’ measurements tending to maximal inde-
pendence of the results on the subject, who performs the measure-
ment, the role of professional judgments is emphasized. However,
different professionals can come to different conclusions.

Ethical issues and criminal actions can also contribute to uncertainty.

It can be concluded, that both measurement and recognition in ac-
counting are inevitably connected with vague notions and actions, which
include unknown and unpredictable factors, that increase the uncertainty
of accounting data. These sources of uncertainty have a fundamental na-
ture, which the intensive long-term effort of the international community
of accountants has not yet been able to overcome.

2.5 Fighting against Uncertainty

Aims to minimize negative effects of uncertainty on quality of measurement
were the driving forces of the development of measurement technology. A
leap in evolution of the field was brought by the development of statistics.
Decreasing uncertainty of the quantification by repeating measurements
followed by statistical analysis enabled results’ quality to be significantly
improved. Moreover, a statistical way of thinking helped to scientists to
effectively model complex natural “uncertain” processes of demography
and public administration and to create new scientific fields like statistical
thermodynamics, nuclear physics along with nuclear engineering and the
theory of information. The development of computers allowed to apply sta-
tistical methods to satisfy rapidly increasing needs of improving the results
of measurements. However, serious problems with applications of statis-
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tics arose in many fields of practice, where uncertainty was not adhering
the necessary assumptions of statistical modeling. Difficulties manifested
significantly around ensuring a “sufficient” amount of data. Modern mea-
suring can be expensive. There is a risk of delay as results must be obtained
as soon as possible. Losses caused by destructive measurements can be ex-
cessive. Monitored processes can be too fast to allow many measurements.
Application of statistical methods in all such cases is no longer feasible.

The efforts to decrease uncertainty are motivated by the aim to maxi-
mize the opposite: the information. However, as already mentioned, statis-
tical models of uncertainty and information are based on the idea of mass
uncertainty.

2.6 Summary

Unlike ideal quantification, real quantification is neither precise nor con-
sistent, although the existence of an unique true value of the quantity can
be assumed in many application fields, apart from economics. However,
there is always an unavoidable participant in quantification - uncertainty.
The nature of uncertainty can be very different; it can originate from many
sources. Its presence in data implies risks, errors and the degradation of
results’ reliability and utility. The availability of the large amounts of data
required to remove uncertainty using statistical methods cannot be always
assumed. Examples of existing causes and sources of uncertainty show,
that the application of statistical models of uncertainty can be therefore
inadequate to many required tasks. To minimize effects of uncertainty on
quantification process in such applications, a realistic theory of real quan-
tification, which is applicable to small data samples, is needed.
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Chapter 3

Geometric Paradigm

3.1 Paradigm

A theory is an abstraction conceived to explain or predict reality. It needs
to include sufficient information, but also to suppress irrelevant facts.
Therefore a model is proposed as a reproduction of what is observed as
reality. Theories evolve over time and are improved or negated as em-
pirical investigation either supports or refutes what had previously been
postulated.

The notion of a paradigm is close to that of a model but Thomas Kuhn
introduced [65] a special interpretation which pertains to scientific revo-
lutions. He suggests that a paradigm represents a collection of generally
accepted views which dominate the thinking of “experts” in a scientific
field at some point in the development of a theory. As shown later by
Joel Barker [5], the problem of the paradigm is much more universal in its
nature and it is one of the most important questions in the development
of our everyday life. A paradigm consists of two major parts. It:

1. delimits the boundaries of a class of problems, and
2. includes a collection of rules to solve the problems which exist within
the given boundaries.

The acceptance of an existing paradigm results in several advantages:

The paradigm

e helps to distinguish between the important and the insignificant,

e offers advice and recommendations as to how to move successfully
within the given boundaries,

e aids in communication between its adherents because they are all fa-
miliar with and use the same notions, terms and language,

25
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e helps in the understanding of changes within its “valid” framework
because it is understood as being “legal” and it does not give rise
to suspicions of “heresy” within the domain and it does not lead to
conflicts with the “pontiffs”, who dominate the field,

e assists in legitimizing activities within its boundaries, thus increasing
the number of its adherents and sponsors.

There are also negative features. A paradigm is a “filter”, which selects
and adapts incoming information to support itself and to eliminate incon-
sistencies with any new facts. Murphology has two observations on this
issue [§]:

1. Maier’s law: “If facts do not correspond to your theory, get rid of
them as fast as possible.”

2. Finagl’s credo: “Science is always right. Do not be confused by
facts.”

These theses are (sadly) more than a joke; if these conclusions were not
frequently real, the acceptance of a new paradigm would be much easier
and faster. Blind and uncritical adherence to an existing paradigm often
results in a closed mind and to an erroneous conviction that everything
successful in the past must be successful in the future because the future
is nothing more than a simple extrapolation of the past.

In defense of maintaining the old order, a change in the paradigm might
encompass large risks:

e At the moment, when a revolutionary paradigm is accepted, a great
deal of the built-up intellectual or spiritual “capital” of those, who
supported, nurtured, and maintained the supplanted paradigm is lost,
and nearly everyone starts from zero once again.

e New paradigms ordinarily appear at the boundaries of several scientific
fields, which are not familiar to the “priests” of the old paradigm.
Younger scholars with fresh new knowledge, and newcomers from the
new “neighboring” fields are favored.

e As a potential revolution of the paradigm develops, it is not sure, who
will win. Many will prefer to wait on the sidelines to see, which way
the wind blows, before putting their necks on the chopping block or
opening themselves to criticism.

e The old paradigm is rarely completely refuted; this permits the estab-
lished ideas to continue to be harvested until the new ones are com-
pletely established. Moreover, some new paradigms are more general
than the old ones and include the former as valid special cases. This,
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of course, does not apply to conflicts between hostile paradigms such
as between social systems or between paradigms, which exclude each
other (such as the Ptolemaic versus the Galilean paradigms).

e Occasionally, a seemingly new and better paradigm appears to be
more a fashion or a fad than a well justified innovation (eg many
slimming cures, following the ‘herding instinct’ in jogging, etc.).

e “New” is not automatically the same as “progressive” or “better”.
History is replete with many new ideas or discoveries, which have lead
to dead end roads or U-turns, eg DDT, cheap and safe nuclear energy,
small-pox vaccinations for children, etc.

e Some paradigms, especially those related to the use of power may be
highly dangerous, (eg Hitler’s “Blitzkrieg” or religious fundamental-
ism).

Having considered the advantages of continuing to subscribe to an old
paradigm with the risks of accepting new or revised ideas, one can develop
a better understanding of conservatism in thought and general resistance
to change.

It is logical to ask, why such a philosophical problem is dealt with in a
book, which aims to contribute to the analysis of real data . The answer is
that to analyze, one needs data and analytical methods. Real data contain
strong uncertainty. Hence, the methodology, which will be applied, must be
able to cope with the inherent uncertainties. There are different paradigms
of uncertainty; to select the most suitable, it is necessary first to reflect
on the choice of the proper geometrical paradigm, then to pick correct
paradigm of uncertainty.

3.2 Why Geometry?

The purpose of this book is to present a new method for the solution of
problems in the applied sciences; therefore, at first, it may seem puzzling
to have geometry play a major role. However, applied sciences deal with
data. Data result from measurement, and measurement is the main task
of geometry.

Let us now explore this problem. It is a widely held point of view
that geometry is the branch of mathematics that deals with the proper-
ties, measurement, and the relationship of points, lines, planes, and solids
[112]. Three notions of fundamental importance are missing here: space!
transformations, and wnvariants.  These are necessary because all geo-



28 CHAPTER 3. GEOMETRIC PARADIGM

metric objects must be placed somewhere and in some manner moved or
changed. Felix Klein[] stated (Klein, 1921) that these particular notions
are the most important features of geometry:

Geometry is the science studying invariants of figures, ie proper-
ties, which do not change by movements.

3.2.1 Space and its Geometry

One idea is that space is something like a box “containing” geometric ob-
jects. Such thoughts are promoted by the traditional approach to geometry,
which focuses on only a single geometry (the Euclidean one) and ignores
the existence of a large number of others, some of which are extremely
important in our lives. Indeed, one box (eg a shoe box) is very similar
to another box (a hotel room) in that the distance between two points is
the length of a straight line connecting the points. We even know that
this length is the minimum of lengths measured along all possible different
paths (this feature is called the variational principle). The notions of the
“right angle” and “parallelness” are identical in both boxes. The same
relates to angles between lines, which can be measured using the same
protractor. These notions are simple and natural, but only because we
are accustomed to viewing the world from the standpoint of Euclidean ge-
ometry, ie because we were educated to uncritically accept the Euclidean
geometric paradigm.

When evaluating distances in Euclidean geometry, the elements of the
path are summed, giving each the same weight, but are they all of the same
importance?

e The manager of a citrus grove monitoring a winter forecast would not
care if the temperature was expected to fall to 60° from 65°. However,
he might need to start thinking about how to react should this five
degree change be between 40° to 35°, and he would certainly take
desparate action should it range from 33° to 28°. The “weight” of a
degree of temperature change depends on its level!

e The CEO of a firm would probably find justification for a 2% drop
in revenue or net income by blaming a competitor’s new product,
inflation, or a blip on the GNP growth chart, but were this change

1(1849-1928) A well known mathematician and geometer at the University of Géttingen.
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to amount to 10%, some very serious activity would take place in the
boardroom.

This idea of imposing different weights on different segments of a dis-
tance scale depending on a “locally” determined value bears a close resem-
blance to the assessment of uncertainty (or the errors) in data by measuring
the distances between an (unknown) true datum and the observed value. If
there are several observations and an estimate of the true value (the “cen-
tral” value), it is natural to weight the observations closer to the center
more heavily and to give smaller weights to those more distant. This is
a straightforward application of a non-Euclidean geometry. What is more
complex is the determination the “weighting function,”—in other words—
the choice of the particular non-Euclidean geometry to be employed.

The point is:

Different geometries < different measures.

The German mathematician Bernhard Riemann (1826-1866) developed
his geometric paradigm in the middle of the 19th century. Riemannian
space is a set of points (manifold) endowed with specific instructions
defining the way lengths and angles are measured at all points in the
space. (The measurement method—metric—may be different for different
points). All the characteristics of the space depend on its specifications
(curvature, variational principles, etc.). One of Riemann’s hypotheses is
of special importance to our purposes; it can be roughly stated in this way:

It is not for mathematicians to choose metrics of spaces to
model real processes. Metrics are given objectively by laws of
Nature.

No one could confirm Riemann’s hypothesis in his time because the
progress of science had not matured sufficiently and very few, if any,
had any conception of what he was saying. It was more than half a
century later before Albert Einstein proved through his special theory of
relativity that the space we live in is not Euclidean but substantially
different—Minkowskian. This conclusion resulted from experiments docu-
menting the finite speed of light—a law of Nature. Einstein’s gravitation
theory (the general theory of relativity), a decade later, explained other
physical experiments, which proved that the geometry of outer space is
Riemannian. The (local) metric at each point is determined by the (local)
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gravitation forces—again by something objective.

It is now the right moment to ask a modified Riemannian question:

What is the proper metric to use to measure the uncertainty
of real data obtained by quantification?

In other words:

What is the proper geometric paradigm and the proper
paradigm of uncertainty, on which methods for analyzes of real
data should be based?

Indeed, data uncertainty results in data errors. What is the “size” of an
error? If the reply were that the error should be measured as the difference
between the true (ideal) value and the observed data, this approach being
derived from Euclidean geometry, the immediate follow-up question would
be to explain the reasons, which motivate the choice of Euclidean
geometry. FError is obviously distance but to measure distances, we
should know the geometry of the space.

It should now be clear, why we are concerned with geometry, when
dealing with data treatment. Our problem is to find the reasons that es-
tablish the “proper” geometry of spaces for real events and processes. One
intuitively feels that this geometry is closely connected with uncertainty.

3.2.2 Transformation of a Space

Transformations play an important role in geometry. Three notions are
essential for our purposes:

1. geometric movement,
2. invariants of transformations,
3. replacement of coordinates.

Anyone, who has used computer graphics, is familiar with various types
of geometric movement. Moving a point by means of the “mouse,” one
produces straight lines or curves. Rotating a line having a constant
length about a point draws a circle. Using the sequence of operations
‘copy’—'paste’—‘rotate’ a square can be constructed from one of its sides.
Not all users of these techniques are aware of the fact that they are
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actually applying geometric transformations. They slightly modify the
values of the coordinates of the last point thus generating a new point,
store the new point’s coordinates and use the new point as the point of
departure for the next movement. By such movements, geometry creates
lines from points, figures from lines and solids from figures. Further, by
geometric movement, a space with a higher dimension can be created from
one of a lower dimension.

It is important not to confuse geometric (virtual) with physical (or—
more generally—real) movement. A geometric movement can model a
physical one, but it is a more general notion. Not all possible geometric
movements can be realized in the real world. A plate lying on a table
cannot move down vertically but a geometrical point on the plate can
move down freely along a vertical line as well as up. Another significant
difference between geometric and physical movement is that of the time
aspect. Physical movement is strongly parametrized by the time coordi-
nate and its speed cannot exceed the speed of light. Geometric—purely
mathematical—movement (not represented by the physical movement of
the cursor on the screen) has no relation to time. Geometric movement can
of course model other kinds of movement, eg movements taking place in
the financial world. The development of the individual price of shares can
be thought of as a geometric movement (this is what “chartists” try to do
in attempting to predict future prices by drawing straight lines, or other
more complicated geometric shapes representing the path of past prices).

Examples of a “collective” movement in the financial world are inflation
or the devaluation of currency. The affected group participates in a real
macroscopic movement, yet its individual members interact with each
other on the “micro” level. These movements also have a double nature,
when they occur: they are real, but on the analysts’ screens. They have
a different character, since the real (financial) movement is modeled by
the physical movement of electrons, which draw lines, thus representing a
geometrical movement.

There are many kinds of transformations; a convenient way to classify
them is by the use of invariants. Invariants are features of geometric ob-
jects, which permit them to remain unchanged through certain transforma-
tions. It is important to emphasize that there is a requirement for a triple
of notions: space—transformation—invariant, all of which are mutu-
ally bounded. There are affine transformations within Euclidean space
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such as shifts and orthogonal rotations. Invariants with respect to these
transformations are lengths and angles. Note that these words “lengths,”
“angles” and “orthogonal” should be understood as “lengths”, “angles”
and “orthogonal” in the sense of Euclidean geometry. In a different geom-
etry they may mean something entirely different.

There are invariants of transformations also in the space, which rep-
resents the financial world: the rate of interest is a time invariant of the
exponential curve depicting the change in value of a bank deposit in the
case of a constant interest; the ratio of liabilities to receivables does not
change with a currency’s devaluation.

Mathematicians have the freedom to choose the coordinate system of a
space from a whole class of permissible systems and they ordinarily use the
most convenient one. To solve problems of a rectangular nature, they use
a Cartesian system of coordinates (eg (z, y, z)). When working within
a sphere, they choose spherical coordinates ({p, ¢, 0,)) where p is the
diameter, ¢ the azimuth and € is the altitude) and so on. This does not
mean that another system, perhaps the Cartesian system, cannot be used
to measure the position of stars, just that it might be more cumbersome.
However, it is sometimes necessary to change from one coordinate system
to another, to replace coordinates. One extremely important aspect of
replacing coordinates is that of invariants. This is especially familiar to
physicists because it allows objective features to be distinguished from
subjective ones. A good example is a tension within a solid body. Such a
stress together with resulting deformations is something objective, it exists
independently of the observer trying to model it mathematically. However,
the written appearance of equations, which describe the state of the body,
is dependent on the choice of coordinate system, it is thus subjective. If
the load and resulting stresses exceed a certain critical value, the body
will break. This outcome is objective, it is independent of the chosen
coordinates. The tensions therefore must be invariant to transformations
that exchange coordinates. There is an ideal mathematical tool, tensor, ()
which can determine invariants as eigenvalues of tensors for a whole class
of transformations, which replace coordinates.

3.3 Summary

To analyze real data, which, as a rule, are strongly disturbed by uncertain
components of various origins, one needs good analytical methods. To
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develop good analytical methods, a well conceived theory is essential.
Every theory is based on a paradigm, which is a collection of views
which have been generally accepted during the historical development
of a field and which dominate the collective thinking of experts in that field.

The choice of geometry to be used to represent real quantities (or their
movement) is critical to the nature of the results, that will be obtained.
Since there is no freedom in the selection of the geometric paradigm, it is
necessary to find suitable laws of Nature, which can determine the ap-
propriate geometry. Preliminary consideration of the problem reveals,
that there is no confidence in the suitability of the FEuclidean geometric
paradigm and its corresponding analytical methodology for the treatment
of real data. A difficult problem which remains is the justification of the
specific geometry of a Riemannian type for this class of applications.
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Chapter 4

Paradigms of Uncertainty

4.1 Statistical Paradigms

When using the word statistics, one must distinguish between two substan-
tially different meanings:

1. numbers, that have been collected in order to provide information
about something,
2. the science of collecting and analyzing these numbers.

The numbers cited in both definitions are data, ie outputs of the quan-
tification process, which map real quantities. A quantitative depiction of
reality would be impossible without data. The statistical activity described
by the first definition is an absolutely necessary part of all methods used
to obtain quantitative information. The second meaning also defines an
objective of mathematical statistics, but it does not imply its uniqueness
as a tool for data analysis.

The use of the plural in the heading above might be a shocking reve-
lation for one, whose acquaintance with statistics is via the most popular
paradigm, that of relative-frequency statistics. It is based on one of the
oldest paradigms closely connected with games of chance such as dice,
cards or roulette. The relative frequency (number of successes divided by
the number of trials) characterizes the success of repeating a given (ran-
dom) experiment under fixed conditions. The thrust of this paradigm is
described by [22] as follows:

1. In many important cases relative frequencies appear to converge or
stabilize, when the random experiment is repeated a sufficient number
of times.

2. This apparent convergence is an empirical fact and a striking instance
of order in chaos.

35
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3. The apparent convergence imputes a hypothesis, that the relative fre-
quency of outcomes in as yet unperformed trials of an experiment can
be extrapolated from the observed relative frequency of trials already
run.

4. Probability can be interpreted through the limit of relative frequency
and assessed from relative frequency data.

This statistical paradigm is not unique. There are altogether seven classes
of theories of probability based on different paradigms described in detail
and analyzed in [22]. The conclusions drawn therein are far from optimistic:

... The many difficulties encountered in attempts to understand
and apply present-day theories of probability suggest the need for
a new perspective. Conceiably, probability is not possible. A
careful sifting of our intuitive expectations and requirements for
a theory of probability might reveal, that they are illusory or even
logically inconsistent. Perhaps the Gordian knot, whose strands
we have been examining, 1S best cut. However, where would such
a drastic step leave the world of practice?

... Clearly much remains to be understood about random phenom-
ena before technology and science can be soundly and rapidly ad-
vanced. It 1s not only the “laws” of today that may be in error,
but also our whole conception of the formation and meaning of
laws.

Perhaps this sad state of affairs can be interpreted as a call for a good
nonstatistical paradigm to assess uncertainty.

4.2 Nonstatistical Paradigms of Uncertainty

Many problems of a theoretical nature have given rise to new attempts to
reconsider various statistical paradigms. The rapid development of com-
puters after World War II enabled existing statistical methods to be applied
to real problems to an extent never thought possible before. However, re-
sults have been far from satisfactory. This may be explained by the fact,
that statistical methods are products of mathematics; and as such, if they
were developed from nonconflicting assumptions in a consistent manner,
they cannot be wrong. If a mathematical statistics methodology fails, when
it is applied to real data, it is necessary to look for the cause in the conflict
between the theoretical assumptions and the real nature of the data. A
statistician may warrant his methodology to one, who requests an analy-
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sis, only if he in turn provides the statistician with a warranted statistical
model of the data. Statisticians ordinarily make the requester responsible
for the choice of data model. The stumbling block is, that one very
rarely knows the statistical model of real data.

Both theoretical and practical problems with statistical paradigms have
lead to the fast development of methods based on alternative, nonstatis-
tical paradigms. As outlined in [72], several of these methods are being
applied in forecasting and decision making in the financial markets. The
use of methods based on pattern recognition, neural networks, fractal ge-
ometry, deterministic chaos, fuzzy logic, genetic algorithms and nonlinear
dynamic theory are discussed. However, this list of existing alternatives
to statistics is short by at least one candidate. It seems, that there is an
informal, but ferocious, “race” running for alternative paradigms of uncer-
tainty. It is not the aim of this text to deal with the broad spectrum of
nonstatistical paradigms of uncertainty. Instead, we shall concentrate on
a single participant in the “race,” on the gnostic paradigm, which was
absent from the roll call given in [72].

4.3 1Is there a Need for an Alternative to Statistics?

Economists rely on statistics to collect data, but the use of mathematical
statistics as the unique technology of choice for extracting information from
these data may be a questionable procedurd]

The historical achievements of statistics, especially in physics, has jus-
tified consideration of this methodology for use in the analysis of real phe-
nomena. Theories of statistical thermodynamics, chain fission reaction,
and neutron slowdown and diffusion yield precise engineering calculations
for nuclear reactors. These constitute some of the unchallenged successes of
the statistical approach. However, is this sufficient reason to expect, that
the application of the same principles will yield equally successful results
when applied, for instance, to economics? Because economic processes
are substantially different from physical ones, it is not likely. Benjamin
Graham, the father of “fundamental” investment analysis stated [30]:

... The art of investment has one characteristic that is not
generally appreciated. A creditable, if unspecular, result can be

IThe basis for the material in this section is taken from a presentation made by the authors at the
third international Artificial Intelligence in Economics and Management (ATEM) workshop in Portland,
Oregon in August of 1993.
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achieved by the lay investor with a minimum of effort and capa-
bility; but to improve this easily attainable standard requires much
application and more than a trace of wisdom. If you merely try
to bring just a little (emphasis added) extra knowledge and clev-
erness to bear upon your investment program, instead of realizing
a little better than normal results, you may well find, that you
have done worse.

Since anyone—>by just buying and holding a representative list—
can equal the performance of the market averages, it would seem
a comparatively simple matter to “beat the averages”; but as a
matter of fact, the proportion of smart people, who try this and
fail, s surprisingly large. Fven the majority of investment funds,
with all their experienced personnel, have not performed so well
over the years as has the general market ...there is strong ev-
idence, that their calculated forecasts have been somewhat less
reliable than the simple tossing of a coin.

Although there is no reference to specific forecasting methods, it can be
inferred, that the word “calculated” refers to the mathematical methodol-
ogy of statistics, that has almost exclusively dominated econometrics for
decades. Among other pertinent critiques of the statistical approach to
economic problems the following remarks by Los ([70]) can be mentioned:

... It is clear to most people, that economic forecasting still
amounts to little more than educated guessing, despite the aura
of precision created by computerized models of the economy.

... Scientific economic analysis, in the true sense of these words,
still does not exist.

... Since objective modeling has not been practiced, economics as
a science has not progressed.

... Recently, simple cost-benefit analysis has created strong finan-
cial incentives to obtain better and more accurate economic fore-
casts in the private sector. But, paradoxically, the main obstacle
to this progress in economics is the conventional pseudoscientific
methodology of econometrics adopted in the 1940’s and 1950’s.
The conclusion is clear: first the problem of objective identifica-
tion from noisy data has to be solved.

Professor R. E. Kalman, who made a substantial contribution to cyber-
netics with his famous filters, expresses his view of the issue as follows
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[42]:

... Statistics is not science, but a kind of prescience, a
pseudoscience, a “gedankenscience.’ﬂ Perhaps it’s best called an
“ersatzscience. P

... Uncertainty in nature cannot be modeled (and therefore
must not be modeled) by conventional, Kolmogorozﬂ probability
schemes, because no such scheme may be identified from real data.

... The trouble is, that probabilities are not identifiable.

Even the name of the scientific meeting, where Kalman’s contribution
was presented, could be interpreted as symptomatic—Foundation Crisis in
Econometrics within the Standard Statistical Paradigm. As pointed out in
[70], the criticism of current methodologies of data treatment has long ago
left academia for the popular press, for instance in the Wall Street Journal
[114]:

Fickle Forecasters. How Three Forecasters, After Crash, Revised
Economic Predictions

and [44]:

Into the Void: What Becomes of Data Sent Back From Space?
Not a Lot as a Rule.

We do not reject statistics because it is a “gedankenscience.” The power
of mathematics results from the fact, that it is a “gedankenscience,” due to
its independence from the facts of real life. However, the practical appli-
cability of mathematical or statistical models goes outside the borders of
a “gedankenscience.” Many processes studied in physics are can be mod-
eled by “gedanken-experiments” because useful models of their behavior
are simple enough to be formulated by humans. We can come very close
to describing the orbit of the earth relative to the sun using only New-
ton’s gravitational principle and the masses and distances of the earth,
sun, and moon. For most purposes, we can ignore the effects of other plan-
ets, other stars, and air disturbances due to (say) the flight of butterflies.

2Der Gedanke... the thought (in German). Appears frequently in natural sciences in the word der
Gedanken-experiment —a thought experiment not really performed, but obeying an a priori given system
of laws. In use without translation in many languages. The most popular application of such an approach
was the A. Einstein’s cosmic elevator used in the General Theory of Relativity.

3German word der Ersatz means a not quite perfect substitute, an artificial Christmas tree or a
“hamburger” made from soy beans.

4A.N.Kolmogorov: Russian mathematician (1903-1997), who developed in the 1930’s the most com-
monly accepted version of probability theory.
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However, in economics, it is not simple to distinguish the perturbations
of the data resulting from influences, that (if we knew, what they were)
could be ignored, and the essential ones. It is impossible to discriminate
from the flapping wings of a butterfly and the mass of the sun. Moreover,
we have not yet identified anything that remotely corresponds to Newton’s
laws. Such principles, invariant for all time, may not even exist. Nothing
is stationary and replicable in economics. One of the major issues is the
independence of events; the collision of two gas particles at a specific point
can be considered completely independent of a collision of particles at a
distant point. Economic events not only are influenced by economic trans-
actions, but also by seemingly unrelated activities across the globe, which
may even cause a strong synchronous reaction throughout the world.

The impropriety of statistical applications to many propositions in
real life is reflected by the manner in which many problems are
stated. They begin with the assumption: Let zq,..,xx be the N —
tuple of i.i.d. random wvariables. The idea of independence, as noted
above, is probably unsuitable for all real events. Identical distribution
refers to stationarity and repeatability, which is also a doubtful charac-
teristic of many real data. However, the most discordant is the notion of
randomness. This is pure agnosticism, a complete abdication of the no-
tion, that the human mind has the ability to discern, confirm, and establish
the cause of events.

Returning to economics: are the fluctuations of prices on the stock
market random? Ask market experts this in a more specific way: “Was
yesterday’s change in company X’s share price random?” The explanation,
(or several explanations) received will suggest, that what occurred was a
necessary consequence of having new public information about X’s earn-
ings or prospects, or a change in the discount rate by the Fed., etc. The
change might seem random for those, who perceive the market only as a
big roulette wheel. Often, no reason can be elicited, and the response is:
“I have no idea;” (read, “I have no information,”) rather than, “It was
random.” Corporate financial data in the form of various financial state-
ments play an important role as ‘raw materials’ of economic and financial
analysis. Market analysts and economists use data from multiple sources;
even those, who are responsible for a single firm’s planning and policies
will examine information on the competition as well as the economy as a
whole. To estimate the financial position of a company, an analyst uses
data not only of the company under consideration, but also data of other
companies. Using the language of statistics for a moment, we may say,
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that data from a sample of companies will be used.

Let us see how well the standard statistical assumptions are met in the
case of financial statement analysis:

1. To evaluate the financial position of a company one needs to compare
the company’s parameters with those of “similar” enterprises. How-
ever, the number of really comparable companies is always very small.
Finding companies quoted on the NYSE within a range (size, capital-
ization, etc.) in a specific industry will result not only in a strictly
bounded set, but frequently in only a very small number of firms, of-
ten numbering not more than 10. Is it possible to accept the idea,
that analysts are randomly choosing companies for their comparisons
from an infinite population of mutually independent companies, for
which the same statistical model describes their economic and other
parameters? Such an idea is implausible for many reasons. To com-
pare the comparable, the analyst’s choice is systematic. Systematic
choice is of course biased and the exact opposite of random.

2. The small size of a “sample” of comparable companies cannot be in-
creased to raise the reliability of the analysis. It is easy to add to the
number of trials, when throwing dice, but the idea of increasing the
number of companies directly comparable to eg Coca-Cola is absurd.

3. To assume the independence of financial statement data for different
companies, as is required by many statistical methods, would be even
more unrealistic. Comparable companies may react in a similar way to
changes in the economic environment (recession, taxes, custom duties,
inflation, prices of raw materials and energy, technological innovations,
etc.). This similarity of reactions forces the economic parameters of
these companies to be mutually dependent.

4. Another problem is centered on the fact, that many statistical
methods are based on the assumption, that the data fit a particular
probability distribution. One of the most widely used statistical
distributions is the Gaussian or normal. It is customarily chosen
because many applications are based on mass random events, in
which case its choice may be justified. This justification is based on
the Central Limit Theorem (the Law of Large Numbers), which is
the most effective weapon in the arsenal of mathematical statistics.
However, there is no reason to expect, that what works for large
data samples will also be applicable to small ones. Moreover, the
fundamental differences between random events and the actual
causes of real events infer, that the universal application of standard
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statistical reasoning to real data is illegitimate. To demonstrate this,
it is useful to recall the Central Limit Theorem ([110]):

Central Limit Theorem:
Given:

1. The random variable x has some distribution with mean u, and stan-
dard deviation o,.
2. Samples of size N are randomly selected from this population.

Conclusions:

1. The distribution of all possible sample means T will approach a normal
distribution.

2. The mean of the sample means will be ..

3. The standard deviation of the sample means will be o, //(N).

An (infinite) population is thus assumed, from which samples of size
N are randomly selected. For samples of size N greater than 30, the
sample means are approximated reasonably well by a normal distribution.
However, if there are only 10 comparable enterprises, it will be impossible
to obtain the necessary sample size, and adjustments will have to be made,
each of which will degrade the outcome.

Moreover, some interpret the central limit theorem as being valid for
any distribution of the population. This may be a crucial error because
the theorem applies only to distributions, which have a mean and a stan-
dard deviation. Not all distributions fulfill this requirement, eg a Cauchy
distribution has neither a mean nor a standard deviation, and it is some-
times used by statisticians to describe the effects of gross errors (outliers).
Since outliers are rare in large samples, only a small portion of the data be-
have in this manner. However, if there are only 10 companies in a sample,
a “small part” of these data may number one or two. Moreover, in various
real data, outliers are generally present and they cannot be ignored. Is it
possible to treat these unusual data points as if they have ‘normal’ statis-
tical properties? On the other hand, if we accept a Cauchy distribution to
characterize outliers, we are not able to apply the central limit theorem.
How then can it be expected, that reliable results will be produced from
such an analysis?

If data are not normally distributed, one may still compute any desired
statistic (if it exists), but it is no longer possible to impute any meaning or
significance (in the statistical sense) to these measures. This is applicable



4.3. IS THERE A NEED FOR AN ALTERNATIVE TO STATISTICS? 43

to several customary tests, for instance:

1. the Student’s distribution (the t-distribution) for testing statistical
hypotheses on population means,

2. the chi-square (or x?) distribution used for tests on population vari-
ances and for tests in curve fitting,

3. the Fisher’s (or F-) distribution for testing hypotheses on ratios of
variances and for variance analysis (ANOVA) in solving regression
problems.

No longer being able to apply the concept of normality leads to the “illegal”
application of these popular statistical tests. There are those, who try to
escape these difficulties by using nonparametric statistical methods not
relying on the normality assumption, however the danger posed by the
mutual dependence of events may once again subvert their effort.

Another difficult problem is connected with the notion of “identically
distributed.” This idea refers to the homogeneity of the data sample: all
data should be “of the same origin.” This is rarely the case in practice. In
the analysis of an industry, it is not unusual to find subgroups of companies,
within which the members behave in a similar manner, and which manner
is different from the behavior of members of other subgroups. This is
noticeable in the probability density functions of economic parameters:
instead of a single density maximum (typical for eg normal distributions)
several local maxima appear—the density is multimodal. Such “mixtures”
of differently distributed subsamples do not conform to the central limit
theorem.

In fairness, it must be said, that a large number of tests for the above
conditions have been developed and numerous data “treatments” have
been unfolded in an attempt to mitigate these problems, and mathemati-
cal statistics has evolved as new approaches to problem solving have been
developed: more robust statistical methods, Bayesian and recursive proce-
dures, etc. These and similar innovations provide a little extra knowledge
and sometimes a good bit of cleverness (as Benjamin Graham would have
said), but taken as a whole, they do not go a very long way in overcom-
ing the noted dilemmas. The use of these newer methodologies does not
provide a complete solution of the problem.

Some new nonstatistical approaches may yield better results than statis-
tical methods in a particular application, but they are not competitive with
mathematical statistics as products of a scientific theory, which systemati-
cally covers a broad field of theoretical problems. The statistical paradigm
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is perfectly suited to explain the outcome of mathematical models for pro-
cesses in many scientific fields, particularly those in the physical sciences
(treating mass events in physics such as the movements of molecules of a
gas or neutrons in the core of a nuclear reactor). As already discussed, the
development of scientific thought, as new information is discovered, leads to
modifications of theory, in which frequently the “old” processes remain as
special cases. For instance, Einsteinian relativistic mechanics produces the
same dynamic models as Newtonian mechanics, but only for an “asymp-
totic” case of extremely slow movements. However, most nonstatistical
models of uncertainty do not fulfill the same function of “asymptotic con-
sistency” with mathematical statistics.

It might seem, that fuzzy-set theory and the probability theory based on
fuzzy sets provides a desirable “generalization” of the statistical paradigm,
because a fuzzy set may be seen as a generalization of the classical no-
tion of a set. However, there are other difficulties; a major one is, that
the paradigm of fuzzy-set theory is based on the assumptions being the
foundation stones of the theory:

1. The “membership function” is given, which determines the degree, to
which each event belongs to the set.
2. The formulae of the fuzzy logic are given.

These necessary elements must be chosen a priori and subjectively. This
could prove to be even more difficult than to establish an a priori statistical
model of data.

Other nonstatistical methods suffer from the absence of a complete
mathematical theory and have only a heuristic nature.

There exists a more radical solution: to depart entirely from the sta-
tistical environment and the existing paradigms of uncertainty, and to try
something entirely new.

4.4 Paradigm of Gnostics

4.4.1 Gnostic System

The semantics of this unusual word is treated below; we use this notion
extensively, but the word itself is not our creation, it has an extremely long
and exciting history. It is no wonder, that this word has been redefined
and applied to a really recent problem: a cybernetic recognition system,
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by modern philosophers [8§]. In a general setting, the gnostic system can
be characterized as the pairing of an object and of a subject (observer),
whose task is to recognize the object. The observer gets his information
by means of an object — subject channel. To compare his improving
knowledge (through repeated observations) about the object’s reality he
uses another channel (feedback subject — object). The recognition process
is thus active. A typical example is the evolution of experience as an
iterative cycle initiating an action—qgaining experience from the action—
evaluating and accumulating experience—using the updated experience to
matiate a new action—etc.

For a gnostic recognition system, a more specialized formulation is
needed. It is sufficient to restrict our exposure to the gnostic system of
quantitative recognition. The idea of such a system is presented in Fig. 4.1.

4 ) 4 )
OBJECT RECOGNIZING
OF SUBJECT
RECOGNITION (OBSERVER)
\ J . pn . \ y,
’ N\ Quantification C S
OBJECT'S |- | _a NUMERICAL
QUANTITY - EVALUATION
\. J Estimation | J

Fig. 4.1 Gnostic system for quantitative recognition

There exists an object with quantitative parameters, which should be
recognized by the subject/observer. Recognition is reduced to the ob-
ject’s quantification. As seen previously, quantification is the mapping of a
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structure of quantities onto a structure of numbers (data). This is the feed-
forward link quantity — number in Fig. 4.1. The basic task of the observer
is to estimate the true (ideal) value from the data. This is represented in
Fig. 4.1 as the feedback link number — quantity. The estimating phase
of the cognition cycle is required because of the inevitable disturbances to
quantification caused by uncertainty. We shall examine the problems of
estimation later. The present point of interest is still quantification.

We learned in Chapter 1, that quantification as a mapping is consistent
if some simple rules hold. Using mathematical language, we characterized
structures of both quantities and their numerical images as additive or
multiplicative groups. This scheme of quantification corresponds to that of
measurement theory. We can summarize our notion of ideal quantification

by Fig.4.2.

wWORLD MATHENATICS

Ideal

= quantification

7% . .. numerical structure of images I(qi)

Fig. 4.2: Ideal quantification

Anywhere in our world, an empirical structure &; of ideal quantities
qi exists mapped onto the numerical structure N; of numbers denoted by
I(gi)—images of qi. We already know the mathematical nature of both
structures: they are both commutative groups isomorphic with Abel’s ad-
ditive group.
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This idea of ideal quantification is suitable for measurement theory, but
it has only a limited use for application to real measurements. There is
consensus among those, who develop and use measurement theory, to limit
their studies to precise measurements and to let statisticians deal with
imprecisions. We are not going to follow this scheme:

1. Such schemes are useful for applications, where data precision is—as
a rule—high, and imprecise data are a rare exception. We saw in
Chapter 2, that the opposite is frequently true in practise: data can
contain gross errors and precise measurements, as a practical matter,
can be impossible.

2. The unreliable results of data treatment in many applications lead to
incorrect decisions, the outcomes of which are too costly to ignore.

3. It is a normal use for statistics to model and treat data having a
statistical character; however, as noted earlier, it is unlikely that all
real data are statistical in nature, and that they can be modeled using
statistical methods. Statistics, as a strongly mathematical discipline,
should not be used to work with nonstatistical data.

4. The main obstacle in the path of consistent successful use of statistics
in many fields, especially in economics, is the specific nature of the
uncertainty, which surrounds real events. They are not always some
consequences of “random” factors, which is a necessary condition for
“o00d” statistical data.

5. There is a natural and direct way to extend the useful axioms of
measurement theory to the quantification of uncertain data. This is
the primary focus of the theory that will be developed.

The approach we are going to use is based on the gnostic theory of
uncertain data (on mathematical gnostics) or—in short—on gnostics. The
ideas imbedded in the mathematical gnostics were first introduced in the
literature in 1984 in three papers [56], [57] and [58]. A summary [59] of the
new theory was presented at the IX-th World Congress IFAC (International
Federation of Automatic Control). Scientific interest in this contribution
lead to an invitation to publish an extended review of the theory [60] in the
official journal of the IFAC. A more complete exposition of the development
of gnostics through 1990 is in [61].

The word “gnostic”, has already been used and it is therefore time to
look at its semantic roots.
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4.4.2 Gnostics, the Choice of a Name

Every meaningful concept should have a name. There has been a long
and successful experience in using gnostic algorithms, showing their supe-
riority over other approaches under practical non-laboratory (real world)
conditions. This methodology, then, should be distinguishable from other
analytical concepts and procedures. In addition, the uniqueness of this the-
ory and its algorithmic applications place it outside of the framework of
other known methodologies, and the name should distinguish this concept
from all of the others.

A more interesting question is “Why just this name?” The birth of this
idea comes from the very old Greek word gnosis, which can be translated as
“knowledge” or “art of knowing”. Its root is found in many newer words
such as prognosis, diagnosis, physiognomy, gnome, gnomon, gnoseology
and—via the Latin reflection of Greek (gnoscere = know)—cognition, cog-
nizable, cognizance, cognizant, recognition, recognizance, recognize, etc.
All these words are in a way connected with knowledge. However, three
words from this family deserve special comment: agnostic, Gnosticism,
gnostic.

The word Gnosticism is used ([I12]) to define a system of mystical doc-
trines combining early Christian, Greek, and Oriental philosophies. Gnos-
tic means 1) “of or having knowledge,” 2) “believer in Gnosticism.” These
definitions are rather formal, however the first use of the word was Plato’s
(427-347 B.C.), while the second is connected with a religious movement
and is about five centuries younger. Gnostic philosophers sought the truth
outside of the official Gospels and were sternly rejected by the Church au-
thorities and the Gnostic movement was considered a great danger and
was repressed. Examples of recent words using this ancient kernel show,
that there is no religious connotation in the modern usage of the notion of
“onosis”; the accent is on knowing and knowledge as in the time of Plato.
This will also be true here.

The word agnostic is in a way closer to our purpose. According to [112],
an agnostic is one, who thinks it is impossible to know or learn, whether
there is a God, or if anything exists beyond material phenomena. Now
applying this definition to the world of data and substituting the “true
(ideal) value” of a datumf] instead of God, someone could be called “data
agnostic” if he or she thinks it is impossible to know if there is a “true
value” beyond the observed data, and believes, that it is impossible to

5“Datum” is the singular of “data”: a data item.
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approach (to estimate) the true value from the data itself. In contrast, we
shall not only profess the existence of “something like a true or fair value”,
but we shall also look for (and find) the best estimating methods, with
which this value can be approximated. By doing this, we shall attempt at
all times to be “non-agnostic,” ie to be gnostic.

4.4.3 The Framework of Gnostics

The overall breadth of gnostics will encompass the following elements:
1. A specific mathematical theory called The gnostic theory of uncertain

data.

2. Data treatment algorithms based on the gnostic theory—gnostic al-
gorithms.

3. The applications of gnostic algorithms to solve different types of prob-
lems.

By including applications in the framework to be considered, it is intended
to show, that gnostics has been developed to serve practical needs inspired
by close contact with specific problems. The need to provide applications
to solve these real world problems provides a rich source of inspiration and
motivation for the theory and for the development of tools to test and verify
its suitability as well. It will be seen below, that these gnostic applications
have very specific properties.

Each mathematical theory defines the necessary notions, which permit
the formulation of the assumptions or axioms of the theory. Applying
consistent judgment, mathematicians develop and prove all the statements
of the theory from the assumptions. This means, that all the cleverness
and fruitfulness of a theory is hidden or rooted in its assumptions. A
mathematician “only” makes them obvious by using the exact apparatus
of mathematical reasoning. This is why it is important to understand the
main ideas, from which the axioms are derived. With respect to gnostics,
these principal ideas can be summarized as follows:

1. Data are not arbitrary numbers, but products (outputs) of a highly
developed technology called quantification. As such, they obey strict
regularities.

2. A real datum is the pairing of an informative (ideal) and an uncertain
component, which disturbs the observation.

3. The uncertain component is a result of our lack of knowledge of the
causes of discrepancy between the observed datum and its informative
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component. There is no randomness involved.

. The observed datum is a one-dimensional “projection” of the pair

containing these two components; the direct determination of the ideal
component is thus impossible.

. The shape of the quantification process is a special path, along which

the image of the datum moves under the influence of the uncertain
data component. This path is thus a geometric model of quantifica-
tion.

. Neither the metric nor the geometry of the data space is an a pri-

ori assumption, everything is determined by the data following the
principle, “Let the data speak for themselves.”

. By analyzing the path of the data pair, one can develop a complete

theory of individual uncertain data.

. The gnostic theory of data samples is developed from the theory of

individual uncertain data by applying a aggregation axiom motivated
by a close relationship to relativistic physics.

The thrust of gnostics is, that in contrast to statistics, gnostics con-

structs its theory of data samples based on its own theory of individual
data; it is finite, not based on samples randomly drawn from an infinite
population.

4.5 Randomness versus Data Uncertainty

The idea of randomness in discussing the disturbance of data pairs will not
be used for the following reasons:

1. Random experiments, random events, random variables and ran-

dom functions have precise mathematical definitions in mathemati-
cal statistics. We introduce a different notion, that of uncertainty.
Different things cannot use the same name.

. In spite of its importance in mathematics, the notion of randomness

rarely has been given a clear interpretation in statistical literature.
For example, [16]:
“Obuviously, it is impossible to define precisely, what is under-
stood by the word ‘random’. Its sense can be clarified best by
means of examples.”

. The statistical notion of randomness is inherently connected to the

idea of the unlimited repeatability of a random experiment. Gnos-
tics considers finite data samples under no assumption of unlimited
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extensions to the number of data.

Due to the principal ideas of gnostics, which have been exposed above,
there is no “magic” in the gnostic interpretation of the disturbance
component of a datum:

Data uncertainty comes from the observer’s lack of knowledge
of the given quantification process on the observer’s part.

There are three important aspects to this statement:

e Objectivity: The uncertainty of the quantification process is given,
it is a part of the real world.

e Knowledge: If the observer knew perfectly all of the conditions of
the quantification and the factors influencing each datum’s value, he
could completely explain all the details of the data values. Uncertainty
is the unexplained portion of the imperfectly clarified data.

e Subjectivity: The ability to explain a data value depends on the sub-
ject (observer), and on his particular knowledge. What is uncertain
for one observer, can be quite precise for another.

If this is true, then the same—objectively given—piece of data can be
deaggregated into different ideal and uncertain components by different
observers. This individuality in the points of view of the observers is yet
again another reason to search for a law of Nature, that explains quantifi-
cation, and which does not depend on the individuality and capability of
the observer for its outcome.

4.6 Summary

In spite of the commendable praise, which statistics deserves for solving
problems in both scientific and practical application fields, experience does
not support the universal application of methods, which are based on the
paradigm of mathematical statistics. Most of the important problems of
economics attempts to predict the market’s behavior, financial statement
analysis across an industry, and other similar activities remain practically
unsolvable by statistical methods. There are other fields of practice, where
availability of data is limited because of difficulty and /or high costs of mea-
surements like in environmental control, geology, medicine, reliability and
endurance assessment. Other obstacles can be caused by non-stationarity
and a high speed of processes.



52 CHAPTER 4. PARADIGMS OF UNCERTAINTY

There also exist serious theoretical objections to modeling such processes
by statistical methods. Both theoretical and practical needs have given
rise to a number of alternative, nonstatistical methods based on different
paradigms of uncertainty. One of the new paradigms of uncertainty—the
gnostic one—is represented by a set of simple assumptions, according to
which uncertain data are the products of a quantification process. The
uncertainty of a datum is the result of a lack of information and not due to
a random event. The first goal of gnostic theory is to derive a mathematical
model of uncertainty for individual data from this paradigm.



Chapter 5

Model of Uncertain Quantification

5.1 Model of Uncertain Data Component

In Chapter 1, where the process was defined, the material (real) nature
of quantification was emphasized. Its mapping of a structure not only
involves real elements, but also interactions between objects being quan-
tified and elements and forces belonging to other structures. The results
of these interactions manifest themselves—if they are not explained—as
uncertain components in the observed data. This means, that the un-
certain components have the same nature (and can be expressed using
the same measuring unit) as the ideal component. If we quantify the
value of an asset, then the nature of an observed datum is money and the
numeraire is the dollar; the same units are valid for both the ideal and
the uncertain components of the observed datum. All three quantities
(ideal, uncertain, and quantified components) thus have the same financial
nature. When the concentration of a dangerous pollutant in a river is
to be quantified, the disturbations of the observed quantity are of the
same nature, concentration. If the data structure is additive, then the
influence of the uncertain components is also additive. In the case of
multiplicative data the interaction of both components of the data pairs
is also multiplicative.

We can now proceed one important step further in the analysis of the
features of a structure of uncertainties. It has already been noted, that
the interactions of uncertain/ideal components are the same as ideal /ideal
interactions. To be consistent, we recognize the same rule for uncer-
tain/uncertain interactions. Consider a particular case: the structure of
cash flows. We have already accepted the idea, that this structure (when it

93



o4 CHAPTER 5. MODEL OF UNCERTAIN QUANTIFICATION

is quantified without the influence of uncertainty) can be modeled by the
multiplicative group. However, the current price of each asset (represented
by the item of the cash flow) is a product of its ideal (historical, original,
nominal) value and of the current value of a factor representing inflation
(inflator). The current prices of assets are thus data pairs having the form
( ideal price, inflator ). Observations of the data are one-dimensional, only
the product of the two factors can be observed. Each inflator, in itself, can
be a product of factors characterizing different specific influences. Daily
price changes produce an inflator for each day. A change occurring over
two days can be then evaluated by the product of each daily inflator. This
product is commutative. Products of three inflators are associative. Defla-
tion can also occur, so a reciprocal (“inverse”) value can exist. All inflators
are finite and positive and the zero inflator does not exist. Thus it can be
concluded, that the structure of inflators may be also modeled by the mul-
tiplicative group.

We now arrive at a reasonably general model:

The structure of uncertainties is a commutative group.

5.2 Algebraic Model of Real Quantification

Both the objects and the results of an ideal quantification have been rep-
resented by algebraic structures isomorphic with the Abelian group. The
same model was then introduced to represent a structure of uncertainties.
This structure of uncertainties can be quantified in the same manner. It is
also true, that the respective positions of the “ideal” and the “uncertain”
components of a data pair can be interchanged:

Imagine the case of a tourist visiting a foreign country. As he exchanges
money, he receives a sum of local banknote and coins. He believes, that an
“ideal” value for this amount of money exists, but not knowing the current
value of the inflator, he is not able to quantify it. For him, the structure
of inflators is a structure of uncertainties. A second observer’s task is to
analyze the current inflation factors. As he accumulates a set of prices
for comparable products, he considers the inflator as an “ideal” value to
be estimated. His data are “disturbed” by the variability of the historical
(deflated) prices of these mutually comparable products. Hence, for him,
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the group of uncertainties is the structure of unknown historical pricesﬂ.
This interchangeability between the roles of the data pair’s components
will be called symmetry.

We have arrived at a two-dimensional structure, which could be math-
ematically modeled as the Cartesian product of two groups. The inter-
actions between elements of these two groups have the same character as
those within the groups: all interactions are either multiplicative or ad-
ditive. This notion of real quantification composed of the pair of ideal
quantification processes can be illustrated by Fig. 5.1.

wWoORLD MATHEMATICS

Theoretical model |
of real quantification |

... empirical structure of quantities qi+qu

... numerical structure of images I(qi+qu)

Ec¢. . . empirical structure of ideal quantities qi 7% ... numerical structure of images I(qi)

Eu. . . empirical structure of uncertain quantities qu N ... numerical structure of images I(qu)

Fig. 5.1 Real quantification

Elements of a group Fi of ideal (true) empirical (real) quantities are
denoted by ¢i and their numerical images, (which form the numeric group
Ni) by I(qi). (The operator I(...) symbolizes the ideal quantification).
There also is a group Fu of empirical (real) uncertainties qu and a group
E+ of compositions of ideal and uncertain quantities. The result of the real
quantification (the observed data) are neither group Ni of images of ideal
quantities, nor group Nu of images of uncertainties, but the group N+

ITo view prices as elements of the multiplicative group, one applies the same notion of multipliers as
in the case of measuring ratios: a good’s price says how many times the price exceeds the unit of currency.
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of quantities I(qi + qu) obtained by the sums of images of the composed
elements of both empirical groups. (The composition operator is denoted
by the symbol +, which can be interpreted here generally as & as well as
®, or as inverse operations). Each of the three empirical structures can
be (at least theoretically) subjected individually to ideal quantification. In
this way, three views of the data are obtained: theoretical images I(gi) and
I(qu) and the actually observed numeric images I (qi+qu) = N(qi)+ N (qu)
of the composition (sum) of numeric images of components ¢i and qu.
The real quantification is thus modeled as an ideal quantification of the
composition of two (unidimensional) quantifications. Problem to be solved
by data treatment consists in estimation of the N(qi) (and N(qu)) from
the composed pair of images.

This concept can be now described more formally (as in [61]) using the
following notation:

Definition 1: Let Ay, A, and N be nonempty sets. Elements of the
set Aj are the ideal values, while elements of A are the data; and those
of N the uncertainties. Let R! be the set of real numbers and R, the
set of positive real numbers. Now introduce the following mappings:

v:Ag — R (5.1)
J:A—R! (5.2)
v N —R! (5.3)
o NxN—N (5.4)
m:Ag x N — A, (5.5)

The mapping v as well as the mapping v are ideal quantification, while
¥ is real quantification. The domain of definition of a mapping & will be
denoted Dom(§) and its range of values Ran(§).

Instead of using this model in its full generality, only a special case
delimited by the following axiom will be considered:

Axiom 1 (axiom of the additive model of possible data):

A1.1: Mappings v, v and ¢ are one-to-one and the range of values Ran(v)
is identical to R1!.
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A1.2: Mapping v is an isomorphism of the structure

and of the additive group (R, +) .
A1.3: There exists S € R, such that for all ag € Ay and for all n € N
the following relation holds:

Y(m(ag,n)) = v(ag) + Sv(n). (5.7)

The structure N is isomorphic with the additive group according to
A.1.2. It might seem, that the assumptions related to the group features
of the set Ay have disappeared from our definitions because there is no
composition operation defined over this set. However, this is not true be-
cause of the already noted interchangeability of the ideal and the uncertain
components, which can be achieved by renaming the two components. On
the other hand, we need only one (fixed) ideal quantity to model the effects
of uncertainty on a datum. The ideal quantity to be quantified is certain,
but for the observer, it is an unknown value. The uncertain component also
has a fixed (but unknown) value; our goal is to explore the consequences as
the uncertain value changes. More specifically, the objective (given a fixed,
but unknown, ideal value ) is to analyze the path of a geometric movement
of the datum-pair driven by an uncertain component.

The main ideas of the axioms A1.1-A1.3 may be thus interpreted in the
following way:

1. Both uncertainties and ideal values can be considered members of
commutative groups.

2. The theoretical model of both uncertainties and ideal values is that of
ideal quantification.

3. The theoretical model of a piece of uncertain data (of real quantifica-
tion) consists of two theoretical models of ideal quantification. The
geometrical model of a piece of real data is thus a point on a plane;
it is two-dimensional.

4. The actually observed piece of uncertain data is a single number, it
is one-dimensional.

5. The actually observed piece of data is formed by composition of the
outputs of both ideal quantifications (1(qi ®qu)), the composition law
between the two groups of outputs being the same as that between
elements of each of the groups.

The fundamental role is thus played by the assumption, that the ideal
quantification is an isomorphic mapping of a commutative group of
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real quantities (domain of the ideal quantification) onto the commutative
group of real numbers (range of values of the ideal quantification). One
can base such an assumption on practical experience—as was the case of
the group of cash flows or of the group of measuring multipliers. However,
there is a much more reliable reasoning, that derived from measurement
theory, which condenses the experience of thousands years in the form of
its axioms. Based on the axioms of measurement theory , the assumption
that a suitable mathematical model of ideal quantification is a mapping
of a commutative group of real quantities was established in [56] as the
basic axiom of gnostic theory. As shown later in [99], this assumption
can be supported by a strict mathematical reasoning, which shows that
the commutative group is an acceptable model for an empirical structure
of quantities within the framework of measurement theory, as set out in
[87]. This is the sense of the statement, that the first gnostic axiom is
supported by measurement theory.

From A1.2 it is seen, that
(Vni, ne € N)(v(o(ny, ng)) = v(ny) + v(ng)). (5.8)
Using notation
A:=9(n(ag,n)), Ap:=v(ag), P:=r(n). (5.9)

we recast A1.1 and A1.3 in the form of a relation

A=A+ 5D (A, 4, DR SeR,), (5.10)

called the additive form of possible data. Data A will be called additive,
and the positive number S is the scale parameter. The scale parameter
will be introduced, when data samples are analyzed to recognize, that suc-
cessive data elements may have different volatilities. The scale parameter
thus unifies the measuring units to evaluate the intensity of uncertainties.

Definition 2:
Multiplicative data will be additive data transformed using the following
relation:

Z :=exp(A). (5.11)
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The choice of this transformation is natural. It is defined by the one-to-
one function; the domain Dom(exp(x)) coincides with that of the additive
data (R1). The range of values Ran(exp(x)) is the same as that of multi-
plicative data (R ). It is seen from (5.10) and (5.11)), that

Z = Zyexp(5P), (5.12)

where
Zo = eXp(Ao). (513)

The expression ((5.12)) is called the multiplicative form of possible data.

This and the several following chapters develop the gnostic theory of
an individual datum. The scale parameter S, introduced to take into ac-
count different volatility for different data, remains constant, when only
one datum is being considered. To simplify the formulae, we shall there-
fore temporarily assume, that S = 1 using a unified scale, which provides
a simplified equivalence

Z = Zyexp(P). (5.14)

When the solution of problems requires non-unity scale parameters, the
general multiplicative form (5.12)) and its derivatives will be used.

5.3 Realism in Data Models

The customary methodology used to interpret (statistical) data relies on
premises, which are extremely difficult to justify in the treatment of some
real data. The primary thrust of the methodology being developed here is
to overcome these problems.

5.3.1 Statistical Data Models

The first problem concerns the very nature of the data. A data form anal-
ogous to the additive form is frequently used as a basis for statistical
analysis, but only after assuming, that the data behave in a specific manner
(defined by an a priori chosen statistical model).

As discussed in the previous chapter, such a model—as a rule—includes
the following assumptions:

1. Data are obtained by sampling from a large population of random
events.
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2. The sampling is purely random and independent (ie the probability of

being chosen is equal for all members of the population—sampling
with replacement—and not influenced by the results of preceding
choices).

. All events (ie included members) of the population are identically

distributed.

. A “large” population means, that increasing the number of data in the

sample is actually possible and theoretically reasonable. Moreover,
a “large” population is assumed to be suitable for consideration in
limiting cases, which have an infinite number of data.

The conclusion to be drawn from the above is, that (at least) for some ap-
plications, one can neither rely on the a priori assumptions of a statistical
data model nor verify the realism of these assumptions if such a model is
used.

5.3.2 Gnostic Data Models

It is worth restating here, that the additive data form described previously
was motivated by measurement theory. The choice of such a point of
departure for gnostics is advantageous:

1. Measurement theory summarizes and generalizes technology of precise

quantification. There has been a much longer period of time to verify
and refine the rules of quantification than has been possible in the
case of statistics.

. Axioms of measurement theory are much more elementary than those

of statistics. They have a purely algebraic nature without the intro-
duction of “magic” and complex ideas of randomness and statistical
independence. This is why the range of applicability of these axioms
is much broader and more universal than those of statistics.

. The validity of the axioms of measurement theory (as they have been

summarized in the form of the group model of ideal quantification)
can be verified. It is a simple matter to establish experiments to test
(finite) data structure features such as closedness, associativity, com-
mutativity, the existence of the neutral element and invertibility (the

validity of (1.1)—(1.5) or (1.13)—(1.17)). The slightly more complex

assumptions of Axiom 1 could also be tested experimentally.

. The gnostic paradigm does not contradict classical statistics. Gnostic

theory simply extends the field to (small) finite samples of data, which
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can not have a statistical model.

5. There are strong scientific arguments, which support the use of gnostic
axioms: it will be shown, that this theory bears a close relationship
to recent developments in several important branches of science: mea-
surement theory, geometry, physics and information theory. Further,
gnostics establishes special conditions, under which both gnostic and
statistical methods provide identical results; this occurs if and only if
the uncertainty is very weak.

Each theory, that is proposed, should include the means for its verifica-
tion and/or rejection, and establish the limits of its applicability. All the
implications of a mathematical theory are defined by its axioms and other
assumptions. The more realistic these roots, the greater the usefulness of
the theory in its application to real problems. From a practical point of
view, the broader range of applicability, the more universal the theory be-
comes. Successful applications are then also important tools for validation.

In the context of the universality of mathematical models, a comment
should be made regarding the perception of a limitation of the gnostic
data model. Both data forms and using the two models of ideal
quantification are basic in the gnostic theory. However, this does not
imply unsuitability of the theory for other data forms. Numbers obtained
from multiplicative or additive data using a suitable transformation can
also be called data, but the transformation, which is applied, must always
be specified. An important notion connected to data transformation is
data support—the domain, over which data values are defined. We have
so far considered only two basic types of data support: R!' and R, —the
infinite ones. However, in practice, most data sets have finite limits —
bounded data supports. Bounded data can also be treated by gnostic
methods after they have been properly transformed onto the infinite data
support R, for which the theory was originally developed.

The premise, which has been proposed in this section, infers, that the
thrust of gnostics is to provide a reliable methodology for the treatment
of small samples of “bad” real data. It should therefore not escape the
reader’s attention, that these axioms set out a sufficient foundation for the
establishment of a unique theory of individual uncertain data.
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5.4 Matrix Model of Real Quantification

Using the same symbols Z, and ® as shown in (5.9)—(5.14) we introduce
variables

x = Zycosh(®), y:= Zysinh(P), (5.15)
a matrix
—(*Y
M(A2) = (). (5.16)

and a set of matrices using Definition 1:
M = {M(Ag, ®)[Ag = v(ap),  =wv(n), ap € Ay, n € N'}. (5.17)

Matrix products will be written in the usual manner, and the symbol of
matrix multiplication (®) will be shown only if necessary. Such a special
case follows:

Theorem 1:
Let

Sp = (M, ®) (5.18)

be a structure. Denote sets {Ag} := {44y = v(ay), ag € Ay} and
{®} :={®|® =v(n), n e N}.

It then holds, that structure is isomorphic with the direct product
of commutative groups ({Ap}, +) and ({®},+).

In order not to overburden the reader, only an outline of proofs is
presented.

Outline of the proof:

e Structures ({Ao}, +) and ({®},+) are isomorphic with the additive
group by the definition of ideal quantification.
e Matrix (5.16)) can be written as a commutative matrix product

M(Ay, ®) = M(Ay,0) @ M(0, ), (5.19)

where

M(A0) = (T 7 ) (5.20)
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and
cosh (®) sinh (&
M(0,®) = ( sinh ((‘I))) cosh (((I))) >

e Show, that both structures ({M(Ap,0)},®) and ({M(0,P)}, ®) are
commutative multiplicative groups.

e Show isomorphism of the structure ({M(Ag,0)}, ®) with ({Ag}, +).

e Show isomorphism of the structure ({M (0, ®)}, ®) with ({®}, +).

e There exists only one common element to both groups of matrices
M(Ap,0) and M(0, ), namely the matrix unit M(0,0).

(5.21)

Therefore, the matrix structure §,, is also a model of uncertain data.
The uniqueness of this matrix data model is examined below.

5.5 Data Uncertainty as an Operator

Consider the matrix structure denoting elements of the matrices
{M(Ay, @)} placed in the i—th row and the j—th column as m;;. All
matrices of this type satisfying the condition |®| < oo have several special
properties:

1. It holds for normalized elements of all matrices of this type, that
x/Zo+y/Zo = 1/(x/Z0 — y/Zo) = exp(P). (5.22)
2. The determinant
Det{M(Ay, ®)} = 2* — 3> = 7} (5.23)

is constant for each fixed Z; € R, and for all real values of the
uncertain parameter .
3. Double symmetry:

mi1 = Mmoo =T, Mi2=M1 =71, (5.24)

where 2 € Ry and y € RL.
4. Introducing a special symmetric matrix

T::(? é) (5.25)

one obtains
(VM € S,))(TM = MT). (5.26)
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The interpretation of these easily verifiable relations starts from (5.19).
When considering a given (fixed) ideal value Z; under influence of differ-
ent uncertainties (ie different values of the parameter ®), the fixed matrix
M (A, 0) is mapped onto the structure S,,. Matrices M (0, P) are play-
ing the role of linear operators in these mappings. The relations ((5.22))—
(5.25]) specify interesting properties of these operators, which (as we already
know) are elements of the multiplicative group.

Relation (5.22) written as a pair of equations uniquely yields (/5.15)).
Taking into account the double symmetry ((5.24)), one concludes, that the

matrix operator is uniquely determined by these relations.

Relation ((5.23)) says exactly the same thing as ((5.22)), but its form leads

to another interesting interpretation. The equality (5.19)) defines a linear
transformation with the matrix M (0, ®) as the operator. Imagine the pa-
rameter ® continuously changing from zero to a nonzero value ®, while
Zy is constant. Points (x,y) (5.15) would then “move” along a continuous
line within a real plane, describing a path, which is a geometric repre-
sentation of the quantification process. (This is the geometric—uvirtual—
movement). The point is, that (according to (5.23)) ) the square of the
ideal value, Z2, does not change as ® varies. This means, that the ideal
value of a data pair is the invariant to the quantification pro-
cess. The equality together with the initial and finite values of the
parameter ¢ thus defines the geometric path depicting the quantification.

The feature (5.26)) of the matrix operator M (0, ®) can be called com-
mutativity with respect to transposition. We ordinarily understand by the
“replacement of coordinates” of a plane, that a transformation of variables
(x,y) to some function ((f(z,y),g(x,y))) has taken place. Introducing a
different notion, the exchange of coordinates for the special replacement
of the type (z,y) — (y,x), it is possible to interpret as invariance
of the matrix M with respect to the exchange of the definition Dom (M)
and Ran(M) (The matrix (M) is considered here as an operator). In an
explicit form, using the well-known formulae of hyperbolic functions

cosh (®1 + ®4) = cosh (Py) cosh (P2) + sinh () sinh (Py) (5.27)
and
sinh (®; 4+ ®5) = cosh (1) sinh ($y) + sinh (P4) cosh (P2) (5.28)
we can get from ([5.21])
M(0, Py + &1) = M(0,P2) ® M(0, D) (5.29)
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and from (5.16]) and ((5.19)

()= (e ome) (). e

which says exactly the same thing as

()= (Sbtay o)) 530

because the matrix satisfies (5.26). The transformation is thus unchanged
although we have renamed (exchanged) the coordinates of z and of y.
Our choice of coordinate names is subjective, while the transformation
represents the real, objective contribution of uncertainty to the datum. It
would be strange to find, that a real process is dependent on the names we
gave to the coordinates! We can thus take as natural and reasonable.
We shall see below, that there are other important reasons supporting this
seemingly trivial property of the operator, which represents the influence
of uncertainty on the observed datum.

5.6 The Uniqueness of the Matrix Model

The structure S, (5.18)) formed by 2%2 matrices M (Ap, ®) has been shown
above to be a matrix model of uncertain data obtained by real quantifi-
cation. A careful reader will note, that many interesting features of the

matrix model resulted from the special choice of the coordinates x and y
in (5.15). This substitution is legal because of the identity

exp () = cosh (®) + sinh (D), (5.32)

which was applied to go from to (5.15]). This identity results from
the definitions of hyperbolic and trigonometric functions and it is valid for
all real and imaginary values of the argument ®. However, it is logical to
think, that other decompositions of the exponential function might lead
to different pairs of coordinates, which would imply different models of
uncertain data. A question then arises as to the uniqueness of coordinates
(5.15]), which is answered by the following statement:

Theorem 2:
The relation (5.32) is the only additive decomposition of the exponen-
tial function exp (@) of a real and imaginary argument ® into a pair of
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different functions, for which relation with Det{M (0, ®)} = 1 holds
identically for all values of the argument .

Proof of the Theorem 2:
Let

(V@ € RY)(exp (@) = f(®) + g(2)), (5.33)

where f(®) and g(®) be some functions, which satisfy the assumptions
of Theorem 2 so that the M (0, ®)’s elements are My = Msy = f(P) and
Mo = My; = g(®). The M (0, ®)’s determinant should be

P(e) — @) = 1 (5.34)
Substituting f(®) = exp(®) — ¢(P) into[5.34] relation
9(®) = (exp(®) — 1/exp(®))/2 (5.35)
follows equal to sinh(®) by definition. Hence
f(®) = cosh(®). (5.36)

This confirms, that the matrix model of uncertain data is unique.

5.7 Summary

Real quantification differs from ideal quantification due to participation of
quantities, which include not only ideal, but also uncertain components.
Gnostic theory considers structures composed of both ideal and uncertain
quantities as commutative groups, which can be manipulated by the same
kind of structural operations. The same operation also composes the ideal
and uncertain quantities to form the quantity, which is observed. The
theoretical model of a real (uncertain) quantification is thus formed by
a pair of ideal quantification processes, which produce three images: the
numerical image of the ideal quantity, the numerical image of the uncertain
quantity and a (multiplicative or additive) numerical composition of both
images, which s equal to the observed, but uncertain, datum. From the
axiomatic setting of this model it has been shown, that the uncertain data
component plays the role of a transformation, the invariant of which is the
ideal value (the numerical image of the ideal quantity). The axioms of
quantification have been used for the derivation of a unique matrix model
of the quantification process.



Chapter 6

The Geometry of Real Quantification

6.1 Distance as a Problem

Let us consider two points a and b on a straight line with coordinates c,
and ¢, and ask once more the question, “What is the distance (L) between
the points?” The answer depends on the level of the reader’s mathematical
skill:

Basic: It is simple,
L =|c,—c (6.1)

Thoughtful: It is not that elementary, because the path of integration,
along which the distance should be measured, has not been defined.
For the path denoted P(a,b) the distance would equal to the path

integral
L= /P ) IP (6.2)

where dp is the length of an element of the path. Only in the case of the
integration path coinciding with the straight line does the expression
(6.2)) reduces to the ordinary integral

L= |/Cjb da, (6.3)

which provides the same result as .

Advanced: It is complicated because neither the integration path nor the
geometry is specified. Assume, that the integration path is P(a,b),
and that such geometry is chosen, that the weight of an element dp of
the path of the point z is g(z). Then the distance is

L= /7> 92D (6.4)
67
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This expression reduces to (6.2)) only if the weight ¢(z) is a constant
equal to 1, which is the case, when Euclidean geometry is employed.

The importance of knowing the path, when measuring distances, can be
illustrated by the following: imagine a lady, whose home is at point a and
has an office at point b. Even in the case, when both points are on the
same straight street, the distance to be actually walked or driven between
them would seldom be the same each time. It depends on stops made
to shop, visit a hairstylist or a friend, etc., on the way. This problem of
the path is important particularly, when measuring uncertainty, because
uncertainty can move the geometrical image of data along a curve and not
along a straight line.

The need to use a variable weight g(z) in (6.4)) can be also illustrated
by an example. Consider the process of estimating the value of an asset
by several differently qualified experts. Assume, that an “ideal” value for
the property exists, eg as estimated by an omniscient Expert, but no such
expert is on hand. It is felt, that all of these experts, together, should come
close to the ideal value. The estimates are real numbers and the evalu-
ation process is begun by calculating their arithmetic average. A second
approximation is made to produce a more realistic result; it represents a
weighted average using weights, which are dependent on the distance of
each individual’s estimate from the previous round’s mean. Weights equal
to 1 are given to estimates, which have the value of the previous average
and these weights decrease with increasing distances from the mean. The
new value of the weighted average is used for the next round and the it-
erative process ends, when the weighted average remains constant. The
estimates of “bad” experts are thus suppressed and those of “good” ones
are emphasized. The idea is simple—instead of assuming, that judgments
of all experts are the same, and that each have the right to be taken equally
into account, we evaluate the individual qualification of each expert by the
quality of his work. This is accomplished by using a particular weighing
function p(z). The remaining problems are:

1. What is the form of the path, along which the errors (distances be-
tween the “ideal” and “estimated” values) should be measured?

2. What weighing function should be chosen (what kind of geometry) to
get the “best” result?

3. How is “the best result” to be interpreted?

Gnostics can answer these questions for those readers who persevere.
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From the point of view of the “man in the street,” the distance between
two points, assuming that it is to be measured along the segment of the
straight line connecting the points, is “obvious”: “everybody knows, that
this is the shortest path among all those possible.” However, this statement
is true for Euclidean geometry and may be false in another geometry. To
show the changes in the distance, which result from path variations, it is
necessary to extend the dimensionality of the problem—to go over from the
geometry of a straight line to the geometry of (at least) a plane. Because
distance is a special application of the scalar product of two vectors, it will
be instructive to linger a moment on this notion.

6.2 A Bit of Geometry

No one is a complete geometric neophyte, since geometry is as basic as
reading. Notions such as length or distance, angles and circles are part
of the common body of knowledge. The problem—as it has already been
mentioned—is, that many are not aware, that their basic understanding is
tied unequivocally to a single geometry, the Euclidean one. A full course
in non—FEuclidean geometries is not going to be presented here, however, a
brief and elemental introduction to this field is required in order to unveil
the secrets of uncertain data.

6.2.1 Riemannian Scalar Product

Let us consider a plane P,, the points of which are presented as coordinate
pairs (x,y). Let functions n(z,y) and 6(z,y) be continuous, one-to-one
and at least once differentiable functions. The values of functions x and y
will be called coordinates, the mapping

' =n(z,y), v =0y (6.5)

is a sufficiently general form of the replacement of coordinates or transfor-
mation of the plane.

Subjecting the variables z and y to differential changes we obtain

de’ dy P dr dy
/ N 00 829/ : (6 : 6)
dy’ dx or oy dy dx
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This is a general formulation; however, rewriting it as

( dx’ dy/ > _ < gn(aj,y) glg(aj,y) > ( dx dy > (6 7)
dy da’ g (z,y) g2(z,y) dy dx '
and denoting the matrix
G ’ _ (gll(l',y) 912($,y) ) : 6.8
Glz,y) 921(z,y) g22(x,y) (6:8)

the Riemannian scalar product can be defined over the plane P, in the
following way:

Definition 3:
Let v and v’ be column vectors defined by two points on the plane P,

=(3) e=(3)

and dv and dv’ their differentials. Let the matrix G(z,y) satisfy the
conditions of reqularity:

g11922 — 912921 7 0, (6.10)

and symmetry:
gi2 = ga1. (6.11)
Then the matrix G(z,y) is the metric matriz and the expression

[dv, dv']¢ = dv' G(x,y)dv’ (6.12)

(where the upper index T' denotes the transposition operator) is the scalar
product of the two vectors.

Within this framework, the square (dL)? of the differential of distance
between two points (x + dx,y + dy) and (z,y) is calculated by

(dL)* = gi1(z,y)(dz)* + 2g12(z, y)dzdy + goo(z, y) (dy)*. (6.13)

This is the Riemannian metric form to measure lengths.

The differential form of (6.13) together with the dependence of the met-
ric matrix on the point where the element of the distance is to be deter-
mined means, that—in general—
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1. the method of measurement may be different at different points in the
plane,

2. the distance between two points may be dependent on the form of the

curve connecting the points, ie on the path,

the distance should be calculated using path integration,

each element of the path may receive a different weight, and therefore

have a different influence on the value of a distance.

0o

Making the weight of each segment of the distance dependent on “some-
thing” (ie on the discrepancy of a particular judgment with respect to the
“central” meaning) was exactly, what we did in our practical example by
intuitively treating differently the individual points of view of each member
of an expert team.

Returning to abstract geometry, two important very special cases of
Riemannian planes are considered: the Fuclidean and Minkowskian ones.
They both are obtained for some constant metric matrices.

6.2.2 FEuclidean Plane

A point (U) in a two-dimensional real plane having coordinates U; and
U, can be interpreted both as a couplet (Uy,Us) and as a (column) vec-
tor U. The transposed vector is then the row vector U7 = (U, U,). We
all remember the (Euclidean) formula for calculating the length L of this
vector

L=\U;+U; (6.14)

equal to the (Euclidean) distance of the point U from the origin (0,0) of
the coordinate system. Introducing the seemingly trivial (identity) matrix

10
one may rewrite ((6.14) in the form of a special case of ([6.13))
L2 - [Qa Q]Q,Ea (616)

ie as a particular application of the Riemannian scalar product. It is pos-
sible to represent it in the integral form because the (Euclidean) metric
matrix is a constant. Index 2 gives the dimension of the space while index
E designates the type of the metric matrix as Euclidean.
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The cosine of the angle o between two vectors U and V is then evaluated
using the well-known (Euclidean) formula

U1Vi + UsVs

cos (o) = , 6.17
NN YN R (10
which can be also expressed using the scalar product:
Uuv
cos () = U V]2p (6.18)

VIU, Ul e[V, Vs .

It might appear, that there is no advantage in appealing to Riemannian
geometry and to use more complicated formulae with such simple relations;
however, as it is usually found in mathematics, a higher level of observation
broadens the horizon. This can be shown by using Minkowskian plane
geometry but, before considering the Minkowskian case, it is instructive to
demonstrate, that the important notions of classical statistics are based on
Fuclidean geometry.

6.2.3 The Euclidean Scalar Product in Statistics

Imagine N pairs (u;,v;) of observations, which represent the results of a
set of repeated experiments (i = 1, ..., N). Denote

S d;

8:
N

(6.19)

the arithmetical mean of a sample of data d;. Let the population variance,

from which the sample was chosen be 03 and its point estimate o3. Let d be
an N —dimensional column vector, the components of which are d;—d. This
data vector is thus—as statisticians say—centralized. Introducing the N x
N identity matrix written as an N—dimensional Euclidean metric matrix
G, g, one may rewrite the well known formula for estimated variance by
means of the arithmetic mean of scalar products

0j=(d—d),(d=d)lyp (6.20)

Using the same notation, the point estimate of the covariance between two
N —dimensional data vectors u and v is

cov(u,v) = [(u— 1), (v — 1)y - (6.21)

)
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Since correlation coefficients are based on estimated covariances and
variances and correlation functions and correlation matrices are built
using correlation coefficients, all these popular and widely used statistical
tools originate from the notion of the Euclidean scalar product.

It has been already pointed out, that Fuclidean geometry is an impor-
tant paradigm. Its axioms are nearly 23 centuries old, and its roots are
even older. So eg the famous Pythagorean theorem—if it really was formu-
lated personally by Pythagoras—could date back as much as 2,600 years.
But, we know today, that it holds in what we now call Euclidean geometry,
and that it may be false in other geometries.

What lesson can we learn from these reminiscences? The following:
there are important notions used in every-day mathematical statistics,
which are based on the Fuclidean geometric paradigm and their roots go
back to ancient times. There would be nothing strange in making use of
“good old” knowhow if scientific progress had not shown “in between” the
substantial limitations of the ancient science. It is a habit of small children
to continually ask “why?” It is a pity, that some adults frequently hesitate
to pose the same question. Many unquestioningly believe in the authority
of their schools, their text-books, and the pronouncements of their profes-
sors and other learned persons. In other words, they conservatively accept
the “ruling” paradigm because it is more comfortable and less dangerous
then to independently question the problem.

6.2.4 Minkowskian plane
Let all Uy, Us, Vi and Vs be again reals. Let Gy 5 be the (Minkowskian)

constant metric matrix
1 0
Gom = ( 0 —1 ) : (6.22)

The vector form of two points on the Minkowskian plane is

(o) v=(w) o

The Riemannian differential form (6.12)) can in this case be integrated to
get

S

U, V]pg = UiVi — UsVa. (6.24)
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The squared length of a (column) radius vector v (having components x
and y) denoted as

pa(v) = [, vl (6.25)
obviously equals

pr(v) = 2 =y, (6.26)
This is a substantially different notion to that, which we are accustomed
in Euclidean geometry. The square of the length may be negative as well
as positive or zero—it depends on the direction of the vector. = Some
paths in the Minkowskian plane leading from one point to another may
thus have not only a real but also an imaginary or zero length. From this
point of view, the Minkowskian plane can be split into several parts. Such
a reasonable splitting will be considered in detail in Chapter 10.

6.2.5 Invariants, circles and rotations

Consider a matrix Rs .(¢), for which the relation

(VQS* € Rl)(ﬁg*(ﬁb*) QQ,* EQ,*(QS*) - QZ*) (627)

holds. The star designates ‘E’ or ‘M’ depending on the geometry. When
both vectors v and v’ are transformed (multiplied) by a matrix satisfying
, the scalar product does not change. In other words, the scalar
product is tnvariant to such a transformation. It is obvious, that equation

(6.27) and the metric matrix delimits the form of the matrix Ry .(¢s). It
can be verified by substitution, that all matrices having the form

Ras(or) = (Sn(0) cos(ons ) (629

satisfy (6.27) with the Euclidean metric matrix G5 p while matrices

Baar(o) = ( Gos (o) ook (o)) (6.29)

solve the equation in the case of the Minkowskian metric. Multiplying a
(column) radius vector v of a point on the Euclidean or Minkowskian plane
(having components = and y) by a matrix R, ,(¢.) of either class, we obtain

v = Ry (o). (6.30)

Recall, that a circle is a line, the points of which are equally distant from a
fixed point, center. Distance is specified by geometry, therefore circles can
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have different forms. Denote p and p’ the lengths of the vector v and of the
transformed vector v/, respectively. From ([6.27)) substituted into (6.12]) for
both transformed vectors, the identity

(Vo. € RY(p, = ps) (6.31)

holds. It is worth rewriting this relation in both explicit forms (as in (6.16))

and (6.25) ):

(Yor € RN (o} = 2° + ) (6.32)
and
(Vour € RY)(par = 2* — 7). (6.33)

Relation ([6.32]) may be interpreted as the equation of the (Euclidean) circle
with its center at the point (0,0) and a radius of pg. Analogously, ((6.33)) is
the Minkowskian circle, the center of which is again (0,0) with the radius
pum- 1t should be emphasized, that all points (x,y) considered in (6.32))
and are points of the same real 2-dimensional linear space R?, which
is endowed with the Euclidean and alternatively with the Minkowskian
metric. The matrix Ry p(¢r) defined by (resp. Roar(Par) by )
rotates vectors, preserving their lengths and the angles between vectors
measured by either Euclidean or Minkowskian) geometry.

6.3 Minkowskian Nature of Real Quantification

Let us identify variables x and y having the form of (5.15) with those
appearing in (6.33]). One obtains by substitution of (5.15)) into (6.33)

pir = Z¢. (6.34)

This result is crucial to the theory and is therefore recast as a theorem:

Theorem 3:
Let Zy be the numerical image of an ideal quantity subjected repeatedly
to quantification under effects of different uncertainties represented by
different values of the variable ®. Let scale parameter S be fixed equal to

1. Let relations ({5.15)) define points in a Minkowskian plane.
It holds that:

1. All points representing observed data having an arbitrary uncertain
component ® lie on the Minkowskian circle.
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2. The center of this circle coincides with the origin of the coordinate
system ((0,0)).
3. The diameter of this circle measured in Minkowskian geometry equals

V2.

These statements were derived directly and it is therefore not necessary
to prove them. The message, which they convey, is important and is worth
further analysis.

An objection to the model could be raised on the grounds, that an in-
finite number of data have been assumed because a continuous line (an
arc of a circle) has been used as a model. However, this is not a correct
interpretation of what has been done. What has been modeled is the path
of a single datum as it is transported from the “ideal” point (Zj,0) of
a plane to its “final” point (Zy,exp (®)). This “transport” of the point
was characterized by a geometric (virtual, not a real, or physical) move-
ment. Although the model was designed for a single datum, it is valid
for all possible values of its uncertain component thus making the arc
continuous.

6.4 Summary

The notions of the metric matrix and scalar product are basic in deter-
mining the character of a geometry. Starting with the general Riemannian
definition of these notions, one may obtain (among others) two impor-
tant special cases related to constant metric matrices, the Euclidean and
Minkowskian ones. An examination of the basic ideas of mathematical
statistics leads to the conclusion, that they are deeply rooted in the Eu-
clidean geometric paradigm. In contrast, the gnostic theory of real quan-
tification develops a model, which is inherently connected to Minkowskian
geometry. It is important to state, that the Minkowskian character of real
quantification is not an assumption of the gnostic theory, but is only an
interpretation of its results, which are derived from its first axiom. Within
this geometric interpretation, a matrix operator parameterized by the un-
certainty moves the 2-dimensional vector image of the observed datum on
the Minkowskian plane along an arc of a Minkowskian circle. The ideal
value of the observed datum is an invariant of this geometric movement,
playing the role of the (Minkowskian) radius of the circular path.



Chapter 7

Quantification and Relativistic
Physics

7.1 Lorentz’s Transformation

A small excursion into physics will be useful for clarification of the gnostic
paradign[l] Let v, be the speed of light and let the general 4-dimensional
time-space model of special relativity theory discussed in [113] be reduced
to 2 dimensions. Define a time-space point in a coordinate system by a
vector u = (v,t,s)T, where t is the time and s the space coordinate. In
another coordinate system moving with respect to the former one with a

velocity v, the same vector will be observed as u' = (v.t', s')T:
u' = L(v/v.)u, (7.1)
e &) @)
ered = { oy 0 ) 72
and where
Vh P — (7.3)

The matrix L(;-) is the matrix representation of the 2-dimensional
proper homogeneous Lorentz’s transformation grou;ﬂ [113]. Its significant

!The Dutch physicist, Hendrik A. Lorentz (1853-1928); developed the coordinate manipulations in the
late 19th century to explain optical and electromagnetic phenomena.

2Newtonian mechanics is based on so-called Galilean geometry, which permits motion at unlimited
speeds. With the advent of the special theory of relativity, it became necessary to take into account the
limited speed of light. This can be done by using the Lorentz transformation, which makes both place
and time measurements dependent on the speed of the observer.

7
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feature is that it preserves the Minkowskian scalar product. The squared
length of the vector u is thus invariant to the transformation (7.1)):

(Vo/v. € RY)([u/,u )20 = [w, ul2,n1). (7.4)

As shown in [I13], the transformations according (7.1)—(7.3)) are the only
nonsingular homogeneous coordinate transformations u — u’ that leave the
scalar product invariant. (Nonsingular means that both «'(u) and u(u’) are
well-behaved differentiable functions. Relation ([7.1)) is called homogeneous
because it does not include an additive constant.) A stronger version of
this statement related to uniqueness was proved by purely algebraic means
in [100] without requiring the differentiability of the two functions.

The uniqueness of the Lorentz’s transformation and thus of the class of
matrices L(v/v,) (7.2) might perhaps lead to confusion because another
(also unique) class of matrices Ry p(¢ar) (6.29), which leave the scalar
product invariant has already been discussed. However, there is no conflict
here because the difference between the two classes is only formal. Indeed,

substituting
v

tanh (éa) = — (7.5)

U
and using the formulae of hyperbolic functions, one identifies Ry /(¢ar)
with the Lorentz’s matrix L(v/v,) (7.2)). The importance of this re-
lation is that it gives the fundamental tie between the theory of uncertainty
and well established physical phenomena.

The principal reason for appealing to the theory of special relativity is
to apply the Lorentz-invariance principle, which requires that the form of
equations should be the same in all inertial coordinate systems, i.e. in sys-
tems moving with a constant velocity each with respect to other, since the
speed of light is the same in all inertial systems. The Lorentz’s transforma-
tions explain the time dilation and size contraction of images of objects
observed from a coordinate system moving relative to the objectf| This
transformation provides an information channel for the observed input,
which is the real object, and the output, which is a distorted image of the
object. This channel is parameterized by the relative velocity of the ob-
server. One sees an immediate analogy with the idea behind quantification,
which also “works” as an information channel. It has the ideal quantity

3These effects are sometimes misinterpreted as a “dependence of time and size of an object on its
velocity”. In reality, the object remains unchanged (having its proper space and time coordinates mea-
sured in a reference system, in which the object is at rest) and independent of the observer, whose frame
of reference is in motion (relative to the object’s reference system). What is velocity-dependent, is the
(subjective) observation described by Lorentz’s transformation.
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as its input and the distorted two-dimensional image as its output, the
distortion being parameterized by the amount of uncertainty. Equation
developed earlier establishes the relation between the parameters of
both “information channels”; however, there is much more than a formal
analogy between these seemingly unrelated processeq’]

7.2 Relations to Relativistic Mechanics

7.2.1 Isomorphism of Two Groups of Transformation

The first fundamental relation has already been shown: the Lorentz’s trans-
formation matrix L(v/v,) has been identified with the matrix operator
Ry of Minkowskian rotation. However, the latter matrix is identical to
the matrix M (0, ®) (5.19). Moreover, this identity exists for all values of
the parameters v/v, and ®, for which holds, as can be easily verified:

(VO € RY)(Vup /vy |vp /v, = tanh(®y), k = 1,2)
(M(0, @) M(0, Py) = L(vi/vs) L(v2/v4)). (7.6)

This result can be formulated as a theorem:

Theorem 4:

The commutative group of matrix operators M (0, ®) representing the
effect of uncertainties on data within the quantification process is iso-
morphic with the group of Lorentz’s transformation of the Minkowskian
plane formed by matrices L(v/v,).

The importance of this theorem for the gnostic theory is closely con-
nected with the relation of the quantification process to the conservation
law of relativistic physics.

7.2.2 Quantification and the Relativistic Conservation Law

The idealized model for a system of a large number of freely moving par-
ticles (particles not subject to forces) is a continuously distributed mass

40f course, relativity theory has a negligible impact on the perceptions of an observer in cases, where
velocities are very small compared to v,, nevertheless motions at high speed as well as strongly uncertain
data exist and require the application of Lorentz transformations.
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having a density u. The proper value of this density observed from within
the reference system moving with the mass will be denoted . From the
special theory of relativity [113], the matrix representation of the energy-
momentum tensor £(v/v,) of the subject mass has the form

2,2(w 2w
_ [ MUY (a) HoUUxY (g)
Elvfv.) = (uovva(;’*) povi? () ) (1)

where v(;-) is the expression as that given in (7.5)). Introducing the matrix
movi
Ly = ( (2) Lov? ) (7.8)
2
and using relations
y(=) =cosh(®)  —r(—) = sinh (®), (7.9)
VU Vs Ux

which result from (7.5) and identities 2cosh®(®) = cosh (2®) + 1 and
2 cosh (®) sinh (@) = sinh (2®), one arrives at a relation, which is impor-
tant enough to be stated as another theorem:

Theorem 5:
Let M(0,2®) be the matrix operator representing the effect of uncertainty
on the observed datum and having the form of . Let Go g be the
identity matrix (6.19]). Let ® denotes matrix multiplication.
Then following identity holds:

(Ve € RY)(Vv/vlv/ve = tanh (@) (E(v/v.) = Ey @ (M(0,2®) + Gzﬁg)l)b)

This formal statement deserves further comment. Energy and momen-
tum (elements of the matrix E(v/v,)) are components of one of the most
fundamental notions of physics in view of their role in the formulation of the
Energy-Momentum Conservation Law. This generally accepted theoreti-
cal hypothesis, which has strong empirical support, enables many physical
processes to be mathematically modeled. It will be shown in the follow-
ing sections, that the matrix M (0,2®) plays an important role in gnostics
because its elements evaluate and weigh observed data in a nonlinear and
non-quadratic manner, which is interpretable as an application of Rie-
mannian geometry. The importance of the for gnostics lies in its
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ability to motivate the aggregation law of uncertain data. Further, it is
Lorentz-invariant, for it holds for all possible velocities v/v, and for all
corresponding uncertainties (P).

Theorems 4 and 5 thus provide a link between events and processes,
which exist in different scientific fields: the theory of uncertain data (math-
ematical gnostics) and relativistic mechanics. That such a relationship
exists should not surprise those, who accept, that:

1. there is a mutual dependence between all real processes because of the
unity and universality of the world,

2. the same real process can be analyzed from the points of view of
different sciences,

3. the boundaries between different scientific fields are as ‘fuzzy’ and
‘mixed’ as those between the different features of real processes,

4. classical statistics and classical (Newtonian) mechanics have been
linked for many years.

Most of the above statements will draw general support but statisticians,
with a strong belief in the “purely mathematical roots” of their science
may balk at the last one. We shall return to this important point later,
when the aggregation problem of uncertain data is considered.

7.3 Uncertainty in Relativistic Observations

From the point of view of the gnostic paradigm, data uncertainty is caused
by lack of information. This idea can be illustrated using relativistic obser-
vations. Imagine two space ships S1 and S2 moving along parallel straight
paths with different but constant velocities. An observer in S2 wants to
measure the proper length Ly of S1 (i.e. the length as would be measured
in S1’s own coordinate system). He, of course, can only obtain Lo, the only
measurement, which can be obtained from within S2. In order to obtain
the ezxact result, which he is seeking, the observer must also know the
relative velocity v/vg of S2 with respect to S1. The observer’s insufficiently
precise knowledge of the energy-momentum tensor “contaminates” the
observed datum by the uncertainty ®, which is connected to the velocity
by means of (7.5]). The example shows that to explain uncertainty, there
is no reason to introduce randomness, mutual independence and unlimited
repeatability of the observations, stationarity, and so on. An improvement
in the quality of one single observation can be achieved by obtaining better
information on the relative velocity and by making use of knowledge of
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Lorentz’s transformation. Analogously, an improvement in the results
of a series of different observations contaminated by uncertainty can be
obtained by using data treatment methods based on knowledge of the
nature of quantification and of optimal estimation.

A question can be expected at this point, as to whether references to
and an understanding of some nonmathematical scientific fields is really a
necessary element of gnostics? The answer is decisively negative. Readers
wishing to consider gnostics as a purely mathematical theory can be sat-
isfied: the skeleton of the theory has been developed using the consistent
‘definition—axiom—theorem—proof’ mathematical procedures. However,
there are others, who may wonder why these and not other definitions
and axioms have been chosen: where are the roots? To explain (and then
to understand) these roots, it is necessary to venture across the boundaries
of mathematics because the roots of gnostics are in the real world.

7.4 Summary

There is a formal link between the mathematical model of uncertain
data obtained by quantification and Lorentz’s transformations of the
Minkowskian plane, which is manifested by

1. the isomorphism of the group of gnostic matrix-operators representing
the data uncertainty with the group of Lorentz’s 2-dimensional time-
space transformations of relativistic physics,

2. the linear relationship between the relativistic energy-momentum ma-
trix and gnostic matrix, which is parameterized by the value of the
uncertainty.

These mappings are Lorentz-invariant, i.e. their forms stay unchanged for
all values of uncertainty. Their existence may be explained as a manifes-
tation of the unity of Nature, where both real processes and information,
which can be obtained about them, are inherently related. Therefore,
information is a complementary dimension of space, time and any other
dimension of the process being examined.



Chapter 8
A Bit of Algebra and Analysis

8.1 Pair Numbers

8.1.1 Complex and Double Numbers

The notion of complex numbers is well-known; and it is an important part
of the mathematics used in several applied sciences. It would be difficult
to solve the simple problem of finding the roots of a quadratic equation
without using them. The basic idea is simple—to map the Euclidean plane
onto the Gaussian one using the mapping

(Vo,y € RY({x,y) & x+1iy), (8.1)
where the symbol ¢ is an indeterminate satisfying the relation
2 = —1. (8.2)

A parallel notion to that of complex numbers can be obtained, when map-
ping the Euclidean plane onto the Minkowskian plane:

(Vz,y € R ((z,y) <z +jy), (8-3)
where the symbol j is another indeterminate, which satisfies
it =1. (8.4)

Elements of the range of this mapping introduced for the first time by
the English mathematician William K. Clifford (1845-1879) will be called
double numbers. Unlike the case of complex numbers, which exist for all
real pairs z,y, the double numbers exist only for real pairs x,y, whose
squares are not equal, ie for those satisfying condition

v —y? #£0. (8.5)

83
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This is a natural constraint. It can be seen from , that condition
(8.5) excludes from consideration all points on the Minkowskian plane
({(x,y)), for which the distance from the origin (0, 0) is zero. There are an
infinite number of such points: those on both diagonals (|z| = |y]).

The formal similarity of complex and double numbers enables them to
be combined in a simple way by the introduction of another indeterminate
c so, that it covers both cases:

ce{i,j}. (8.6)

An expression of the form

(z,y € RY)(@* # ) (c € {i,j})(uc = 2 + cy) (8.7)

will be called a pair number. A pair number is thus a complex or a double
number depending on the choice of ¢ =7 or ¢ = j. As will be seen below,
using the concept of pair numbers will permit the number of formulae used
to be decreased by 50 %.

To understand the idea of an indeterminate, it should be recognized,
that it is not a real number. (Many use the name “imaginary unit” for
the indeterminate i. However, the notion of an indeterminate is more
general [71] and more exact.) An expression such as a + ¢ b for reals
a,b and indeterminate c is not an “ordinary” sum but only the notation
for a pair of two different objects, for which the operation of addition
is not defined, ie, the pair (a,b c). On the other hand, multiplication
of the indeterminate ¢ by a real b denoted b x ¢ (or ¢ x b because of
commutativity) makes good sense: the product is another indeterminate,
for which (b * ¢)?> = b? * ¢* is a real number. Because this operation is an
analogue to numerical multiplication, we write these products simply as cb.

8.1.2 The 2-algebra of Pair Numbers

The set of pair numbers will be denoted by U,, and its subsets (classes) of
complex and double numbers are U; or Uj, corresponding to their character.
It can be shown [71], that the set U, can be interpreted as the associative
and commutative 2-algebra (algebra of dimension 2) over the field of real
numbers having a unit u,

u, =14 cO. (8.8)
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The sum of two elements u; = a; + ¢ by and us = as + ¢ by of this algebra
has the form of

uy + us = (a1 + az) + ¢ (by + be), (8.9)
while their product is
U1Ug — (alag + 62 b1b2) +c (albg + CLle). (810)

It is worth noting, that both addition and multiplication of pair numbers
is defined only for numbers belonging to the same class, ie either to U;
or to U;. Operations between elements of two different classes are not
considered and will not be used.

Let u=a+ cb € U, be a pair number. The pair number
u=Co(u) :=a—cb (8.11)
is the conjugate of u and
Tp(u):=b+ca (8.12)

is the transposed pair number u: it is obtained by exchanging the compo-
nents a and b of the pair number.

Expression

u|, := Va? — 2 b = Vuua, (8.13)
is the modulus of the pair number u.

Division of two pair numbers uy, us € U, belonging to the same class
for |us|. # 0 is given by the formula

ul/u2 = U1 "LZQ/’UQ@ (814)

As a result of these definitions, the following relations hold for both subsets
c=1,J:

(Vu € Ue)(Co(Co(u )) = u), (8.15)
(Vu,ul € U2)(Colu+ ') = Co(u) + Colu), (3.16)
(Vu,u’ € U.)(Co(uu') = Co(u") Co(u)), (8.17)
(u € U.)((Co(u) =u) <= ((Fa € R")(u = au, = a+c0)(u, € U,)),
(8.18)
(Vu € U.)(uCo(u) = (a® — & b*) uy = Q(a,b) u,), (8.19)

where Q(a,b) is a quadratic form. Let us now cite a reformulation of
the theorem proved in [96] as a generalization of Frobenius’s well known
theorem related to the algebra of complex numbers:
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Theorem 6:

Structures of double and complex numbers are the only 2-algebras with
the unit ug, such that ug = 14 ¢0, (where ¢ is defined by (8.2), and
) and with the unitary conjugate operation satisfying (8.15)—(8.19),
where )(a,b) in (8.19) is a non-degenerate quadratic form.

Theorem 6 thus ensures the uniqueness of the two 2-algebras. More-
over, it also ensures the uniqueness of two different plane geometries, the
Minkowskian and Gaussian. It has already been shown, that the former ge-
ometry is valid for the range of the unusual function called quantification.
However, each point (x,y)—the theoretical model of the real quantifica-
tion of a real quantity—will be either a double number x + jy € U; or a
complex number x 41y € U,.

More formally: such a mapping 7 : U; — U; can be introduced so, that
n:a+jb<+<—a-+ib. (8.20)

In general, this mapping preserves addition but not multiplication.

The double interpretation of the results of real quantification plays a
very important role in gnostic theory because it opens a path to the world
of optimal estimation.

A comment to Theorem 6 is notable related to a degenerated case of
the Q(a,b) in (8.19)), where ¢ = 0. There is a third geometry attached
to this case called the Galilean geometry in [I1§]. This name was given to
the oldest geometry which was ruling over a long time period till the XIX-
th century. Its physical interpretation is obvious in the case of variable x
representing time and y stating for a space coordinate of an object moving
along the path = 0 with an infinite velocity. This path can be called
“Galilean circle”. The Galilean geometry can be helpful in showing the
extreme lengths of paths in Minkowskian and complex plains interpreted
as estimation errors.

8.1.3 Geometric Interpretation of Pair Numbers

The range of the real quantification process is a set of pairs (z,y) of real
numbers = and y, ie the Cartesian product R' x R'. This quantification
event can be interpreted from several perspectives:

1. a point (z,y) in the Euclidean plane,
2. a point (z,iy) in the Gaussian (complex) plane,
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a complex number x + 7 y,

a point (x,j y) in the Minkowskian plane dual to the Gaussian one,
a point (x,j y) in the plane (x,y) endowed by the Galilean geometry,
a 2%2 twice symmetrical matrix M (A, ®) (5.16)),

7. a double number x + 7 v.

Sl i

It is easy imagine one-to-one mappings between each pair of these rep-
resentations. There is obviously no fundamental difference between the
interpretations of the first through the third from the geometric point
of view because the same (Euclidean) metric is used to measure the dis-
tances (or the lengths of vectors). Nor is there any difference between cases
No. 4 through No.6 in the following sense: the determinant of the matrix
M (Ay, ) equals the squared length of the radius vector of the point (x, jy)
as well as the squared modulus of the double number x + j y. It can be
concluded, that pair numbers are closely connected with the joint use of
the Euclidean and Minkowskian plane geometries, and that there is a one-
to-one mapping between double numbers and the matrix representations
of the quantification events. A much deeper relation can be shown, if the
isomorphism of the structures is considered.

8.1.4 Modeling Quantification with Double Numbers

The structure S, of matrices M (Ap, P), (which models the quan-
tification process) is isomorphic with the direct product of commutative
groups ({Ag},+) and ({®},+) by Theorem 1. As stated in the outline
proof to Theorem 1, the structure S,, is a direct product of commutative
groups ({M(Ay,0)},®) and ({M(0,®)},®) isomorphic with ({Ao},+)
and ({®}, +). Let us introduce three structures of double numbers:

Definition 4:
Let My, My and M,, be the following sets of double numbers:

Myg:={x+jy|x= Zycosh (P), y = Zysinh ()}, (8.21)
M,, := {cosh (®) + j sinh (®)}. (8.23)

Let * denotes multiplication of double numbers. Define following struc-
tures:

Sy = (Mg, %), (8.24)
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S = (Mo, *) (8.25)

and

Sy = (M, #). (8.26)

It can be easily verified by substitution, that the following implication
holds:

(VM(A()’]“(I)]C) e My ‘ k=12, ...)(\V/M(AQJ,(I)Z) e My | [=1,2, )

(M(Ao’k, (I)k) < exp (A()Jf)(COSh ((I)k) + 7 sinh ((I)k)) —
(M(Agp, D) ® M(Agy, P;) <>
exp (AO,Z + A()’k) (COSh ((I)g + (I)k;) + sinh ((I)l + (I)k))) (827)

The one-to-one mapping of the matrix models of quantification onto
corresponding double numbers thus implies a one-to-one mapping of
matrix products onto products of double numbers. Structure operations
of structures S,, and S; are therefore preserved by the mapping. Using
relation (8.27]), one can prove the following theorem:

Theorem 7:

1. Structures S,, (5.18)) and S, (8.24]) are isomorphic.

2. Structure Sy is isomorphic with the structure ({ Ap}, +) of ideal values.
3. Structure S, is isomorphic with the structure ({®},+) of uncertain
ties.

The messages imparted by this Theorem are important:

1. Structure &, of double numbers is also a model of the quantifi-
cation process. These double numbers are the (theoretical) models of
the observed data.

2. The modulus of a double number belonging to the set M, is
equal to the multiplicative image Z; of the ideal value.

3. Double numbers belonging to the set M, model the effect of the
uncertainty on the observed data.

Consider a double number e;(®) € M,,. Taking into account (8.23) and
the definitions of hyperbolic functions, we can write

e;(P) =exp (j ). (8.28)
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An easy way to verify this expression is to develop functions cosh (5) and
sinh (f) into a power series, and to substitute j ® for 3, while making use
of (8.4). The following identities may be shown by using the same method:

cosh (j @) = cosh (®), sinh(j ®) = j sinh (D), (8.29)
and
Gj((I)l) * €j((I)2) = exp (] ((I)l -+ (I)Q)) (830)

A general result of quantification = + j y € M, may thus be presented in
the form
r+jy=Zyexp (jP), (8.31)

where the modulus Zy can be calculated by

Zy =22 —y> (8.32)

This is the same result as that obtained by (5.23)), which was interpreted
as the Minkowskian length of the radius vector. Other important relations,
which result from (8.2I)for the uncertainty 2® and from the formulae of
hyperbolic functions, are:

exp (2@) — exp (—29)

— 8.33
vl exp (2®) + exp (—2P) (8:33)
with its inverse
26 =1 | “ Y. (8.34)
r—=y

It is obvious from and (8.34)), that the moduli and angles of double
numbers are independent of each other. In other words, the modulus is
invariant to the transformation performed by multiplication by the double
number exp (7 ) € M,,. This number thus plays the role of the operator
of rotation in the same manner as its matrix image M (0,®). On the
other hand, the angle ® is invariant to the transformation realized by
changing the multiplier Zy. We have seen, that changes of ® model virtual
movement of the observed data along the circular path. Changes in %
may correspond to an increasing or decreasing ideal value, ie they model
real movement along a straight line (if the angle ® stays unchanged).

There is a counterpart to (8.33)), which will be needed: by interpreting
the same real pair (z,y) as a point in the Gaussian plane, ie as the complex

number
r+iy = a2+ y?(cos(¢) + i sin(¢)), (8.35)
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there is an important relation, which links both representations:
tanh (@) = sin (¢). (8.36)

Note, that the above equation defines the same point, (x,y), by using each
of the two geometries (see 8.20)).

8.2 Analyticity of Pair Numbers

The notion of analyticity (holomorphy) of functions of a complex variable
is well-known. Let u = x + ¢ y be a complex variable. Then a complex
function v'(u) = 2'(x +iy) + i y'(x + i y) of this variable is analytical, if
the following relations (called the Cauchy-Riemann conditions) hold:

ol oy oo
or oy oy =05 (8.37)

Analytical functions are well-behaved in the sense of unlimited differentia-
bility and predictability. According to [96], the notion of analyticity can
also be used with double functions of double variables having the form
V(v) =2 (x+jy)+jy(x+jy), if the functions satisfy a modification of
the Cauchy-Riemann conditions:

o' oy 0 _ 50y
oxr Oy dy ) o
Double functions, for which (8.38) hold, can also be called analytical.
They are well-behaved in the same sense as complex analytical functions.
It is therefore obvious, that we may rewrite (8.37) and (8.38)) in the form

valid for pair functions.

(8.38)

Definition 5:
A function of a pair variable v'(v) = 2'(z + cy) + cy/(x + cy) will be
called c-analytical, if generalized Cauchy-Riemann conditions

ooy ooy
or Oy oy  Ox

(8.39)

hold.
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All three versions (8.37)) through (8.39) of the Cauchy-Riemann condi-
tions of analyticity have interesting interpretations. They can be explained
using the following Theorem.

Theorem 8:
Let v'(v) = 2'(x + cy) + ¢y (x + cy) be a differentiable pair function of
the pair variable v. Let

_( dz cdy
dM, ._<C . ) (8.40)

and let dM’. be an analogue of (8.40)) aggregated of differentials dz’ and
cdy'. Let

oz 0
L:(%a%). (8.41)
cly Ox
Then the relation
dM', = J.dM., (8.42)

holds, if and only if the function v'(v) is c-analytical.

Proof of Theorem 8:
Consider total differentials of the functions z'(z,y) and ¢'(z, y):

, 890 ox'
, 0y oy’
dy = e dx + o dy. (8.44)

Multiply the right-hand matrices of (8.42). The resulting diagonal ele-
ments (dM’.)1; and (dM’.)s2 have a form, which coincides with (8.43),
and there is no need to consider them in the proof. The non-diagonal
elements have different forms:

, ox’ ox’
(dM )12 =c a—dy + 0y dx (8.45)
and At Ao
(dM' )y = ’ (8.46)

cOy ox
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A) Let function v'(v) be c-analytical. Then holds. Substitution
of both generalized Cauchy-Riemann conditions into (8.45)) and (8.46
results in their equivalence with multiplied by c¢. Hence, (8.42
holds.

B) Let hold. The function v'(v) is differentiable, therefore the total
differential exists and has the form (8.44). The identity of both
and (§8.46) with the formula of the total differential can be achieved, only
if olds, ie only if the function v'(v) is analytical.

The most striking feature of the equation is the double sym-
metry of all three matrices, ie the fact, that all three satisfy condi-
tion in the same manner as the quantification matrix M (A, ).
Theorem 8 says, that this takes place, if (and only if) the pair function
' (x+cy)+cy'(x+cy) is analytical. This means, that the simple algebraic
feature ([5.20]) is equivalent to a much deeper requirement of analyticity of
functions representing the effects of uncertainty on data. Such a require-
ment is acceptable from the mathematical standpoint because it reduces
the class of possible models to well-known and well-behaved functions. We
shall see, that even such “simple” models are sufficient to yield rich and
far-reaching results from the gnostic theory.

8.3 Summary

Double numbers are a natural and straight-forward extension of the alge-
bra and analysis of complex numbers and variables. Each point on the
Minkowskian plane can be interpreted as a double number and vice versa.
To combine operations with both complex and double numbers, a more
general notion of pair numbers is introduced. Both structures of double
and complex numbers are unique in the sense, that they satisfy a certain
set of conditions. The structure of double numbers (the 2-algebra) is iso-
morphic with the structure of matrix models of the quantification process,
therefore the structure of double numbers can also be used as a mathemat-
ical model of quantification.

An important feature of double functions of double variables is their an-
alyticity. The sufficient and necessary conditions for analyticity of a double
function are an analogue of the Cauchy-Riemann conditions of analyticity
of complex functions. It is therefore reasonable to introduce a generalized
version of Cauchy-Riemann conditions valid for pair functions of a pair
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variable. An interesting connection exists between the double symmetry
of matrix models of uncertain data and the analyticity of the pair function
modeling data uncertainty.
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Chapter 9

Estimation/Quantification Duality

9.1 Quantification and Estimation Characteristics

It was shown in previous chapters, that the real quantification process
(quantification disturbed by an uncertain component) can be theoretically
modeled as a bi-dimensional mapping which is isomorphic; hence, an in-
verse to quantification always exists theoretically. However, in practice,
the datum is observed as a one-dimensional object, which is not sufficient
to precisely determine the ideal quantity imbedded in the datum. Since
a precise inverse to quantification is not possible from a practical point of
view, one must look for the best possible estimation process. The notion
of the “best” is obviously connected with the problem of “how to esti-
mate.” To find a useful solution, an estimation theory is needed. The
highly developed statistical theory of estimation is based on the random
conception of uncertainty. Gnostics has its own, entirely different notion of
uncertainty, therefore another estimation theory independent of statistical
concepts must be developed. By the introduction of the concept of pair
numbers and pair functions, a suitable technique for a joint consideration
of both quantification and estimation theory has already been prepared.

It was shown in Chapter 6, that real quantification is modeled in gnostics
as the rotation (in the sense of Minkowskian geometry) of the vector, which
represents the uncertain datum. The role of the matrix rotation operator
is played by the matrix (6.29). This matrix operator is an analogue to
the Euclidean matrix n Chapter 8, it was demonstrated, that the
algebra of double numbers enables quantification to be modeled using the
Minkowskian rotation operator, which has the form of the special double
number exp (j ®) ((8.28), (8.29) and (8.30)) (where ® is the numerical
image of uncertainty). This operator also has its Euclidean counterpart

95
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written as the complex number exp (7 ¢) (see (8.35)) ). Using pair numbers
and denoting

and recalling (8.29) and the identities cos (¢) = cosh (i ¢) and i sin (¢) =

sinh (i ¢), both rotation operators can be written as a single expression
which in the case of a rotation by 22, have the following form:

exp (2¢€2.) = cosh (2¢€2,.) + sinh (2¢€,.). (9.2)

Both components of this rotation operator are very important in gnostics.

Definition 5:
Let U, be the 2-algebra of pair numbers (¢ € {i,j} | i* = —1, j2 = 1)
representing gnostic events.

Let Va2 — ¢ y?exp (¢ 2.) be the exponential form of the pair num-
ber z + ¢y, which has particular forms v/x? — 52 y? exp (7 ®) (8.31]) and
VaZ =2y exp (i ¢) (8.35).

Let ¥ : U, — R! be a function of the argument 2.. Then

1. the function x(€2.) will be called the gnostic G-characteristic of the
gnostic event x + c v,
2. the function x(®) will be called the quantification characteristic or
shortly Q-characteristic,
3. the function x(¢) will be called the estimation characteristic or shortly,
E-characteristic,
4. the gnostic characteristic obtained as the first component of the rota-
tion operator (9.2)) will be called the G-weight:

fe := cosh (2¢£,) (9.3)
and the second one the G-irrelevance:

he = sinh (2¢€2.). (9.4)

The G-weight and G-irrelevance are the basic gnostic characteristics of
the uncertainty of the datum observed as the output of the quantification

process Z = x + cy (5.11)).
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9.2 Data Weight and Irrelevance

9.2.1 Formulae

In accordance with Definition 5, the angle (2. is also a gnostic characteristic.
The particular form of the function y in this most basic case is x(€2.) = €2..
The Q-angle is ® and the E-angle is ¢. We have already seen, that the
angle 20 is a function of the ratio y/z (8.34)), and that relation (8.36)
combines both versions of the angle 2. (the Minkowskian and Euclidean
versions). Not only €2, but all gnostic characteristics, are thus functions of
the ratio y/x, which is equal to both tanh (®) and tan (¢). Using the general
definitions of the weight and irrelevance and the formulae of trigonometric
and hyperbolic functions, one arrives at following formulae for weights and
irrelevances:

1+ c*(y/x)*

1—c(y/x)?

G-weight:  f. = (9.5)

and

G-irrelevance: h, = 2(y/x) .

1—c(y/x)?
Substituting ¢ = j into this formulae, one obtains the Q-weight and Q-
irrelevance and by ¢ = i the E-weight and E-irrelevance. However, it is
important to proceed one step further and to develop formulae which can
be used in algorithms. We now take leave of the simplified formula (5.14))
(which assumes S = 1) and shift to the general case (5.12). In order to
simplify computations, an auxiliary variable

(9.6)

q = (Z)Zy)*" (9.7)

is introduced. Recall that Z is the (known) multiplicative form of the
observed datum ({5.11)), Zj is the (unknown) “ideal” or “true” value ([5.13))
of the quantity, which is to be estimated, and S is the (unknown) scale

parameter. Now,—by ((5.12)) and (9.7)—
q = exp (29). (9.8)
The expression (8.33) can be rewritten:

_q—1/q
q+1/q

y/x (9.9)
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The G-weight is now presented in a simplified form

2

Je= (q+;f4)c (9.10)

and the G-irrelevance is

2(g—q7")

" a0 - @) a0 )

(9.11)

9.2.2 Geometric Interpretation

The first geometric idea of G-weights and G-irrelevances follows from the
role of the pair number exp (2¢€).) as the rotation operator. Recall that
the Q-angle ® (equal to €2;) is the numerical value of the data uncertainty,
the error measured in the most popular (additive) way

A A
- S

given by [5.10} There is another “scale” to measure this same error which
results from the identity ; the Euclidean angle ¢ is used this time. A
question might be asked as to why twice the value of the angles is taken
as the argument of the characteristic being considered. The answer merits
attention.

)

(9.12)

Denote arg, (u) the angular parameter of a pair number u, which rep-
resents a gnostic event using the polar coordinates |u|. and ®:

u = |ul.expc . (9.13)

This relation unifies (8.31]) and (8.35)). One may thus write arg, (u) = (..
This quantity is the G-angle of the rotation, which is necessary to go from

the original, ideal value expressed as u(0) = Zy+ cO0, to the ‘final’ value w.
The difference, arg, (u) — arg, (u(0)) = €2, could be viewed as a universal
characteristic of uncertainty, but this is not a good idea, because what is
needed, is not only the ‘error’ of u, but an evaluation of its relationship to
another gnostic event, say u’. Compare two possibilities: arg, (u)—arg, (u')
and arg, (u) +arg, (u') and consider the case u = u’. The former expression
would evaluate the relation between the events as zero, meaning that it
is independent of the uncertainty, while the latter returns 2€)., which
preserves the information on uncertainty. A more generally applicable
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representation of the uncertainty existing “between” w and ' should be
used: the G-angle arg, (u) —arg, (u'), where v/ is the conjugate of «’ defined
by . The relation of «/ to u can be interpreted in the following way:
imagine a mirror placed on the horizontal (“real”) axis of the plane, where
the pair numbers are plotted. Then the v/ is the image of the u’ seen in
the mirror from point u/. The expression arg, (u) — arg, (u') is thus the
angular measure of the circular path from the mirror image of u’ to u. In
the special case of u = v’ this measure is 2(,.

The reason for preserving the value of each datum’s uncertainty when
evaluating mutual uncertainty between two data results from the need to
give to each datum its individual weight dependent on its own respective
uncertainty.

This manner of evaluation for both “own” and “mutual” uncertainty is
general enough to even cover the case of gnostic (weighed) covariances.

There are other reasons for accepting the doubled angular arguments
for these gnostic characteristics. They have a fundamental importance,
because they are connected to the notions of entropy, information and the
probability of individual data, which will be examined in the next several
chapters.

The second geometric interpretation of the G-weights and G-irrelevances
requires recalling the basic notions of Riemannian geometry. Consider a
special (one-dimensional) case of the Riemannian metric form (6.13)). The
single coordinate will be ov and the role of the metric matrix will be played
by a positive scalar g?(«). The metric form reduces to

dL = g(a)da. (9.14)
Let us compare this expression with two particular cases:
d(sinh (2®)) = cosh (29)d(2®) d(sin (2¢)) = cos (2¢)d(2¢).  (9.15)

This shows that the G-weights play the role of the one-dimensional metric
matrix. They really perform the function corresponding to their names:
they weigh all the individual segments of the angular path with respect
to their position within the whole path. The G-irrelevances quantify ‘dis-
tances’ (understand: uncertainties) measured using special Riemannian
geometries, they measure the errors.

It is interesting to rewrite (9.15) to obtain the differential d® of the
additive value of uncertainty (which equals to dA/S—see (9.12)). The
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relation between differentials d® and d¢ follows from (8.36]) by differenti-
ation. Substitution of the result into (9.15)) yields

d(sin (2¢))) = cos (2¢) (L+ CO: (2¢))

which shows an even more intensive suppression of large errors than char-
acterized by ® alone in (9.15)]).

We shall return to the formulae of G-weights and G-irrelevances re-
peatedly, when designing appropriate algorithms. The unique features of
gnostic methods are derived from the special nature of these characteris-
tics: among others, an inherent, natural robustness with respect to out-
liers/inliers and peripheral/internal data clusters (depending on the choice
of ¢ = i versus ¢ = j) and optimality. It is therefore worth visualizing these
characteristics by graphing the formulae presented in foregoing paragraph.

d(20), (9.16)

9.2.3 Behavior of Data Weights
Data weights f. are given by [9.10, Note that

(-1)
fi= (614_;1) = cosh (29), (9.17)
2
fi= m = cos (2¢) (9.18)
so that {
cos 2¢ = cosh (20)° (9.19)

The red family of curves in the upper part of Fig. 9.1 shows the depen-
dence of the Q-weights (f;) on the ratio Z/Z, for different values of the
scale parameter S. The green family (the lower parts of Fig.9.1) belongs
to the E-weights. The blue vertical /horizontal axis represents the limiting
case of curves for S — 0 and for S — oo, respectively.

The horizontal blue line demonstrates, that for a very large value of the
scale parameter, the weight of an individual datum does not depend on the
value of the Z/Z; (on the quantification error, ie on the “distance” of the
observed datum from the “true” value); all observed data (both “good”
and “bad”) are taken and treated equally with weight 1. This is equivalent
to using the ordinary (non-weighted) arithmetic mean as an estimate of
the location parameter of a data sample.
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Fig.9.1:G-WEIGHTS OF INDIVIDUAL DATA

(for different scale parameters S)
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In contrast, gnostic weights give different “preferences” to different in-
dividual data depending on their quality. The weighing provided by Q-
weights is qualitatively different from that of the E-weights: Q-weights
increase as the Z/Z; ratio declines from 1 while the E-weights decrease
over the same range.

Starting with E-weights, consider some data spread about a central
point (Zp). The closer a datum (Z) to the central point, the larger its
E-weight. The maximum weight (1) is given only to a datum positioned
exactly at the central point (Z = Zj). The ‘central’ data are thus pre-
ferred, while the ‘peripheral’ data are ‘penalized’. The central data are
thus considered as ‘good’, the peripheral ones are ‘bad’. The ‘bad’ data
are not cut-off completely (as if given a zero weight). It will be seen later
that all data contribute to information, but the ‘good’ ones provide more,
while the ‘bad’ ones give less. It will be proved, that the estimation trans-
formation ensures, that the maximum possible information contained in
each datum is retained.
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The variability of the E-weight (called robustness with respect to out-
liers) is an important outcome, which can be demonstrated by considera-
tion of the arithmetic mean of the E-weights of a collection of data spread
about a central point. The mean data weight will be determined mainly
by the central data while the peripheral (distant) data will be taken into
account to a lesser extent, the further they lie from the central point. Such
a data sample can be seen as resulting from good measurements (cen-
tral data) disturbed by some strong unknown factors, which result in the
larger uncertainty of the outliers. Example: To evaluate the mean weight
of the ROA (Return on Assets) of a sample of firms and to compare it
with another sample in the same or different industry, we are interested in
the ‘central’ value of the group, while the ‘peripheral’” (extreme, atypical)
values disturb our observation. We therefore welcome robustness, which
suppresses the contribution of the outliers.

The case of Q-weights is quite different because these weights rise with
increasing distance of the observed data value (Z) from the ‘central’ point
Zy. In this case, the ‘peripheral’ data of a data sample are preferred, being
assigned larger weights; they are ‘good’, while the ‘central’ data are ‘bad’.
However, this result is not unnatural, it simply leads to a robustness which
is opposite to the previous (E-) case, robustness with respect to inliers.
Again an example: we observe a series of a volatile share price oscillat-
ing about a practically constant ‘central’ value. The ‘normal’ volatility
is ‘noise’ in our observations. The objective is to signal, when the share
price leaves the stationary path, and volatility exceeds the ‘noise.” The
disturbances in this case are the central data, which correspond to ’cen-
tral” volatility (inliers), while the objects of interest (the ‘good’ external
data) are the outliers. Therefore the definition of ‘good’ or ‘bad’ depends
on the objective of the analysis, and the analytical technique used must be
faithful to either type of application.

The curves in Fig. 9.1 are also useful in demonstrating the impact of the
scale parameter S. When examining some data samples, this parameter
will be used as a quantitative characteristic for the spread of data. The
larger the data spread—the larger the S. The more precise the data—the
smaller the S. It can be seen, that the curves in Fig. 9.1 are ‘more tolerant’
to deviations of the ratio Z/Z; from 1 in cases, when S is larger. In the
case of precise data (small S), in contrast, deviations are unusual, therefore
the stronger reaction of the curves to deviations.

Both kinds of G-weights assigned to an individual datum assess the
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importance of the datum in a data treatment process. They measure the
quality of the datum.

9.2.4 Behavior of Irrelevances

The red family of curves in Fig. 9.2 depicts the Q-irrelevances corresponding
to the red family of Q-weights in Fig. 9.1, while the green family of E-
irrelevances in Fig. 9.3 corresponds to E-weights in Fig.9.1. Irrelevances
measure data uncertainty (errors) using certain Riemannian geometries.

Fig.9.2 Q-IRRELEVANCES OF A DATUM

(for different scale parameters S)

Quantifying irrelevances

Z/Zo
q = (Z/Zo)(2/S) Quant.irrel. = (q2 -- q*(-2))/2

Both Q— and E-irrelevances are zero for an exact datum (Z = Z;), they
are positive for Z > Z; and negative for Z < Zj;. They thus evaluate the
“distance” between Z and Z; (error) respecting its sign (the direction of the
path). The slope of the Q-irrelevances rises with the increasing deviations
of the ratio Z/Z; from the ‘central’ value 1. The most interesting feature
of the E-irrelevances (Fig.9.3) is, that—unlike the case of Q-irrelevances—
the slope decreases to zero for large data errors. The E-irrelevances are
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thus limited, bounded by the limiting values —1 and +1. The maximum
sensitivity of the E-irrelevance with respect to data error appears about
the ideal value Z; and the larger the error, the less sensitivity to it.

Fig.9.3 E-IRRELEVANCES OF A DATUM

(for different scale parameters S)
| 5=0 |5=0.25

os{ |/ e = B e—

Estimating irrelevances

Z/Zo
q = (Z/Zo)N2/S) | |Estirrel = (q*2 - g*(-2))/(q"2 + q"\(-2))

These characteristics are simple to explain, because they correspond to
instinctive human behavior:

e If one were to ask a group of people randomly chosen on the street
to estimate the population of the Republic of Indonesia and the re-
sponses were 140, 210, 200, 190, 20, 250, 190, 210, 1000, 190 millions
respectively (given a true value of 197.6 million), one would probably
not treat these values linearly. It would generally be felt, that the
extremes of 20 and 1000 are well off the mark, differing from the ‘cen-
ter of gravity’ of the other (and larger number) of estimates leading
to their deletion by giving them a very small weight. The perception
is, that a response of 2000 would not be greatly different than that
of 1000, nor 5 from 10, so that the asymptotic convergence of the
E-irrelevance to 1 corresponds to a natural interpretation.
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By the way, this is the technique used by judges to evaluate partic-
ipants in different sport competitions (gymnastic, skating, dancing,
etc.): the best and the worst marks are deleted and the rest are evalu-
ated by the arithmetic mean. Treating the results of the above “pool,”
the ‘central’” value would be 197.5—very close to the true value—while
the arithmetic mean of all 10 guesses would be 260 which demonstrates
the non-robustness of the ordinary arithmetic mean. The adjective
‘ordinary’ is used in this context to distinguish this estimate from the
trimmed mean, which is the name of the robust statistical method,
according to which a part of the peripheral data is cut off before the
arithmetic mean is evaluated.

e Nor is the increasing sensitivity of the Q-irrelevances with respect to
increasing distance from the central data point unnatural. In monitor-
ing the time series of share prices, the more the actual value exceeds
the usually expected fluctuation, the greater the importance, that is
placed on the observation, and the surer one can be, that something
unusual is happening. The monitored share price has departed from
its quasi-stationary state.

The behavior of irrelevances is thus acceptable.

9.2.5 Consistency with Statistics

The convergence of both G-weights to 1 with Z approaching 7, as well as
the convergence of both G-irrelevances to zero in the same case have certain
important consequences. Let £ be a real number, N an integer and O (&)
be the so-called Landau’s symbol characterizing the order of magnitude.
This symbol is equivalent to the statement, that for £ converging to zero,
the variable O(&Y) converges to zero as V. Expanding the formula ¢(®)
resulting from into the Taylor series, one can easily verify the relation

¢ =P+ O(9%). (9.20)

Taking the same approach to (9.3) and one obtains
fo=1+ (:2(%5)2 +O(®Y) and h. = 2® + O(®?). (9.21)
Using the term a sufficiently precise datum to imply a datum, for which

the (additive) error ® (9.12) permits the terms O(®3) and O(®?) in
and to be neglected. Then these relations prove, that the following
statements are valid for sufficiently precise data:
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1. The difference between the Euclidean and Minkowskian angles ¢ and
®, which evaluate the data errors, tends to zero.

2. The gnostic evaluation of h. (irrelevance) of the data error tends to
the additive error 29.

3. The gnostic weight f. tends to a simple quadratic function of the
additive error.

4. The sum of G-irrelevances of several data tends to zero simultaneously
with the sum of the additive errors of data.

5. The sum of G-weights of several data is minimized simultaneously
with the sum of squared additive errors.

It is obvious from the above general relations, that these statements hold,
if and only if data are sufficiently precise.

The additive error @ is a linear function of the (unknown) ideal value A,
(9.12). The estimate of this quantity can be obtained easily by minimizing
the sum of squares of additive data errors. This is the well-known OLS
statistical estimating methodology (ordinary least squares) in which an
estimate is wnbiased (the sum of estimating errors equals zero). It is
obvious from the foregoing statements, that the gnostic characteristic,
which have been considered, approach this most popular and frequently
used statistical technique (additive errors and their squares), if the data
are sufficiently precise. Gnostics is thus consistent with statistics in the
following sense:

Gnostics is consistent with statistics in the sense, that for sufficiently
precise data (and only for such data), the basic gnostic characteristics
of data uncertainty (G-weights and G-irrelevances) converge respectively
to a quadratic and to a linear function of the additively measured data
error.

9.3 Virtual and Real Movements

The notion of estimation was introduced rather formally, making use of the
duality of plane geometries (Minkowskian/Euclidean) and of the duality
of pair (double/complex) numbers. It will be shown in what follows, that
the estimation process derived from this duality is “the best” in a very
acceptable sense. Before doing this, it must be demonstrated, that there
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is a third duality which is related to the previous ones.

Theorem 9:
Let u = « + cy be a gnostic event, ¢ € {j,7}. Let v/(u) = 2'(x + cy) +
cy'(x + cy) be a pair function of the pair variable u. Let J.(u) be the
matrix (8.41)) composed of partial derivatives of the function u. Let K
be the value of the determinant of the matrix J.(u). Let K be a constant
defined in the following way:

(3K € RHY(Y(z +cy) €U, | 0 < |y|/z < 1)(Det(J.(u) = K).  (9.22)

Then the following statements, A and B, are equivalent:

Statement A:
1. The matrix J.(u) exists,

2. K >0,
3. u(0+¢0) =04 cO0 (the condition for homogeneity).
Statement B: The function v has the form

o +ecy =(a+ceh)(z+cy K2 (9.23)
where (a 4 ¢ b) is the rotation operator, for which

a? — c** =1 (9.24)

holds and where K is a positive constant.

The validity of this statement is not obvious, therefore a complete proof
is shown:

Proof of Theorem 9:
Let A hold. Then the function u is analytical and holds by Theorem
8. Substituting the generalized Cauchy-Riemann conditions of analyticity
(8.39)) into (9.22) one comes to a pair of partial differential equations:

ox' ox’' oy’ oy’
()= (5) =) = (5

ox Jy Jy ox

There exist exactly two solutions for each of these equations, a quadratic
and a linear one. A quadratic solution does not satisfy (8.39), while a

linear one does. Its constant term should be zero to satisfy the condition
of homogeneity. The solutions have thus the homogeneous linear form

¢’ = (Az + By)K'? o = (ay + bx) K2, (9.26)

=K )’c? =K. (9.25)
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where A, B, a and b are real numbers. It results from (8.39)), that A = a
and B = c?b. Using these relations together with (9.26) one obtains

(9.23)). Substituting the solutions (9.26]) into equations (9.25)), one comes
to (9.24). Thus it holds A = B.

Let B hold. It then follows from (9.23)), that

o' = (ax + Eby) K2y = (ba + ay) K2 (9.27)

The function 2’ + ¢y is thus homogeneous (no constant term), analytical
(conditions satisfied) and the determinant of the matrix J. is a
constant equaling K (condition satisfied). Implication B = A
thus also holds.

The third duality of quantification and estimation models is in the spe-
cial form of[9.23 It is known from Theorem 8, that both quantification and
estimating transformations are analytical. It is also known, that condition
defines the pair number a + ¢ b as a rotation operator. According to
Theorem 9 both of these transformations have a quite special form:

1. They are linear.
2. They include two possible phases:
(a) Rotation by the operator a + ¢ b while the modulus remains un-
changed.
(b) The adjustment of the modulus by K'/2.

The quantification rotation is already known, it was interpreted as a virtual
movement of the point representing the evolution of an uncertain datum
from its ideal value to the model of the observed value along an arc of
a Minkowskian circle. The estimating rotation is another virtual move-
ment formally dual to the quantification ones—the same point follows a
Fuclidean circle.

The adjective ‘virtual’ deserves a comment. It serves as a contrast to
the adjective ‘real’, which would define changes in the path of an observed
datum taking place in real time, if it were to actually follow the circular
path. Something slightly weaker, however, has been derived from Axiom 1
for quantification: all outcomes from observing a fixed quantity under the
influence of different uncertainties are to be modeled as points of a fixed
circle in the Minkowskian plane. The observations are real, but the points
of the circular path and the path itself are virtual, mathematical notions.

The uncertainty of quantification can be interpreted as a “draw” of
Nature playing a game with the observer. Nature’s objective is not to
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disclose its secrets too readily. Nature’s draw maximizes (within some
rules) the potential harm, which could result from the uncertainty imposed.
The observer’s response follows a strategy to minimize this impact, and it
will be shown, that both the virtual movements do indeed realize their
goals.

Both of these circular movements correspond to changing the ‘quantity’
of uncertainty (by changing angles ® (Minkowskian) and ¢ (Euclidean)),
while leaving the radius (modulus of the representative pair number, mul-
tiplier K1/2 in (9.23)) fixed. A third special kind of a movement can also
occur with (9.23): the adjustment of the modulus K'/2, while the uncer-
tainty is left unchanged. Such a movement is real (when the modulus
increases), because it can be interpreted as an actual change in the ideal
value Zj; this is possible, because this number is a numerical image of a real
quantity. Such a movement can be viewed as a contraction or expansion in
dependence on the decreasing or increasing value of the modulus.

9.4 Summary

The idea of pair numbers can be used to introduce a gnostic notion of
estimation, which is dual to quantification. The role, which estimation is
expected to play, is to serve as a reverse transformation leading to more
precise quantification by minimizing the uncertainty, with which a datum
is contaminated. The formal difference between estimation and quantifica-
tion lies in the use of complex numbers and variables in estimation instead
of the double numbers used for quantification. A more material difference
results from the duality of the Euclidean and Minkowskian geometries.
Because of this difference, the basic quantification (Q-) and estimation
(E-) characteristics of uncertainty (data weights and irrelevances) mani-
fest fundamentally different features. Data weights quantify data qual-
ity, irrelevances measure data errors using certain Riemannian non-linear
geometries. This non-linearity leads E-characteristics to robustness with
respect to outliers, and QQ-characteristics to robustness with respect to in-
liers. Depending on the application, either of these types of robustness will
be useful.

The basic gnostic (G-) characteristics converge to the basic statistical
ones (additive error and its square) in the case of sufficiently precise data.
This means, that there is consistency between gnostics and statistics, when
treating ‘good’ data. For insufficiently precise data the outcomes of both
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theories may be significantly different because of the non-linearity of the
G-characteristics.

Both quantification and estimation operations can be thought of virtual
processes represented by two special transformations—geometric rotation.
The real changes of the data are modeled as contraction/expansion. This
allows not only virtual but also real movements of the object of quantifi-
cation and estimation to be considered.



Chapter 10

Entropy, Information, Probability

10.1 Strangeness of the Chapter

In the preface, readers were given notice, that the uniqueness of the ap-
proach to uncertainty being pursued would require an open mind, the abil-
ity to embrace new concepts, as well as the need to cast off personal biases,
which could have been formed from traditional exposure to the ideas being
discussed.

As the preceding chapters have demonstrated, gnostics develops its mod-
els of data uncertainty from new assumptions, distinct from those, on which
other approaches to this subject are based. The need for such a radical de-
parture is necessitated by the fundamentally different goal of gnostics: to
be a complete mathematical theory, not of mass uncertain events, but of the
uncertainty of individual data and of small data samples. To further this
objective, it has been necessary to question a number of concepts, which
have heretofore been accepted as given. It was shown, that a response to
the question, “Which geometry is to be used to measure data errors,” is not
self-evident. The unexpected answer was found as a result of strict mathe-
matical reasoning originating from more elemental assumptions. To derive
and interpret models of uncertain data within the framework of gnostics, it
became increasingly evident, that other concepts, most of which have had
no application in other theories of uncertainty, needed to be employed.
Notions such as path, real and virtual movement, and Lorentz invariance
remind one more of mechanics than statistics. Other well known concepts,
such as entropy, probability and information, which are used in this chap-
ter, are derived in an entirely different way, and new formulae are given
applicable to real data, the character of which is unknown.

The above may sound a bit bizarre to those, who are familiar with
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other theories, which deal with uncertainty. However, the list of significant
differences between gnostics and traditional approaches also includes the
following points related to entropy and information:

Reasons for inclusion: Despite the fact, that this book is intended to
serve as an introductory text, it uses entropy and information as
indispensable tools. These subjects are rarely touched in the basic
statistical literature, nor is entropy and information treated in most
statistical or econometric textbooks in use today. This is not meant
to infer, that statistical theorists do not develop methods based on
information theory; there is a large number of such contributions, but
their practical impact has been small. Even one of the most recent
and complete statistical software packages (S-PLUS [103]), which con-
tains an enormous number of procedures, has only one program, which
uses the notion of entropy, and none, which would use and treat data
information.

Applicability to a single datum: Common definitions of data entropy
and data information assume, that the probabilistic model is given a
priori, before data is even gathered, and that it is related to random
(collective) events. The application of these definitions to a specific
single event is not defined. In contrast, gnostics is grounded in a
highly developed theory of individual data.

Sequence of development: In gnostics, the notions of entropy — infor-
mation — probability are developed in that order, while the paradigm
of current statistics and information theory starts with the probabilis-
tic model of collective events and only then introduces entropy and
information. Gnostics begins with the entropy of individual uncer-
tain events, derives information formulae from the entropy and then
probability from the information.

Origin of notions: Standard approaches to uncertainty introduce proba-
bility through a series of axioms as the starting point of the theory. In
gnostics, probability is one of products of the theory, which is derived
from more elemental axioms.

Duality of notions: Gnostic concepts have a dual character: quantifi-
cation/estimation, double/complex numbers, Minkowskian /Euclidean
geometries, Q/E circles and paths, Q/E weights and irrelevances.
These in themselves also generate other unexpected dualities: Q/E
entropies, Q/E information, probability /improbability, Q/E robust-
ness.
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The above sets the stage for the text which follows, and serves notice,
that the ensuing discussion will be neither commonplace nor simple, but
perhaps of a nature to break new ground and so, exciting.

10.2 Gnostic Virtual Movements

10.2.1 Five Kinds of Double Numbers

Both diagonals of the Minkowskian plane have a special character. The
radius vector x + j y of an arbitrary point on a diagonal has modulus
(vx? — y?) which equals zero, because the relation |x| = |y| holds on the
diagonal. In other words: the distance between two arbitrary points on a
diagonal is zero. It is therefore reasonable to consider the Minkowskian
plane as a union of five sets of points:

Definition 6:

Let a and § be arbitrary real numbers and « 4 j 8 the radius vector of
the corresponding point in the Minkowskian plane.
Let ,U; (for k=0, 1,..., 4) be following sets:

WU i={a+37 8| lal = 8]}, (
Uy = {a+j B8] a> |8}, (10.2
(
(

2Uj :i={a+jB||af <p},
sUji={a+jB] —a>|Bl}
4Uj = {oz—{—jﬁ ’ ’Oé‘ < —ﬁ} (105

The double number modeling the point u € U; will be called the double
number of the k-th kind.

The Minkowskian plane is thus split by the diagonals into four open
cones 1Uj, 2Uj, 3U; and 4U; as illustrated in Fig. 10.1.

A double number z+ 7y may be viewed as a point or as the radius vector
of this point showing the direction from the point 0 + 7 0 to x + 5 vy and
having as its modulus the distance between the two points. It is a special
feature of the Minkowskian plane that a continuous line consisting of finite
points cannot cross a diagonal: therefore each finite continuous line lies
in a single cone, and radius vectors of all points of such a line are of the
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Fig. 10.1 FOUR KINDS OF DOUBLE NUMBERS
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same kind. However, there are invertible transformations ,,U; < ,U; for
all0 < m < 4, 0 < n <4, m # n. The first of these transformations
was defined by as the transposition T'p(x) of double numbers. Using
notation introduced by Definition 6, one can rewrite in the form

(k=1,2, 3 4)(a+jB e U)(Tpla+jB):=p+7ja) (10.6)

This operation is complemented by the conjugation introduced by (8.11))
which now has the form

(k=1, 2, 3, )(a+jperlU;)(Cola+jh):=a—7jp). (10.7)

There is an imaginative interpretation of both operations: mirror reflection
(previously mentioned in section 9.2.2). Take a double number u. Then
the relation of T'p(u) to u is the same as the mirror image of u observed in
a mirror placed along the South—West /North—East diagonal. The relation
of C'o(u) to u is identical to the mirror image of u seen in the mirror placed
along the horizontal axis.
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It is clear from Fig.10.1, that using pairs of operations T'p(x) and
C'o(x), one can produce double numbers, which belong to all four cones
from an arbitrary double number, which is not on a diagonal.

There is a difference between both transformations, which have been
considered. A transposition always maps one cone into another (;U ;< oU;
and 3U; <> 4U;), while a conjugation maps two cones into themselves
(1U; <> 1U; and 3U; <> 3U;), or two cones each into another (yU; <> 4U;).

It was proved by Theorem 8 that the condition for the analyticity of
a pair function of a pair variable is equivalent to the simple algebraic
condition ((5.26)) of commutativity with respect to transposition.

Using the idea of mirror reflection, one can come to another interesting
geometric interpretation of the analyticity of a double function of a double
variable: such a function is analytical if and only if its transposed graph
coincides with the graph’s image observed in a mirror placed along the
South—West /North—East diagonal. The small Alice would be disappointed
by this analytical Wonderland: life behind the mirror would be the same as
in front of it, only inverted left-to-right—mo wonder at all! However, more
interesting is, that the simple analytical functions—orthogonal rotations—
lead to paths, which have wonderful features.

10.2.2 Paths of Gnostic Virtual Movements

The concept of gnostic virtual movement consists of the following:

the observed datum modeled by is distorted by the uncertainty
®, which is—at the moment of observation—an unknown constant. We
imagine, that this final value resulted not from a discrete “jump” but from
a continuous change in uncertainty starting at ® = 0 and ending at & = ®;,.

The statements proved in Theorem 9 motivate the following definitions
for three paths of gnostic virtual movement:
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Definition 7A:
Let the observed datum be modeled by a fixed double number

u = Zpexp (j S * Py) (10.8)
where Z;, S € R, ®,. € R are given constants. Let
¢y = arctan (tanh (S®y))/S. (10.9)

Let Pg, Pir and P;r be the following sets called quantification, i-
estimation and j-estimation paths (shortly Q- and E-paths), correspond-

ingly:

Po =ulu= Zyexp (j S®), ® € [0, D], (10.10)
Pip = ulu= Zyexp (j SP), & € [—P4, 0], (10.12)

The union of all three paths
7G6C = PQ UP;gU PjE (10.13)

is defined as the ideal gnostic cycle (IGC).

The definitions show, that the ideal gnostic cycle consists of three
branches, quantification and two sections of estimation paths. For the case
of &, > 0, the virtual motion increases the angle from zero to ®;, while
the “mirror image” —® decreases from zero to —®;. An analogous duality
occurs in the case of the estimation path; the correspondence is established
by the relation . Recall, that the important gnostic characteristics of
uncertainty—data weights and irrelevances—introduced in Chapter 9 are
functions of the angular distance between points on the paths and their
conjugates (mirror images). These angular distances are & — (—®) = 29
and ¢ — (—¢) = 2.

These notions are illustrated in Fig. 10.2 for the case of ® > 0.

The ideal value Z; plays here a role only in the graph’s scale; hence,
it is assumed that Zy; = IH The image of the ideal value is thus 1 4+ 5 0
(point U0 in Fig.10.2). An increasing uncertainty moves the point = + j y
(modeling the datum) from the ideal value along the Minkowskian circle

IThis simplification holds only for graphs. The formulae are written for the general case of an arbitrary
positive S.
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vliy Fig.10.2 THE IDEAL GNOSTIC CYCLE
9 . ‘ : .
. Sa

a... the asymptote
("'diagonal mirror")

Q-path: U0... Ul
(quantification)

X - axis
("'horizontal mirror')

E-path: Ul ... U2
(estimation)
K-path: U2 ... Uo
(contraction)

>

X

(the red curve, Q-path) to the point U1. The equation of the Q-path is
v —y? =1, (10.14)

because during quantification relations x = cosh (S®) and y = sinh (SP)
hold. The quantification (Minkowskian) circle has the form of a hyperbola
in Fig. 10.2, because the graph is drawn using Euclidean geometry. The
end point of the Q-path (U1) is determined by the argument of the ob-
served datum S®;. The radius vector of this point has the same length
as all the points on the Q-path, for which the Minkowskian formula [10.14
holds. A different length is obtained, when the vector’s length is measured
using Euclidean geometry. Assuming, that at the point U1 relations [10.8
and Zy = 1 hold, then the Euclidean length of the radius vector is ob-
tained as \/cosh? (S®;) + sinh? (S®;,) = J/Jcosh (2@;). The Euclidean angle
of this vector is ¢ determined by [10.9. These relations result from the
characterization of the same point U1 using both geometries (see [8.36)).

The E-path consists of estimating part P;r and quantifying part Pjg.
The former part is represented in Fig. 10.2 by the green arc leading from
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the point U1 to Co(U1). Its (Euclidean) radius is constant (y/cosh (2®y))
while the moving radius vector changes its (Euclidean) angle from S¢y to
-S¢y. Thus for all points of this path, equation

z* 4 y? = cosh (2, = Z} (10.15)

holds and the P;g-path is an arc of the Euclidean circle. The green P;g-
path closing the Ideal Gnostic Cycle leads from the point C'o(U1) to the
ideal value UO.

It was proved by Theorem 9 that the virtual movement along the Q-path
(Q-rotation) is analytical in the sense of the analysis of double functions of
double variables, while the virtual movement along the E-path (E-rotation)
is analytical in the sense of complex analysis. All three branches of the
ideal gnostic cycle are thus analytical and the transposition of all their
points must coincide with the reflection observed in a mirror held along
the diagonal. All points of the IGC shown in Fig.10.2 are in the same
cone, shown as 1U; in Fig. 10.1—the corresponding double numbers are all
of the first kind (see Definition 6). However, this IGC has its “phantom”
(reflected by the diagonal mirror) in the cone oU; composed of double
numbers of the second kind. Fig.10.2 shows the IGC for ®; > 0. In the
case of a negative ®; the IGC and its conjugate exchange their positions.

10.2.3 Velocity Vectors of Virtual Movements

Interesting relations between events in {U; and in 2U; can be shown by
considering the kinetics of the virtual movement. The velocityf] of a point
uj = x + j y on the Q-path may be evaluated as

: du, : :

Viz+jy) :=d—q‘)7=5*(y+jx)=S*Tp(a:+jy), (10.16)
because relation u; = Zy * (cosh (S®) + jsinh (S®)) holds for all points
of the Q-path. The double number = + j y may be interpreted both as a
point on the Minkowskian plane and as the radius vector R(z + jy) of this
point. One can see in Fig. 10.3, that the velocity vector V(x + j y) of the
quantification movement in the point x + j y is collinear with the radius
vector of this point’s mirror image.

2Recall that in mechanics the velocity vector of a moving point is the first time derivative of the radius
vector. In gnostics, the role of time is played by the uncertainty, ®, as the “driving force”; therefore the
velocity of the virtual movement is given by the first derivative of the double number by its angle.
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Fig.10.3 RADIUS AND VELOCITY VECTORS
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The dual collinearity exists between the velocity vector V(y + j z) of
the movement along the mirrored Q-path and the radius vector R(z+ jy).
These relations are shown in Fig. 10.3 for the case Zy =1 and S = 1.

Just as in mechanics, the velocity vectors of a point take the direction
of the tangential line of the curve at this point. It would be customary
to see the velocity vector of circular movement orthogonal to the radius
vector of the tangential point. This, the Euclidean notion of orthogonality,
is derived from the “right” angle (90°) between the direction of the
vectors, which means, that to reach the orthogonality of one vector with
a collinear one, one should rotate it by this angle. However this notion of
orthogonality is not suitable in Minkowskian geometry. The Minkowskian
angle between the radius vector of an arbitrary point on the Q-path and
the direction of a diagonal is infinite: one cannot reach a point in yU;
by moving it along the circular Q-path (by rotating its radius vector).
However, a more generally applicable notion of orthogonality of a pair of
vectors may be introduced:
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Definition 7B:
Let u; € ,U; and v; € ,,U; be vectors, for which k,m =1, ..., 4.
Let relation

[ujyvj]2,j =0 (1017)

hold.
Then the vectors will be called orthogonal.

Note that a zero value of the scalar product is also equivalent to the
condition of orthogonality of a pair of vectors in Euclidean geometry. Re-
turning to Fig.10.3, we find, that the velocity vectors of all points along
the Q-path are orthogonal to radius vectors of these points in the sense of
(10.17). This results from the obvious orthogonality of all double numbers
with their transpositions. Velocity vectors of a quantification movement
are thus orthogonal at all points of the Q-path with radius vectors of these
points as in Newtonian/Euclidean kinetics.

The kinetics of estimation shown in Fig. 10.4 is closer to the common
view.

Let us consider the end point of the Q-path (U1 in Fig. 10.2) interpreted
this time as a complex number, ie as u;; = Z; * Va? + y? * (cos (S¢r) +
i sin (S¢y))). The estimation movement starts at this point. Its velocity
vector 1s
dui
d¢
This velocity vector is orthogonal to the radius vector R(zj + i y;) of the
tangential point in the Euclidean sense. Analogous relations take place
at all points along the Q-path, from which the estimation starts. It is
therefore sufficient to show the case Zy = 1 and S = 1 and a general point
x4+ 1y in Fig. 10.4.

Ve +iyy) = ( )k =S (—yr + j xp). (10.18)

10.3 Energy and Entropy of a Datum

10.3.1 Energy of an Individual Datum

The outcomes of a “pure” mathematical theory are hidden in its axioms and
its definitions. Whether a theory will bear fruit depends on its assumptions.
The assumptions, that define the bounds of the theory, can be chosen in
several ways. Most talented researchers need no particular method, they



10.3. ENERGY AND ENTROPY OF A DATUM 121

Fig.10.4 RADIUS AND VELOCITY VECTORS
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feel their way by intuition using their “sixth sense”. Some having learned
by experience gained in previous efforts proceed step by step making small
adjustments to axiomatic systems, that have already been successful, while
others use a “Monte Carlo” approach, randomly varying assumptions along
the way, however this seldom provides very productive results.

When a theory is intended to be used in practical applications for the
solution of real as well as theoretical problems, its development is more
complicated. Mathematics does not have tools to determine the realism of
any a particular statement. It is then necessary to cross the boundaries
of mathematics and look for assistance in the natural sciences: a realistic
statement must respect the Laws of Nature. A methodology using the
Gedanken-experiment, already noted in Chapter 4, has acquitted itself very
well in the history of science as a source of assumptions for new theories,
and we are now going to make use of it to logically interconnect the idea of
a very general kind of data (such as eg from economics) to such seemingly
foreign notions as energy, temperature, heat flow and entropy.
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An initial example to discover the link between a datum and energy
is to consider modeling and computing technology, where data values are
represented by physical variables. Imagine an analog computer, within
which a data value z is represented by a voltage V. A condenser with
capacity C could be charged by the voltage V' to accumulate energy CV?/2
showing, that the physical mapping = <+ V implies the mapping z? <
CV?/2, which results in a practical mapping of data <> energy.

Another illustration is to imagine the screen of a monitor graphically
displaying either a Minkowskian or a Euclidean plane. Applying Cartesian
coordinates (x,y), the energy at the coordinates (necessary to deflect the
impact point of streams of electrons of cathode rays) would be proportional
to 2% and y? (with the same coefficient of proportionality); and the energy
of a datum represented by a pair number z 4+ ¢ y would be proportional
either to 22 — y? (for ¢ = j) or to 2% + 42 (if ¢ = 1).

10.3.2 Entropy of an Individual Datum

Energy can be converted into temperature, eg by discharging the condenser
into a resistance placed in a calorimeter, the inner temperature of which will
increase. The amount of heat, created by the amount of discharged electri-
cal energy, can be measured and the corresponding absolute temperature
corresponding to the energy can be calculated. Our Gedanken-experiment
thus shows, that we can think of three proportional mappings:

squared datum <> enerqy,
squared datum <> heat flow,
squared datum <> absolute temperature.

The next step is to recall the conditions, under which the famous Clau-
siuﬁ inequality for non-statistical entropy holds

- <0 (10.19)
where () is heat, T is absolute temperature and the integral is taken over
either a complete thermodynamic cycle. This relation leads to one of the
possible formulations of the Second Law of Thermodynamics: in a closed
thermodynamic cycle the entropy increases. The adjective ‘non-statistical’
is emphasized to prevent a misunderstanding, which could result from the
frequent habit (in both information theory and statistics) to define entropy

3Rudolf Clausius (1812-1888).
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for a thermodynamic system, which can exist in N states with probabilities
p1,---, PN, in the statistical form introduced by Boltzmannﬂ Boltzmann’s
entropy 1is

N
SB = Z Pn In (pn) (10'20)
n=1

The most popular definition of information (Shannon’@ is —Sp, according
to which information differs from (Boltzmann’s) entropy only by its sign.
It is for this reason, that it was emphasized at the beginning of the chapter,
that in order to employ these notions (Boltzmann’s entropy or Shannon’s
information), one must already have a priori knowledge of the probabilistic
model. Even so, Boltzmann’s point, that entropy is disorder, is of universal
importance for it suggests that 'Nature prefers disorder’.

Returning to the screen of our monitor, it is seen, that at the point,
that models the virtual movement of the datum within quantification, the
energy of the double number is constant along the Q-path, proportional to
x? — 32, while the energy of the complex number (z* + y*) increases. The
difference between these energies equals 2y?. This energy difference can be
converted into a heat flow which may be positive or negative depending on

the sign of ¢?. Hence, the heat change relation
dQ. = K,d(2¢%y?) (10.21)

with a proportionality coefficient K holds. Converting the energy > —c*y?
into absolute temperature leads to

T. = Ki(2* — y?) (10.22)

where K; is a constant. When describing the Q-path of the process
(¢ = 1), the energy is constant, proportional to the squared radius of
the Minkowskian circle; and the case of the E-path (¢? = —1) is analogous,
the energy is proportional to the squared radius of the Euclidean circle. In
both situations, the temperature is constant and equal respectively to the
radius of the Euclidean or the Minkowskian circles. Now, it will be shown,
that the change in entropy between the “same” point on either circle is
a simple function of the gnostic weight, f.. the entropy change from the
state (1 to ()9 is

Q2 dQ).

Q T,

E, = (10.23)

4Ludwig E. Boltzmann (1844-1906).
5Claude Shannon, an engineer at Bell Labs, first published these ideas in the Bell Technical Journal
in 1948.
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where the temperature 7. is constant for both values ¢ = j and ¢ = 1,
because the two cases are evaluated separately, either for the Q-path or for
the E-path.

Relation ((10.23) may be thus rewritten as

(@2 — Q1) Q1)

10.24
- (10.24)

E=T )7 dQ. =

from which formula ) 4
E; _ & 2c*y

K, 22 — c2y?

results. Adjusting the scale for measuring the entropy change, F., by

choosing % = 1 and substituting the G-weight f. from ((9.5)), one arrives
at

(10.25)

E,=f.—1. (10.26)

All the foregoing was necessary to support the statement, that the follow-
ing definition is reasonable:

Definition 8:

Let fe(z+ cy) be the G-weight (9.5) at the point x+cy €1Uj, c € {j,i}.
Then the quantity E. evaluated by is the change of entropy of
quantification (when c=j) or correspondmgly of estimation (for c=i).

It was shown in Chapter 9 that G-weights play a significant geomet-
ric role as (one-dimensional) metric matrices in the determination of the
specific Riemannian geometry to be employed (9.15). The Gedanken-
experiment which led to definition 8 has demonstrated an unexpected con-
nection between the choice of a metric for a geometric space and “some-
thing physical’—entropy. As Riemann had stated over a century ago (see
Chapter 3), “Metrics are given objectively by laws of Nature.” It can be
concluded that the metric of the space of an uncertain datum is determined
by entropy changes, which themselves are determined by the value of the
observed datum.

It therefore holds:

The metric for measuring an individual data’s uncertainty is
determined by the uncertainty of the datum being considered.

We can now investigate the consequences of this interesting finding.
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10.4 The Entropy Field

10.4.1 Data Entropy as a Scalar Field

Expression ([10.26|) defines a specific scalar field of entropy change over the
Minkowskian/Gaussian plane. This allows an evaluation of the change in
entropy caused by uncertainty for all points =+ cy for which = > |y| (ie for

the open cone U, of the Minkowskian plane as well as for the corresponding
cone of the complex plane).

Entropy is one of the important gnostic characteristics of uncertainty
and—as such—it depends only on the ratio y/z. Figure 10.5 illustrates
isoentropic lines (points within the entropy definition’s range for which

the entropy values are constant), which are straight lines passing through
the origin (0 + ¢ 0).

Fig. 10.5 ISOENTROPIC LINES
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Four Q-paths are shown for ideal values (Z; = 0.5, 1.0, 1.5, 2) along
with isoentropic lines for F; = 0.01, 0.04, 0.10, 0.25, 0.50. The figure
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demonstrates how entropy rises as the point representing an observed da-
tum driven by uncertainty moves along a QQ-path. The case of estimation
is treated by Fig. 10.6.

Fig.10.6 ISOENTROPIC LINES
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Only one Q-path is shown (for Zy = 1), but there are several end-points
for the Q-path (PO, ..., P5), which correspond to different observed values
for the same datum. All entropy changes are negative in Fig. 10.6, they
quantify the fall of entropy resulting from the virtual movement of the
representative point along the E-path from the end point of the Q-path
to the horizontal axis. Note that the entropy increase (which corresponds
to an increase in disorder) along the Q-path for a given observed datum
cannot be completely compensated by the corresponding fall in entropy
during estimation. This observation, which is of fundamental importance,
will be considered in more detail in the following section.

[lustrating with a Q-path for Zy = 1, and taking figures 10.5 and 10.6
together, the former shows that the isoentropic line representing Q-entropy
of 0.2 is reached at a jy value of about .65 while the same Q-path plotted on
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figure 10.6 results in an entropy fall of 0.2 only if iy = 1.12 (corresponding
to P5). The conclusion is, that for any level of uncertainty, the Q-entropy
increase is larger than the E-entropy’s fall. Hence, the increase in informa-
tion resulting from data treatment cannot fully compensate for the increase
in entropy resulting from the uncertainty inherent in the system. The IGC
is not reversible, which is consistent with the Laws of Nature.

10.4.2 Entropy Field Gradients

It is useful to examine the gradients of the entropy field, ie vectors which
delineate the direction of the steepest descents or ascents of the field.
These quantities will be indexed by ¢, because they have different forms
for each of the two geometries considered. Let a be a differentiable scalar
function of a pair variable x 4+ cy (¢ € {j,1}) interpreted as a scalar field
over the Minkowskian /Euclidean plane. For these geometries, there are two
kinds of gradients [45]: the covariant gradient (V. 1) defined for a scalar
field a by

oo oo
. = — — 10.27
and the contra-variant gradient (Vo)
Jda 4 0
. = — —c —. 10.28
Vesla)i= 52— 5 (10.28)
Using these formulae and ((10.26)), one obtains:
2¢2h,

Examining the more ordinary case of the gradient of E-entropy, it is obvious
that V;1 = V2, because i = —i* for the imaginary unit 4: there is only one
gradient in this case. It is shown at the point x+¢y in Fig. 10.7 orthogonal
to the radius vector at that point and therefore tangent to the E-path.

Using expression (10.26), E; = f; — 1, and the fact, that the gradient
of a constant (1) is zero, it is seen, that the gradient (denoted Ge in
Fig. 10.7) points in the direction of the steepest increase in the estimation
weight f;, which is equal to cos (25¢). The E-entropy change is negative
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Fig.10.7 GRADIENTS OF THE ENTROPY
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for a non-zero uncertainty, because cos (25¢) < 1 for ¢ # 0. The E-
gradient thus points in the direction of the steepest decrease of the entropy
E; for all points along the Q-path. We have arrived at an important result:

The local path from each point of the Q-path leading to mini-
mization of the increase of the entropy coincides with the local
E-path.

This is why the E-path is the first candidate offered as the best mode
of estimation.

Unexpected results are obtained for the quantification case: The first—
and from the point of view of Euclidean geometry, unusual,—feature is,
that there is not only one gradient, but there are two. The second feature
concerns the direction of the two gradients at the point U1. The covariant
gradient (Giq1) is collinear to the gradient of the E-entropy but its direction
is opposite. This can be explained by referring to Fig. 10.5: All isoentropic
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lines intersect at the origin. To go from a point on one of these straight
lines to a point that corresponds to a slightly higher level of entropy, one
should move in a direction orthogonal to the former line, ie in the direction
tangential to the E-path (opposite to the gradient Ge). This means, that
the covariant gradient Ggql points in the direction of the steepest increase
in entropy ;.

The contra-variant gradient (G¢2) is collinear with the velocity vector
V(x + j y) of the virtual movement along the Q-path and points in the
direction opposite to the virtual movement. But the virtual movement
from the point U0 in Fig. 10.7 to the point U1 increases the entropy. The
direction of the contra-variant gradient G¢2 is thus the second best can-
didate as a mode of estimation. There are then two directions, which can
be used as alternate paths to return to the point U0 representing the real
and unknown ideal value:

1. Along the E-path opposite to the direction of GQ1 to the point Co(U1)
followed by the movement along the Q-path (estimation path).
2. Returning from U1 back along the Q-path following the direction of
Gq2 (anti-quantification).
We will now examine the choice between these alternatives in more detail.

10.4.3 Which Estimation Path?

A choice between anti-quantification and the IGC-path can be based on
a preliminary consideration of the errors which would result. The errors
result from the fact that one can never know the actual value of uncertainty.
The observed datum is given in the form of (5.12). To compare the effect
of the choice of paths, the simplifying assumption S = 1, can be made
(for this section), because the scale will be the same for either path. Let
us consider the angular distance D between the points U1 and its mirror
image C'o(U1) in (Fig.10.2). Relation

Dg =29 (10.31)
may seem to be “natural”, but only till its more general form
20
Do=|[" Codi|=0 (10.32)

with Cy = 0 is presented demonstrating that Dy has been obtained using
the Galilean geometry to evaluate the path integral of angels’ differentials



130 CHAPTER 10. ENTROPY, INFORMATION, PROBABILITY

along the vertical straight line connecting the points Co(U1) and U1 in
the two-dimensional plane endowed with the Galilean metric. (This line
segment is a Galilean “circle”). However, there are two alternative circular
paths in this plane, the Minkowskian (quantifying) and Gaussian (estimat-
ing)ones, also connecting these points, for which path integrals

29
D; = | /0 cosh Ydy| (10.33)

and 0
D; =| [ cosidy (10.34)

result by substitution of relations [9.15] attached to the quantification and
estimation paths, correspondingly. These relations enable an important
statement to be formulated:

Theorem 10:
Let ® be the true numerical value of uncertainty of an observed datum
5.120 Then relation

D; > —D; (10.35)

holds. The equality occurs, if and only if & = 0.

Moreover:

The path integral D; represents the maximum value among all integrals
taken along the alternative paths connecting the points Co(U1) and U1
obtained by limited variations of the quantifying circular path.

The path integral |D;| represents the minimum value among all integrals
taken along the alternative paths connecting the points Co(U1) and U1
obtained by arbitrary variations of the estimated circular path.

Theorem 10 says not only why the estimation path is to be chosen and
its uniqueness, but also clarifies the extreme features of the Ideal Gnostic
Cycle. It is a special case of a theorem considered in detail and proved
in [61], paragraph 3.7.1, Theorem 8. It compares angles (interpreted as
relative lengths, i.e. lengths divided by the circles’ radiuses) of segments of
two circular paths over the two-dimensional planes endowed with different
Riemannian metrics. The extremity of the Q-path is an objective fact
recognized by the analysis. Unlike this, the choice of estimating path is a
matter of an analyst’s subjective decision. As shown below in Chapter 12,
choosing the unique (the shortest) circular E-path ensures the optimality
of estimation.

An evaluation of the Theorem 10 requires the problem of robustness
to be taken in account. Relation [10.33| results from quantification version
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of increasing the weights of large errors contrary to the estimating
version which prefers the weak errors. The estimating versions of formulae
will thus provide results robust with respect to outliers opposite to quan-
tification formulae preferring the large errors. Both concepts of robustness
have applications in dependence on tasks to be solved. Suppression of out-
liers protects the results from bad observations while preference of extreme
“errors” enables unusual events (eg a bad product, a rare signal) among
many ‘normal” ones to be reliably recognized.

A natural question is, “How to go about optimal algorithmic applications
of these extremities?” This is not a problem for the theory of individual
data. A complete explanation of gnostic procedures, and answers to this
and other questions will be given after the gnostic theory of data samples
is provided.

10.4.4 Sources of the Entropy Field

The sources of a field determine its character, its spatial distribution and
explain its origin. For an electrostatic field, the role of the source is played
by an electric charge, for electromagnetic fields it is electric current and
for a gravitational field, gravitation masses. Some field sources may be
negative as well as positive (outflows or inflows). Sources may create fields
and/or let fields vanish. It is for this reason, that sources of entropy fields
have to be investigated.

Mathematical analysis has derived formulae for the calculation of a point
source of a scalar field (eg «) for different geometries. In our case the
formula has the following form ([45]):

D*a 0%

2 _
where V? is the Laplace’s operator. Denoting
r? = a? -y (10.37)

the squared radius of a circular path, and twice differentiating the entropy,

one gets
V3(E,) = —4r.%f.. (10.38)

Let us introduce the complementary indeterminate ¢ such that i = j and
j = 1. The complementary radius of a circle may be thus written as

ry =2’ + c*y”. (10.39)

é .
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The relation

(w/r)? " y/re)?

reVA(E) = 5 (10.40)

can be interpreted as

1. the source of Q-entropy (eg of E;) at a point on the E-path, which
has a radius equal to 1 (when ¢ = j),

2. the source of E-entropy (eg of E;) at a point on the Q-path, which has
a radius equal to 1 (when ¢ = 7).

Division of both coordinates x and y by r; leads thus to the unification of
all circular paths corresponding to different Z;’s—all have been mapped
onto a single value with Z; = 1.

Multiplying ((10.38) by r? and taking into account that 72/r?> = f., one

comes to 1

(1 —4ctz?y? /(2 + 2y?)?)
To prevent a misunderstanding, it is useful to analyze three interpretations
of this equivalence:

riV3(E,) = —4

(10.41)

Detfinition 9:

Let h; and h; be the Q- and E-irrelevance, correspondingly, expressed

as in (9.6)). Let |y| < z. Then
p=0-h)/2 p; =1—jh)/2 pi:=(1—1ihj)/2 (10.42)

The first of these variables is a real number p € (0, 1)) while the second
and third are double numbers. There are thus three versions of :

1. As follows for the scalar case from ((10.41]),

1

272
r;Vi(t;) = ——. 10.43
B) =~y (10.43)
2. In the case c =7,
1
272
riV(E;) = — 10.44
( J) pj*(l—p]) ( )

results.
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3. Equivalently, in the case ¢ =1,
1

TZVQ EﬁZ e —
iVE) pi % (1 —p;)

(10.45)
is obtained.

To show the equivalence of double interpretation of the source of quanti-
fying field, following relations are to be taken in account:

pe(l=p)=(1- )/ (10.46)
and
pj* (L—p;) =pj*p; = |pl} = (1= hi) /4 = cos® 2¢/4 (10.47)
There also is a dual relation of this type for the estimation field:
pi* (1 —p;) =Pi*pi = |plf = (14 h3)/4 = cosh® 20 /4. (10.48)

The expression P, * p. is a square of the pair number’s p. modul because
De is its conjugate. Expressions [10.43| and [10.44] are interchangeable due to
double interpretability of the variable (1 — 7 h;)/2 as a real number and/or
as a double number resulting from the equivalence

exp () = cosh (®) + sinh (®) = cosh (P) + j sinh (P) (10.49)

The interpretation of the equations [10.44] and [10.45| is important: there
are two fields, the sources of which balance the quantifying and estimating
sources of entropy.

Let us investigate these interesting fields.

10.5 Four Integrals of Gnostic Movements

10.5.1 The Birth of E-Information and Probability

This subsection deals only with changes of entropy Ej, i.e with Q-entropy.
This entropy has been defined over the cone ;U;, as a function of two
coordinates x and y. It is now reasonable to restrict the definition of
the range of this entropy to points of the circular E-path, which have
the unitary radius (r; = 1). This restriction enables the left hand side

of (10.43)) to be interpreted as an evaluation of the strength of the Q-
entropy sources applicable to all the data, independent of the value of
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their Zy, which implies, that the normalized Q-entropy will be a function
of a single variable, eg of y/x or of S®. In other words, Q-entropy is a
gnostic characteristic of the uncertainty of an individual datum. The right

hand side of ([10.43) is also a real function of the single real variable (p).
Introducing an auxiliary function

O<p<1)(H(p):=-p*In(p) — (1 —p)xIn(1—p)) (10.50)
one can easily verify the relation
1 d(H(1/2) - H(p))
ey p . (10.51)

We thus know a scalar field and its source (second derivative) which
balances the source of Q-entropy. It only remains to give suitable names
to this function and to its argument, and to interpret their characteristics.

Definition 10:
Let Z = Zyexp (SP) be the model (5.12)) of a given observed datum.

Let p be the gnostic characteristic of this datum defined by ((10.42)) and
).

Then p will be called the gnostic probability of an individual datum,
shortly probability.
The function

(0<p<1)(I;:=H(1/2) — H(p)) (10.52)
will be called the estimation change of information (shortly FE-
information) of the given individual datum.

The interchangeability of the variables p and p; enabled the scalar form
of H’s argument to be preferred to keep the tradition of measuring the
probability by a real number. On the other hand, its double form maintains
the duality of quantification and estimation processes.

The adjective “estimation” stresses the fact that the information I; has
been obtained by (double) integration of the sources of entropy E; along
the E-path. The integration constants in are chosen so as to satisfy
the natural requirement, that the information change of a precise datum
(® = 0,h; = 0) is zero. The character and features of probability and
information are analyzed below.

It is interesting to present the information I; (10.52) as a function of the
uncertainty ®. The E-irrelevance h; is defined by (9.4) for a non-unitary
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_ . . tan (S¢)
S and §2; = S¢ as sin (25¢). It can be therefore rewritten as Q—M.
The basic relation (8.36) (binding the Q- and E-angles) enables the sub-

stitution of tanh (S®) for tan (S¢) so, as to arrive at the equivalence
sin (25¢) = tanh (25P). (10.53)

Taking into account that |h;| < 1 and applying the usual formula of hy-
perbolic functions one obtains

1+ hy
250 =1 10.54
S n ( - hl-) (10.54)
and
I; =25 « sinh (25®) — In (cosh (259)). (10.55)

This function together with the E-entropy ((10.26) and with a quadratic
approximation are depicted in Fig. 10.8.

Fig.10.8 E-INFORMATION AND E-ENTROPY

E-information, E-entropy, Quadr.error
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(The “additive error” is 25®.) All three functions can be used to mea-
sure the amount of uncertainty. The forms of both gnostic functions sub-
stantially differ from the quadratic function: they both are bounded for
gross errors. This feature is again one of the vital characteristics of gnos-
tics, because it leads to robustness with respect to outliers.

10.5.2 The Birth of Q-information and Improbability

Equivalence ((10.41)) is valid for both ¢ = 7 and ¢ = i. In the latter case,
(10.45)) holds. For the case of ¢ = j, a formal analogy to (10.50)) is intro-
duced:

(pi:=(1—1h;)/2)(h; € RY(H;(p;) == —pi*In(p;) — (1 —p;) *In (1 — py)).

(10.56)
One can then verify the relations
1 d*1;
— = : 10.57
pix(L—pi)  dp; (1057)

Functions p; and I; also deserve names which characterize their substance.

Definition 11:

Let Z = Zyexp (SP) be the model of a given observed datum. Let
p; be the function of the E-irrelevance defined for this datum by
and (9.4).

Then p; will be called the gnostic improbability of the given individual
datum, shortly improbability.

The function I; defined by will be called the quantification change
of information (shortly Q-information) of the individual datum being con-
sidered.

Analogously, the adjective “quantification” expresses the origin of the
information I; as the result of (double) integration of the sources of entropy
E; along the Q-path. And in the same manner as above, one arrives at the

explicit dependence of ((10.58)) on uncertainty:
I; = =25 * sinh (25®) + In (cosh (259P)). (10.59)

Fig.10.9 shows, that both this function and the Q-entropy F; increase
faster than the quadratic approximation.
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Fig.10.9 Q-INFORMATION AND Q-ENTROPY
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10.5.3 Probability and Improbability

Features in common:

Domain: Just as the irrelevances, h; and h; are both defined over the
open infinite interval (—oo, +00), so are the values of uncertainty S®
as functions p(S®) and p;(SP).

One common value: They have the same value (1/2) for zero uncer-
tainty.

Monotonicity: They both rise monotonically as uncertainty & ranges
from —oo to +o00. (For p;, this relates to the imaginary part of the
improbability).

There also are substantial differences between probability p and improba-
bility p; (10.42):

Range of values: Probability p is a real function which has values in the
closed interval [0,1]. Improbability, on the other hand, is a complex
function which takes on arbitrary values represented by points on the
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unbounded vertical straight line x + iy = 1/2 — ¢ h;/2 where h; can
have an arbitrary (finite) real value.

Slopes: For |®| — oo the values of the slope of the function p converge to
zero, while for p;, the values of the slopes of the p; diverge under the
same conditions.

The problem of the range of the probability forced a departure from the lan-
guage of pair numbers, when proceeding from the pair equivalence ((10.41])
to a separate analysis of the quantification and estimation cases. This was
not absolutely necessary, because the expression (1 — j2h?)/4 can be de-
composed not only as p x (1 — p) (as was done with p := (1 — h;)/2) but
also as p; * (1 — pj), where

pj = (1—7hi)/2. (10.60)

When the latter decomposition is chosen, one can continue writing both
versions jointly using the indeterminate c. However, there are good reasons
to prefer the scalar version:

1. The function p (probability) is used as an estimate of an element of
probability; that is, as a measure of the expectation of the occurrence
of some events. It is customary to express such expectations with real
numbers and not by using a double number.

2. To derive the relationship between entropy sources and information
using the variable p;, one would need to use differential and integral
calculus of double variables, which might give rise to additional ques-
tions. By using p, it was possible to apply the “ordinary” calculus
instead.

Nevertheless, the possibility of introducing probability, expressed as a dou-
ble number is useful to maintain the theoretical uniformity and duality of
quantification and estimation analysis.

There are also common features as well as substantial differences be-

tween information [; ((10.52)) and information ; ((10.58)):

Domain: Both can be represented as functions of the uncertainty .

Zero value: Both are zero for zero uncertainty:.

Convergence: If uncertainty is sufficiently weak, both converge to a
quadratic function of the uncertainty .

Divergence: Unlike E-information converging to a constant for |®| — oo,
Q-information diverges under this condition.

In the case of a strong uncertainty, the different behavior of the four func-
tions, which were considered, leads to greater robustness/sensitivity to
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outliers/inliers. These issues will be dealt with in the theory of data sam-
ples.

10.5.4 Conversion of Entropy to Information

Integrals of real movements (energies) play an important role in mathe-
matical physics. Together with their first derivatives (moments), they are
objects of the most powerful Laws of Nature—Conservation Laws. Apply-
ing variation principles to integrals of movement, one can derive differential
equations which model the movements. Typical examples of integrals of
movement include kinetic and potential energy (with respect to the New-
tonian differential formulation of the laws of classical mechanics derived
from movement integrals by differentiation), and the energy of electric and
magnetic fields (with relation to Maxwell’s partial differential equations).
Typical features of different integrals of movement are, that through the
process of movement, they are mutually converted from one to the other.
A practical example from mechanics is a swinging pendulum periodically
converting its potential energy into kinetic and vice versa. An oscilla-
tor consisting of a condenser and an inductance converts electric energy
charged in the condenser into the magnetic energy of the coil and vice
versa.

This is why we are interested in integrals of gnostic movement—of
changes of ® caused by uncertainty.

Relation (??) was derived by twice differentiating the entropy E;. It

follows, that one can obtain this entropy by twice integrating its sources.
It can be easily shown that ({10.41])) is equivalent to the relation

iV (E.) = —4f?, (10.61)

which says, that the (normalized) sources of the entropy field are com-
pletely determined by the data uncertainty S®, because f; = cosh (SP)
and f; = cos (S¢), where S¢ is also dependent only on S®. This uncer-
tainty arises through the virtual quantification movement. One can there-
fore take the entropies F/; and Ej; as a pair of integrals of gnostic virtual
movements.

E-information /; was derived as a field, the sources of which (ob-
tained by twice differentiating) balance normalized entropy sources. The
E-information is determined by p (10.52)), which measures the gnostic vir-
tual movement. This means, that information I; is also an integral of this
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movement. Q-information, obtained by analogous operations, is also an
integral of this movement.

In summary, it can be stated, that there are two pairs of integrals of
gnostic virtual movement: (Ej;, I;) and (E;, [;), that are bound each to the
other by equation ({10.41]), which can be now reformulated in the following
way':

Normalized source of entropy E; + source of information I; = 0.

Normalized source of entropy E; + source of information I; = 0.

Both these equations can be unified using the probability interpreted as
the double number [10.60, The equivalence [10.41| thus obtained forms

21,
dp?

This equation may be interpreted as the formula for the mutual conver-
sion of entropy to information and vice versa.

riV3(E,) + 0. (10.62)

A number of scientists have investigated the relationship between en-
tropy and information. Even Maxwell had some thoughts on the subject
in the late nineteenth century. A review of the development of these efforts
published in 1956 ([7]) included contributions by L. Szilard (1929, [108]),
N. Wiener (1949, [117]), R.C. Raymond (1950, [90] and 1951, [91]), L.
Brillouin (1951, [12]) and D. A. Bell (1952, [6]). Such typical ideas were
illustrated in [7] by two Gedanken-ezperiments:

1. The first example is based on Maxwell’s idea of a demon controlling a
door (with no mass) between two identical boxes filled with gas. He
would permit fast molecules to pass in one direction and only slow
ones in the other (to keep the number of molecules on each side con-
stant). Temperature would rise on the ‘fast’ side without the addition
of energy thus violating the second law of thermodynamics. Wiener
[117] pointed out, that the demon would need information to dis-
tinguish between fast and slow molecules; he would consequently be
converting information to entropy.

2. If a large number of trained monkeys were to sit at typewriters for a
sufficiently long time, their output could even include Shakespeare’s
Hamlet. Such a result would correspond to a much lower entropy than
the more probable chaotic expected outcome. On the other hand, were
the letters corresponding to the text scrambled, all the information
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would be lost and entropy would increase. The conclusion is, that the
more information, the lower the entropy and vice versa.

These examples illustrate the traditional paradigm of entropy < infor-
mation conversion: (1) collective random events and their probabilistic
model as primary notions, (2) entropy/information as secondary notions
introduced to measure the degree of randomness and (3) entropy <« infor-
mation conversion as an exchange of these (integral) measures. History of
the ideas related to the Maxwell’s demon were summarized in [13].

In contrast to these concepts, equation establishes the entropy
<+ information conversion not on the integral level but on the more basic
level of sources of fields (second derivatives). Furthermore, it is applied
not for collective (data sets) but for an individual (datum’s) uncertainty.

What follows is an interpretation of the “mechanism” of the “informa-
tion machine” using the Ideal Gnostic Cycle based on an observed datum
Zy, = Zyexp (SPy):

Quantification: Due to the contribution of uncertainty ®, which increases
from 0 to @y, entropy Ej rises from 0 to cosh (S®j)—1. Simultaneously
with @, the E-angle ¢ increases to ¢y ((10.9)) causing the Q-information
to fall from its initial value (0) to I;(S®) (10.59). These changes set
the stage for future, potential changes of information I; (by (?7))
and entropy F; (by (??)). The Q-modulus of the radius vector stays
constant (Z), but the E-modulus increases from Z; to Zj (10.8).

Estimation: The E-modulus is constant (Zy), the Q-modulus increases
from Z, to Z;. The change in the E-angle ¢ from ¢; to zero realizes
the potential change in information I; and entropy FE;.

Contraction: Both Q- and E-angles are zero, the modulus of the radius
vector of the representative point decreases from Z; to Z.

Because neither the overall (residual) changes of entropy within the closed
IGC, nor the overall changes of information are zero, the IGC is irre-
versible.

10.5.5 Residuals of Entropy and Information

The overall change of entropy, which results from passing through the full
Ideal Gnostic Cycle (the residual of entropy denoted og rac), can also be
calculated. Because both quantification and estimation changes of entropy

are already known ({10.26]), relation
op.1cc = cosh (25®) + 1/ cosh (25®) —2 >0 (10.63)
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holds for all & # 0. The conclusion drawn from this formula is significant:
it is impossible to return a datum which contains a non-zero uncertainty
back to its original state (with uncertainty removed): its residual entropy
will always be larger, than that in the “clean” state. This fact is proved
for estimation by using the Ideal Gnostic Cycle. However, it will
be shown in what follows, that all other closed estimation cycles would
lead to even worse results. One can thus conclude, that a part of the
damage caused by uncertainty can never be removed: the gnostic cycle is
wrreversible.

A look at the formulae ((10.55]) and shows that they both include
the same term, In (cosh (25®)), but with opposite signs; these terms there-
fore balance each other—they represent the reversible part of the informa-
tion. However, since there are also irreversible parts to both information

changes, the residual of information change resulting from passing through
the closed IGC is

or1ce = 25® xtanh (25®) — arctan (sinh (25®)) *sinh (25®) < 0 (10.64)

for all ® # 0. Since it is impossible to recover all the information lost due
to a datum’s uncertainty, even by using the (best) estimation process, ie
by following the ideal gnostic cycle, the closed cycle of information changes
is also irreversible.

Residuals of entropy together with residuals of information along with
the quadratic error are depicted in Fig. 10.10 as functions of the additive
error 259.

It is obvious from the graph Fig. 10.8, that the quadratic function (which
is frequently used in statistics as the criterion function) may be interpreted
as a rough approximation of entropy and /or information, but only for weak
data uncertainty. However, this does not hold for the residuals. Indeed,
using Taylor’s expansion and Landau’s symbol, O(x), one obtains from

(10.26)), (9.3), (10.55), (10.59), (10.63) and (10.64) the following approxi-
mations valid for sufficiently small errors S|®|:

E; =2% (SO +0O((S®)Y) E;=—2x(S®)*+0((S®)Y), (10.65)

[;=2%(S®)2+0((S®)) I =—2%(SP)* +0((S®)Y),  (10.66)

op.16c = 4% (S®)* + O((S®)°)  oricec = —16/3 % (S®)* + 0((5(@)6). |
10.67
All these approximations are also shown in Figs. 10.8-10.10.
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Fig.10.10 RESIDUA OF THE IGC
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The non-zero values of entropy and information residuals
(interpreted as the irreversibility of the Ideal Gnostic Cycle) prove a
statement which has a fundamental importance comparable with that of
the Second Law of Thermodynamics:

It is impossible to create a machine to treat uncertain data so, that the
output yields a greater amount of information, than that, which was
contained in input data.

In other words: it is impossible to create an informational perpetual
motion machine.

10.6 Summary

Gnostic virtual movement is a mathematical model of uncertainty’s effect
on data. In this movement, the role of time is taken over by the additive
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measure of uncertainty, the quantification angle ®. This allows both ki-
netics (paths and velocities) and dynamics (behavior of integrals) of the
virtual movement to be considered. A triple of special paths depicts the
virtual movement, which is called the Ideal Gnostic Cycle.

Using the method of the Gedanken-experiment, each datum is endowed
with a portion of energy, some of which is converted into heat flow and tem-
perature. An analysis of the behavior of these energy-like characteristics
of the datum over its virtual movement along the Ideal Gnostic Cycle per-
mits the Q- and E-entropy changes caused by uncertainty to be evaluated.
Analysis of the gradients of the entropies’ fields confirms the favorable fea-
tures of the circular E-path. Performing the estimation by following this
path leads to an integral estimation error which is smaller, than that of
the trivial “antiquantification” path.

An analysis of the sources of the entropies’ fields reveals, that there are
two scalar fields, the sources of which balance the entropies’ sources. The
formal appearance of these fields is reminiscent of probabilistic measures of
information, although only an individual datum is being considered here.
The use of these functions for Q- and E-information changes motivates
the acceptance of their parameters for the determination of a measure of
probability /improbability for an individual datum.

Q- and E-entropies together with Q- and E-information changes mani-
fest interesting features, which are remindful of the integrals of movement
of physics: equations of entropy < information conversion for the second
derivatives of these integrals describe the virtual movement of uncertainty.
Using the integrals, one can prove, that the Ideal Gnostic Cycle is irre-
versible, ie that the damage caused to a datum by uncertainty cannot be
completely eliminated, even by using estimation procedures based on this
cycle. The interpretation of this irreversibility is, that the output can never
provide more information, than was contained in the initial message.



Chapter 11

More on the New Notions

The Gedanken-experiment performed in the foregoing chapter used the log-
ical link datum — energy and/or temperature — entropy. Assume at
this point, that this reasoning provides sufficient justification for the idea
of entropy E. and its formula, [10.26, In contrast, the representations of
gnostic probability, improbability, E-information and Q-information were
derived from the entropy through mathematical manipulation. The pro-
cess used to develop these latter ideas may have appeared complex; the
objective of this chapter is therefore to show, that these newly introduced
concepts are meaningful. In order to solidify the gnostic approach, it will
be helpful to review several ideas from statistics and information theory.

11.1 Parzen’s Estimators and Gnostic Kernels

In [81], Emmanuel Parzen, at Stanford University, expanded the ideas and
results of [I1], [95] and [I15] by developing a series of theorems, which lead
to a solution of the non-parametric estimation of a probability density
function and mode:

Given a sequence of independent identically distributed random
variables X1, Xo, ..., Xy with common probability density func-
tion g(x), how can g(x) be estimated?

To solve the problem, a Borelian function K (a) : Ry — Ry, which satisfies
the following conditions is introduced:

sup |K(a)| < oo, (11.1)
—oo<a<oo
/_OO | K (a)|da < oo, (11.2)

145
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lim |aK (a)| =0, (11.3)
|~ K(a)da=1, (11.4)
(Va € RY) (K (a) = K(—a)). (11.5)
Let S > 0. Then the required estimate may be constructed as
1 XN x— X,
= — K : 11.6
(@) = 55 £ K" (11.6)

The weighting function K(a) has come to be called the kernel and the
estimate is the kernel estimate of the density function. The condi-
tions required for unbiasedness, consistency and asymptotic normality of
this estimate and for the density’s mode (location of its maximum) can
be found in [81]. Seven specific examples of kernels are given there, but
it is obvious, that there are an infinite number of functions, which satisfy
conditions [I1.IHIT.5 However, all possible kernels will not generate nicely
smooth estimates of a density from a small data sample, although these
estimates will still be acceptable from the asymptotic point of view.

The main idea behind the kernel estimation of distribution functions is
simple: Suppose, that the task is to measure X,,,. Any measurement taken
will be imprecise. But if instead of accepting X,, as the real value, an (a
priori assumed) “local” distribution K ((x — X,,)/S) of each possible mea-
surement is used, the kernel K (%) becomes an estimate of the probability
density of the particular datum X,,. From|l1.3]and[11.4] the integral of this
kernel is the probability distribution function of the individual datum X,
which can be written as Pr{X,, < z}. This distribution is conditional on
the fact, that what was observed “really was X,,.” The normalized additive
aggregation of the density distributions of individual data is then
an estimate of the probability density of the data sample X1, X, ..., Xy.
Its integral can be used as the kernel estimate of the common distribution
function of the data sample.

Returning to gnostic theory, the substitution of for ¢ = —1 into
10.42| and using with [9.12] the gnostic probability can be recast in the

form . (1+exp (4(,4140)))1’ (11.7)

S

from which an important statement immediately results:
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Theorem 11:
Let p be as defined in expression [11.7]
Then the (E-kernel)

ﬁ) _ g((exp (2(A — A)/S) + exp (~2(A — Ay)/S)) " (1L8)

satisfies all the conditions of TT.IHT .5l

This easily verifiable theorem leads to an interesting interpretation: ex-
pression is a kernel estimate of the probability density distribution of
the unknown ideal value Ay conditioned by the quantifying result A. Call-
ing p in the “gnostic probability” is justified, because it is a kernel
estimate of the probability distribution of the unknown Aj, which has been
quantified by observation of the individual datum A.

Using the definition of the G-weight, [0.10, one may rewrite [11.§] as
dp(Ao, A, S) = ((£)?) * d(A — Ag)/S, (11.9)

ie as a metric formula of a certain Riemannian geometry applicable for
measuring the distance between points Ay and A, normalized by the scale
parameter S (by integration). Formulae of this type have already been
seen (the general one, [9.14] with a pair of its special cases, [9.17] valid for
measuring errors in the Q- or E- irrelevance). The point is, that the choice
of a kernel for the kernel estimation of a probability distribution/density
can be understood as being the choice of a suitable Riemannian geometry.
The statistical (say: Parzen’s) approach is to require the observer to select
and use one from an infinite set of possible kernels (geometries), which
forces the choice of the geometry to be necessarily subjective. In contrast,
the gnostic kernel is unique for a given datum A and scale parameter
S. The form of the kernel is obtained theoretically by strict mathematical
reasoning from very elemental assumptions, ie in a way, which is more
objective. Data are given objectively and the scale parameter (as will be
shown later) will be determined from the data. It can be concluded, that
the use of the gnostic kernel for the estimation of probability distributions
is more objective, than that of the ordinary Parzen’s approach.

Experience gained from application of this methodology has also shown,
that the gnostic kernel generates surprisingly smooth estimates of proba-
bility densities even in the case of small data samples. Theorem 11 taken
together with Parzen’s theory legitimizes the application of the gnostic ker-
nel even from the statistical point of view. The use of gnostic kernels for
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probability estimation is therefore justified on both theoretical and practi-
cal grounds.

The role of p in expression is further support for the interpreta-
tion of as probability. If one recognizes equation [10.50] as—at least
formally—coinciding with Boltzmann’s statistical entropy of a binary prob-
abilistic system (or as Shannon’s measure of the information of a binary
message appearing on the output of an information channel with the prob-
ability p), the quantity p is confirmed as playing the role of probability.

11.1.1 A Gnostic Version of Parzen’s Kernel?

As just seen, expression can be interpreted as one of the particular
versions of Parzen’s kernels, suitable for kernel estimation of probability
distribution functions and their densities. There are several features of
this expression common to all kernels of Parzen’s type: they all satisfy
a set of conditions through [I1.5). These conditions are necessary
from the statistical point of view—their fulfillment warrants the desirable
asymptotic behavior of kernel estimates as the quantity of the sample’s data
increases without limit. There is no significant advantage to using a gnostic
approach to treat all data samples regardless of the sample’s size and its
uncertainty. The power of gnostics is demonstrated by the application of
the theory to cases, where data are scarce or their number and quality are
limited due to the very nature of the data’s source. The satisfaction of
conditions resulting in “good statistical asymptotic behavior” is therefore
not of vital importance for gnostic kernels. To show, that gnostic kernels
may be viewed as estimators of Parzen’s type at least in some special cases,
is important mainly from a fundamental point of view. It has been already
demonstrated, that the new theory has an important interface with the
well-known results of statistics: the gnostic characteristics of uncertainty
converge to the statistical ones, when there are weak uncertainties in the
data. The estimation of distribution functions directly from data without
appealing to an a priori data model is very important in practice. It is
therefore a comfortable feeling, that the gnostic instruments applied to
these tasks are supported not only by the gnostic, but also by statistical
theory under circumstances, when statistical methodology can be properly
applied.

There are some differences in the application of gnostic kernels from
the statistical ones, which include:

1. Aggregation of kernels, which result in the two kinds of robustness of
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the estimated distribution functions (Chapter 15),

applicability to bounded data supports (see 11.1.2 and 15.2.2),
estimation of bounds of data support (15.2.2),

new methods of scale parameter estimation (16.2),

modifications, which allow censored data to be used (Chapter 19).

AN

On Forms of E-Kernels

There are an infinite number of statistically valid kernels satisfying Parzen’s
conditions, but the ultimate choice is left to the users’ subjective judgment;
however the quality of the resulting estimate—especially of the probability
density—critically depends on the form of kernel chosen.

In contrast, the gnostic kernel is not chosen in an arbitrary manner, but
it is a product of the theory. Indeed, the kernel (called E-kernel) was
obtained by differentiating the distribution function [11.7] of an individual
datum. This elemental distribution appeared as a parameter of the
field’s source of information. In its primary form (defined over infinite
data support), this distribution is uniquely determined for each of the pairs
of its parameters A (the observed datum) and S (the scale parameter). This
distribution may be interpreted as conditional: P{A; < A|A, S}'| The
datum is given and the scale parameter may be estimated from data using
several methods, which will be discussed in the following sections. There
is therefore no subjective element in the preparation of the gnostic kernel
for the estimation of a sample’s distribution or density.

The role of the observed value A as a kernel’s parameter is obvious:
it locates the kernel on the A-axis; it is thus the location parameter of
the kernel. The scale parameter S determines the kernel’s “width:” the
greater S, the stronger the uncertainty, the more difficult to recognize the
true (ideal) value Ay hidden in the observed datum. A statistician would
say, that the scale parameter is determined by the variance. Using the
language of fuzzy set theory, one could say, that the scale parameter is a
measure of the datum’s fuzziness.

All Parzen’s kernels also have parameters, which play the role of location
and scale parameters. However, they also determine the analytical form of
the kernel. The special form of the gnostic kernel is unique because
its origin is connected to the Ideal Gnostic Cycle. We have seen, that by

IThis formulation reads: “the probability distribution of the ideal value Ay given the observed value
A and the scale parameter S”.
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following this cycle, one maximizes/minimizes the effects of uncertainty.
The gnostic kernels thus promise informational optimality:.

Measuring Scale Invariance and Equivariance

One of important features of (scientific) information is, that it is indepen-
dent of the physical nature and other features of the carrier. Indeed, a
message written (in a known language) on a piece of paper bears the same
information as a message transmitted by a (noise-free and non-distorting)
radio channel. The information content of speech is invariant with respect
to strictly linear amplification. It is obvious, that information resulting
from measurement does not depend on the choice of using centimeters or
inches as a measurement unit. It is for reasons such as these, that notions
such as the probability of events and the corresponding information must
be independent of the scale of measurement, which is applied.

Examining the scale invariance of the probability distribution kernel
11.7, which equals the integral of the gnostic density kernel (11.8)), it is
seen, that with an increase in the data scale unit of eg k-times, all values
A, Ay and S change in proportion to 1/k and the value of the probability
remains unchanged. This invariance can also be observed directly
in the definition of the irrelevance (9.6)), which leads to the definition of
probability (10.42). In the same manner, the other most important gnostic
characteristic—the data weight (9.5)—is also seen to be scale invariant.

The notions of invariance and equivariance originated in statistical es-
timation theory. A typical example is the behavior of an estimate of the
location and scale parameters in the case of a change of origin of the data
scale (“the data shift”). Under such a change, the scale estimate found by
the least squares method would be invariant, while the location parameter
estimate would be equivariant (“changing in the same way as the origin”).
The same scale parameter estimate would be equivariant with respect to
the measuring scale. For the gnostic kernel of probability density [I1.§],
it is seen, that its relative form is “data location invariant” (because the
difference A — Ag is not dependent on the location of the origin of the data
axis), but equivariant under changes of the measurement scale (because of
the division of the invariant square of the data weight in by the scale
parameter S, which is equivariant with respect to the measurement scale).
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Infinite Data Support

The set of possible data values can also be called the data support. This role
was played by the set R! of real numbers (in the case of data forming the
additive group) or by the set R, of the positive reals (in the case of data as
elements of the multiplicative group) (see Chapter 1). These sets thus have
the property of infinite data support. Both probability distribution (11.7]) of
the gnostic kernel and its density are defined over the domain R", ie
over infinite data support, which feature is not unusual for Parzen’s kernels.
So, eg, the Gaussian curve (the density of the normal distribution function)
may also be used as one member of the family of Parzen’s kernels. However,
it should not escape the reader’s attention, that the gnostic kernels vanish
significantly faster than the Gaussian ones as the distance of the observed
value A from the location parameter Aj increases. If they have the same
scale parameter (), the Gaussian increases or decreases with increasing
((A— Ap)/S)? proportionally to 1/ exp (((A — Ag)/S)?), while the gnostic
kernel approaches zero as 4/exp (((A — Ay)/S)*). This higher rate
provides a favorable flexibility for the gnostic kernels.

The dependence of the kernel’s form on the scale parameter is demon-
strated in Fig. 11.1 for the case of the infinite data support R'. The data
are thus considered to behave in accordance with the additive property.
The observed value is zero (A = 0) for all three curves, while the scale
parameters (S) take on different values (1, 2 and 5). The vertical axis is
denoted “Probability Density.” In using this term, we must remember, that
the word “probability” in gnostics means something quite different than
in its statistical definition. Here it is “our expectation based on observed
data” and not a parameter from an a priori assumed statistical model.

The curves in Fig. 11.1 depict the dependence of the probability density
on the (unknown) ideal value (Ay) for given values of A and S. They answer
the question: “The observed datum was zero: to what extent could one
expect, that the (unknown) ideal value was close to the number Ay, if the
(known or estimated) scale parameter equaled S7” In the case of a small
scale parameter (eg S = 1), the expected values of Ay are concentrated
closely around the observed data’s value (zero). Increasing S decreases the
maximum density and flattens the density curve. (The areas under the
curves are the same in all three cases because the overall density’s integral
equals 1). Using mathematical language, one denotes these probability

densities as dpc(lﬁ(;’s ), where P is the probability P{Ay < A|A, S}. Note,

that (in this simple case) the location of the densities’” maxima coincide
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Fig.11.1: GNOSTIC KERNELS
Infinite data support, additive data
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with the location of the observed value A. The probability distributions
corresponding to these densities (their integrals) are shown in Fig. 11.2.

It is important to read these graphs properly. So in the case of A =
0, S = 5 (green lines) one reads: “the probability of Ay not exceeding
the value —1 is 0.3” or—equivalently— “the probability of exceeding the
value —1 is 1 minus 0.3, ie 0.7.” The distribution function thus attaches
the probability value 0.3 (and its complementary value 0.7) to the ideal
data value Ay = —1. This relationship along with its inverse is shown in
Fig. 11.2 by the green arrows.

Varying the observed value A, while maintaining the scale parameter
unchanged, merely shifts the kernel along the horizontal axis. This is seen
in Fig. 11.3 for the case of S = 1 and three observed values A (—3, 0 and
3). The kernel’s relative form in this case is invariant. The location of
the kernels is equivariant with changes in the origin of the horizontal axis.
However, such a simple picture is only valid for infinite data support and
additive data.
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Fig.11.2: GNOSTIC KERNELS
Infinite data support, additive data
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It was shown in Chapter 1, that there exist both additive and multi-
plicative data. The typical feature of multiplicative data results from the
character of the structural operation, which creates from a pair of data a
third datum—the multiplicative value. While the additive data tend to lin-
ear behavior, the “natural” behavior of multiplicative data is exponential.
In other words, the multiplicative data, as a rule, cover a broad interval.
One frequently sees samples of multiplicative data, within which data dif-
fer by many orders of magnitude. (Example: the total assets of companies
in a given industry may span an interval ranging from several millions of
US$ through many billions. Another example can be taken from the envi-
ronmental control, where concentrations of pollutants in rivers can differ
by orders of magnitude.) To work efficiently with such data, logarithms
are used instead of the data themselves. (The focus of this discussion is
not on accountancy, which uses the linear scale, but on data analysis.)
A data distribution graph realized as a probability distribution function
of logarithmic data also has its density. However, to maintain the com-
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Fig.11.3: GNOSTIC KERNELS
Infinite data support, additive data
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patibility of graphic representations of probability distributions and their
densities, when a logarithmic datum is employed, the probability density

is represented as
dP dP dA

= ) 11.10
dzy, dAy dZ, ( )
Substituting [11.9] 9.5}, [5.12] and into this relation one obtains
dP 1 4
- (11.11)

dZy (S Zy) ((Z)20)2/5 + (24 2)2/9)%

The division by Z; in this formula has the immediate consequence of shift-
ing the density maximum with respect to the observed datum and changing
the maximal density. This result is obvious as seen in Fig. 11.4, where the
same scale parameter (S = 1) is used for all five curves, which depict
different observed values of Z (1, 1.4, 2, 3 and 5) for an unknown and un-
observable Z; of 1.0. Now in the case of multiplicative data, the densities’
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maxima and the corresponding values of the observed datum are no longer
coincident.

Fig.11.4: GNOSTIC KERNELS

Infinite support, multiplicative data
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It is worth noting, that in all the cases considered above, the density
curves were such, that the probability distribution functions had the S-
form. As has been noted, they differ from the most popular normal
(Gauss’) distribution function (which also are of the S-form) by their much
faster decay. There are many other similar distributions in statistics, how-
ever, probability distributions, which have an “anti-S form” also exist both
in nature and science. They are seen primarily in cases of finite data sup-
port and inner positive feed-back of the object under consideration. The
typical density curve of an anti-S distribution is of the U-form. To es-
timate such distributions and densities, one cannot limit oneself to the
kernels, which have a fixed form. To demonstrate the suitability of gnos-
tic kernels to tasks of this type, it is useful to consider examples of their
behavior over finite data support.




156 CHAPTER 11. MORE ON THE NEW NOTIONS

11.1.2 Finite Data Support

The gnostic model of quantification/estimation was developed for infinite
data support, because this was the immediate consequence of the simple
nature of the basic data structures, which were considered: the additive
or multiplicative groups. However, real data more often exist as structures
defined over finite data supports.

An example may be the structure of the depreciation of the assets of a
group of enterprizes. Depreciation (expressed in percent) is a non-negative
real number not exceeding 100. It is thus defined only over the range of
[0,100]. Another example is the set of market prices for a good. Intu-
itively, one feels, that a price should not exceed a certain value, but it also
would not be expected, that the price would fall below some minimum.
The maximum value is limited primarily by competitive forces, while the
minimum is determined mainly by costs. To survive in such an industry,
all comparable enterprizes must keep their economic parameters bounded
within limits, which are typical for the given industry. Estimating these
bounds from data may be one of the most interesting goals of the analysis.
It is therefore useful to have analytical instruments, which can take into
account these finite bounds for data supports.

A further example is concerned with the existence of a positive feed-
back within the object under consideration, say, an industrial enterprize.
Consider a prosperous company, which suffers through a very bad or even
catastrophic period. The probability of failure for such an institution had
been practically zero until the moment of the event but rises rapidly after-
wards because of the “positive” feed-back: information about the threat
of failure, which may cause the loss of credits, the fall of share prices, the
loss of clients, all of this could accelerate the firm’s downfall. (A feed-back
amplifying the input changes of an object is “positive” only from the point
of view of cybernetics.) If the initial impulse was sufficiently strong and if
an “economic miracle” does not take place, the enterprize’s failure is only
a question of time. In other words, the probability of failure was zero until
a certain moment, but it could increase to nearly 1 beyond some maximal
survival time. The probability distribution may have the anti-S form in
this and other similar cases.

In principle, the generalization of the theory to finite support is not
difficult. Consider a strictly positive unbounded real number Z,, € R,.
Let 0 < L < U < oo and inequalities L < Zy < U and L < Z < U hold.
Both the ideal datum Z; and its observed value Z are thus bounded. To
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prevent a misunderstanding, the bounded values will be denoted Zj f;, and
Zin. Let a transformation 7 : (L,U) <> R, be of the form

Zfin — L
Lo = ——. 11.12
1 —ZinJU ( )
This transformation is regular because its inverse
Lo+ L
Lipin = ———— 11.13
=+ ZJU (11.13)

exists. Moreover, let us consider a pair Z in, Z2, fin € (L,U) of bounded
data such that Z; yin = T Y(Z1.00) and Zy i = T (Zano), where both
21,00 and Zy o are unbounded multiplicative data. Let the structure oper-
ation (the “multiplication” ®) be defined as

Zl,oo ZQ,oo + L
L4+ Z100 Zooo /U’

21, fin @ Za fin 1= (11.14)

It can be easily verified, that the isomorphism between the additive group
(R', +) and the structure (Szf, ®) exists, where Sz is the set of data
defined over the finite data support. The latter structure is thus also the
multiplicative group. This justifies the application of “transformed” results
of the theory of individual unbounded data to transformed bounded data.
Before proceeding to the consequences of the transformation, let us note
several of its aspects.

1. The chosen transformation is not unique, others could be used. The
advantage of making this choice is primarily its analytical simplicity.

2. The rate of convergence of Z, to zero (for Z;,, — L) and to infinity
(for Zyin, — U) is sufficient for applications.

3. Formula has a natural motivation: Z;, — L is the Euclidean dis-
tance of the observed value from the lower bound of the data support,
while U — Zy;, measures the datum’s distance from the upper bound.
The ratio of these distances thus evaluates the “unbalance” caused
by deviation of the Zy;, from the center of the finite data support.
The ratio is computed by dividing by U. This modification does
not change anything in the case of a finite U, because the variable
Z~ always appears in gnostic formulae divided by Zj  (which is the
ideal value transformed to infinite support in the same way). There
are two advantages to this modification:

(a) Formula [11.12| allows both limit cases L — 0 and U — oo.
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(b) This form of the formula preserves the symmetrical behavior of
the density for both Z — L and Z — U:

dAs ldlog(Zy) 1 1 1
= — = : 11.15
(me—L ! U—me) H119)

4. Going from the simple case of infinite data support to finite ones, one
is resigned to relying on Parzen’s theory, which gnostics only uses to
illustrate, that its approach is neither unnatural nor unexpected for a
statistician, at least for a special case. However, the theoretical line
of development of gnostics is independent of statistical ideas and is
applicable to the more general problem of small data samples.

dZpin S dZpin S

The importance of finite data support can be demonstrated by considering
the gnostic kernels, that are generated by the transformation [11.12]

Four gnostic kernels shown in Fig. 11.5 are defined over the finite interval
of additive data (—2, 4) for the same observed datum A = 1 and for four
values of the scale parameter (S =1, 2.45, 4.11 and 10).

The kernels are symmetric with respect to the observed datum, which
is located at the center of the data support. The form of kernels is, at
first sight, unexpected: only two kernels (S =1 and 2.45) have the concave
forms, which are reminiscent of Parzen’s kernels. The kernel for S =4.11
is practically flat over the whole data support, while the kernel for S =10
has the U-form. This variability of form is easy to see through reference
to the formulae. The behavior of the kernels is determined by the product
of two derivatives in the expression

dP AP dApp
dAO,fin B dAO,inf dfélO,fin7

where the first term of the product is and the second[I1.15] Both A and
Ay in the first derivative should now be interpreted as A, and Ag ~, because
they are transformed onto the infinite support by the formula and
Ay =log(Z). For Zy ¢, — U the transformed value Aj approaches
infinity and the derivative |11.16| approaches Soup 4‘20700 75 * U—lzfm' This
is an expression of the type “zeroxinfinity”, the value of which may be
zero as well as infinity—depending on the scale parameter S. The case of
2y, tin — L is symmetric as has already been mentioned. The rate of change
of the density is thus determined not only by the difference Ay;, — Ao, fin,
but also by the scale parameter S, which can even change the character of
the function from the concave form (small S) to the U-form (large S).

(11.16)
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Fig.11.5: GNOSTIC KERNELS
Finite data support, additive data
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It is important to note, how the differences in the kernel’s form are
reflected by the forms of their integrals, the distributions of probability
(Fig.11.6): the S-form (eg with S = 1) can become a linear function
(S =4.11) or even an anti-S form with eg S = 10.

The previous examples were symmetrical, because the observed da-
tum was at the central location, the point Agfi;, = 1. The influence of
the observed datum on the kernel’s form is illustrated in Fig.11.7, where
AO fin = —1.

The peak of the density is close to the observed datum only in the case
of a small value of the scale parameter (S = .5 in the graph). Increasing
S flattens the peak and its maximum approaches the lower bound. Large
values of S change the form of the kernel entirely to a non-symmetric U-
form. The effect of changing the observed datum’s value, while keeping
the scale parameter constant (S = 3), is shown in Fig. 11.8.

The gnostic kernels are parameterized in the general case by four pa-
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Fig.11.6: GNOSTIC KERNELS
Finite data support, additive data
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rameters (Z, S, L and U) or by their transforms. The observed datum Z
(or A) is given. It can be shown, that the parameters S, L and U are easily
estimated from the data. This is the real sense of the gnostic motto “Let
data speak for themselves”. We have seen, that the choice of these parame-
ters provides an extraordinarily rich palette of forms for the gnostic kernel.
All this results in the expectation, that gnostic kernels will be useful to
estimate distribution functions and densities of many forms, and that the
process of finding the necessary parameters will be not only objective, but
also suitable to a high degree of automation.

11.1.3 What About Q-kernels?

The foregoing analysis of gnostic kernels only developed the concept of
the gnostic probability as defined in as p = (1 — h;)/2, where h; is
the estimating irrelevance [9.6] However, as is always the case in gnostics,
there is a dual variable to the probability p, p; = (1 — 4 h;)/2 in [10.42
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Fig.11.7: GNOSTIC KERNELS
Finite data support, additive data
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This duality becomes obvious, when the alternative interpretation of the

probability, p; is used. Consequently, it could be asked, whether
there exists a (Q-kernel (a kernel based on the quantifying irrelevance h;
in a manner analogous to %). The problem is, that the improbability
p; is a complex number, the modulus of which is between 1 and infinity
and we are accustomed to measure expectations with numbers lying in the
interval [0,1]. A transformation of the improbability to the interval [0, 1]
is straightforward, making use of formulae [9.17] and [9.18] from which the

E-kernel [11.8 obtains the forms of
dp

QA cos® (2¢)/S (11.17)
dp -2
A = cosh™* (29)/S5) (11.18)

because of the equivalence cos(2¢) = 1/cosh(2®). This permits the
consideration of the probability p as the function p(h;) of the
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Fig.11.8: GNOSTIC KERNELS
Finite data support, additive data
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quantifying irrelevance h; and of its derivative as a Q-kernel [IT1.18 Such
a transformation appears on the surface to bring nothing new, because
this Q-kernel will be equal to the E-kernel considered above. However,
this is true only for the single kernel produced by an individual datum.
Significant differences will appear in the more general case of distributions
obtained by the aggregation of several kernels. These differences are
caused by the aggregation law, which gives different results, when it is
applied to quantifying irrelevances rather than to estimating irrelevances.
The final effect is, that the distribution functions obtained by E-kernels
will manifest a different robustness than those produced by Q-kernels.
This topic will be considered in more detail later on.

The results obtained, when considering Q-kernels, are thus of a sophis-
ticated nature: although the kernels can be introduced in a manner, which
identifies them with their E-kernel counterpart, (from the point of view of
a single datum), they may also provide different (and useful) results, when
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they are applied to data samples. However, the implementation of gnostic
kernels to data samples is not trivial:

1. The form of the kernels depends on the bounds of the data support as
shown e.g. in Fig.11.8. To get rid of this, it is necessary to transform
the finite support onto infinite one.

2. The weight of a data item applied within aggregating may depend on
the location of this item.

3. The kernels’ scale parameters may be location-dependent as well.

All this is to be reflected in estimating algorithms.

11.2 Albert Perez’s Notion of Information

'To show, that expression can be used as a gnostic measure of the in-
formation brought by an individual datum, it is useful to recall, what the
word “information” means. In general usage it is interpreted as “knowl-
edge or facts” ([80]) or “knowledge acquired in any manner; data; facts;
news; tidings” ([112]). It is the latter interpretations, that are preferred
here, because they are more closely related to the scientific meaning of in-
formation. An example will serve to demonstrate the point. In the simple
sequence, “You have a daughter,” the knowledge, which is imparted, has
a vastly different meaning (value) for a man anxiously waiting on a ma-
ternity ward, than for parents registering a girl for her first day at school.
The message represents knowledge in both cases, but only in the former
case does it impart new knowledge, which decreases the uncertainty of the
person receiving the news.

When dealing with information imbedded in data, a narrower, more
exact notion is needed. What is required is not merely a mathematical
definition, but one, which also includes as many aspects of the idea to be

defined as possible. The following points summarize this approach and are
taken from [84]f]

(1) Information theory is a scientific discipline, the objective of which is
to characterize the abstract notion of a message, without taking into
consideration the various forms, that the message (the signal) may
take, while attempting to remove as many degrading factors (noise)
from the message as possible.

(2) The notion of a message assumes

2Any errors in translation are our responsibility.
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1. the existence of a pair of systems, eg one system representing the
object to be observed and a second one representing the observer
and/or his apparatus’|

2. an interaction between the two systems.

(3) This interaction manifests itself

1. by mutual exchange of energy,

2. by changes in the states of the systems.

(4) Changes in the state of these systems can be explained by changes
in their energy, more specifically by the balance between changes in
entropy and its “counterbalance”, information.

(5) A basic characteristic of the notion of a message is the fidelity of the
image, which is reflected or registered by the receiving system from
the emitting system.

(6) The entropy of the whole system (of both the observed and observ-
ing sides)—in general—increases during transmission, however, the
received information may be reused in partial compensation for this
entropy increase.

(7) The random nature of the disturbance factors prevents the precise
characterization of the interaction between the two systems as a fixed,
unique transformation. The suitable tool is the probability of a real
input value conditioned on the observed value.

(8) To measure any quantity of information, a function satisfying the fol-
lowing conditions is necessary:

1. The function is non-negative.

2. When the value of the function increases
(a) the easier it is to recognize the message,

(b) a more refined (a more detailed) description of the observed
system’s states is available.

3. The function reaches its minimum value, when all of the observed
system’s states are equally probable.

4. The function is zero if and only if the received signal is entirely
independent of the emitted signal.

5. The function’s value cannot be increased by any measurable trans-
formation.

6. The function is additive.

(9) In order to serve a useful purpose in cybernetics, information theory
must demonstrate in a practical fashion, that:

3The “object” is what we call “the ideal quantity”. It plays the role of the input of the information
channel. “Data” are the output of this channel, which add the noise (disturbances and uncertainty) to
the input’s clean (certain) value.
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1. by efficiently suppressing the disturbance factors, it provides a
maximum of information, on which to base a decision,

2. it provides a permanent (adaptive) improvement to the control
mechanism by analyzing the messages, that are received, using
the characteristic features of both the observed system as well as
the disturbances.

This paper ([84]) is an example of the work, to which its author devoted
his professional life in an endeavor to implement a notion of information
theory based on classical statistical principles. It is remarkable, that his
formulations are so comprehensive, that they embrace not only the ideas
stemming from the classical approach, but also are applicable to the gnostic
notions, which are being developed here. A brief comparison of the princi-
pal points set out above with respect to information theory (IT) with the
requirements of gnostic theory (GT) follow:

(1):

(2):

(3):

In GT, the I'T’s “message” is a datum, the “signal” is the datum’s
ideal value and the “noise,” the numerical image of the uncertainty.
These notions take no account of the physical and/or technical nature
of the vehicle, which carries the message. This is demonstrated among
others by equation [11.8] which shows, that the gnostic probability p
depends only on the ratio (A — Ag)/S. The scale parameter has the
same physical dimension as A and Ay. The vehicle, which carries the
message (the data values) may have different physical dimensions (eg
USS$, Volt, ton, year), but they cancel out, when the ratio is evaluated.
Information change I; depends only on the probability p. It is
thus independent of the nature of the carrier of the message.

The gnostic concept is an abstract idea, which results from Axiom
1 (using abstract algebra), and the information formula ((10.52)) is
developed from this axiom by pure mathematical reasoning.

The goal of GT is identical to that of I'T: to minimize the effect of the
uncertainty, which degrades the message (data).

The basic structure of GT is analogous to that of I'T: The observed
system (“emitter” of the message) is the commutative group of real
quantities, the observing system (“receiver”) is given by the commuta-
tive group of observed data. The interaction between the two systems
(“information channel”) is mathematically modeled as the quantifica-
tion process.

The receiver/emitter interactions in the GT’s systems (described in
the previous chapter) cause changes in energy and in (thermodynamic)
entropy, that are evaluated for the different states, that occur. GT’s
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(4):

(5):

(6):

(7):

(8):

realization of the Perez’s third point is preferred over the I'T approach,
because the entropy in GT is a measure of the quality of the signal’s
(the data’s) energy, while in the IT methodology, Shannon’s infor-
mation and Boltzmann’s negative statistical entropy have no direct
relation to the signal’s energy changes.

In GT, the complete balance of (thermodynamic) entropy and infor-
mation results from the analysis of the sources of the entropy field,
which leads to formula [10.62 the mutual conversion of entropy to
information.

The fidelity of the “reflection” (to be understood as the quantification
and/or estimation transformation) of the true (ideal) value is measur-
able using the G-weight and/or G-irrelevance (9.4). These G-
characteristics are closely interrelated: they can be interpreted respec-
tively as the derivative and the integral of the latter and vice versa,
because they can be expressed as trigonometric or hyperbolic func-
tions (see [0.15]). These characteristics really play a basic and crucial
role in gnostics: they are components of the rotation operator (9.2)),
which represents the uncertainty, and they are closely connected with
the metric used for measuring uncertainty (9.15]). These features also
determine the amount of thermodynamic entropy (10.26)), the proba-
bility distribution and density (11.8]) of an individual datum,
the sources of its entropy field ({10.61)), the sources of the datum’s in-
formation field and the information change ((10.58|) caused by
uncertainty.

An entropy increase over the quantifying process, due to observing
interactions (stemming from the uncertainty) of the two systems, is
obvious from with f; (by and ¢ (by [9.8). The fact, that
the entropy increase can never be fully compensated by the results of
observation (by using and treating the observed data), is demonstrated
by the positive value of the entropy residua at the termination of the
Ideal Gnostic Cycle, as computed by equation [10.63]

Although there is no notion of randomness in GT, the emitting to
receiving systems’ interactions (the three stages of the Ideal Gnostic
Cycle) are not described by a deterministic mathematical model be-
cause it is not possible to find the two unknown quantities (Zy and ®)
from the single observed quantity (7). It is for this reason, that the
conditional probability distribution [I1.7] and its density function [11.§]
must be used instead of a one-to-one mapping Z; <+ Z.

The function H(p) [10.50, which is used to evaluate changes of in-
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(9):

formation due to estimation in GT, satisfies the requirements listed
above in items 8.1 through 8.6. This is a direct result of (Shannon’s)
information theory since the formulae used in GT are (formally) the
same functions as in I'T. Moreover, information theory shows, that this
function is the unique real continuous function of a set of probabilities
(eg Pi, P, ..., Py), which satisfies the condition of invariance of its
form, when the probability model is refined by increasing M, ie when
the model is made more detailed, by describing more states.

It will be shown through examples in succeeding sections, that the
gnostic notions of information have practical application in a number
of areas including decision and control as well as adaptive systems.

While Perez’s vision of an ideal information theory (as we interpret it)
as described in the foregoing summary was addressed to statisticians and
to information theorists developing Shannon’s ideas based on statistical
notions of probability, it is also completely replicable by the application
of the gnostic principles, which have been presented. However, the gnos-
tic methods have additional features, which deserve attention, and which
represent useful tools, that are not available in the standard information
theory approach:

e All of the important notions of IT are represented in GT by math-

ematical formulae, which were obtained by mathematical reasoning,
and which immediately connect them to the data.

The notion of Boltzmann’s statistical entropy as well as of Shannon’s
information formula are based on an a priori given probabilistic model
(on a given system of probabilities P;, P, ..., Pys), which describe the
possible states of the system. However, the problem of estimating
these probabilities from the data is external to IT, and has no con-
nection to the data entropy or data information. In contrast, gnostics
presents a joint mathematical model of data uncertainty, data entropy,
data information, data probability and of the Ideal Gnostic Cycle as
an instrument capable of estimating all these characteristics of data
uncertainty.

Both Boltzmann’s and Shannon’s approaches to uncertainty are based
on the standard statistical concept of collective (mass) random events.
Here again, the gnostic characteristics of uncertainty including prob-
ability, entropy and information have been derived to treat an indi-
vidual event (neither a random nor a deterministic occurrence), but
an uncertain one (due to a lack of knowledge about the event’s char-
acteristics).
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e Boltzmann’s formula for a system’s statistical entropy is introduced
by a direct definition of the statistical mean of the logarithmic proba-
bilities of the system’s states. The gnostic notion of entropy, however,
has been derived (using a Gedanken-experiment) beginning with the
more elemental notion of thermodynamic entropy of the Clausius’s
type, which is not based on any probabilistic concept.

e Shannon’s information formula appeared heuristic as the negative of
Boltzmann’s probabilistic entropy. This step was motivated by the
simple idea, that information is something directly opposite to en-
tropy. Once again, in contrast, the gnostic notion of information is
derived by consistent mathematical reasoning beginning with the ele-
mental Axiom 1 all the way to the entropy < information conversion
equation [10.62 The process has shown, that the relation between
information and (thermodynamic) entropy is much more complex. A
conversion law of this nature is not available within the framework of
standard information theory.

e Probability in gnostics was determined as a by-product of the deriva-
tion of information and not as an a priori known notion. This deriva-
tion shows, that probability and information as used in GT are insep-
arably interdependent. This statement is also supported by another
result of GT: Consider product p * (1 — p), which is used in IT as an
alternative measure of information entropy ([111]). In GT it has the
following form:

px(l—p)= I

4 Y

which results from [10.42] [9.4] and [9.3] There is a direct link between

this product and information in GT—formula [I0.51], the reciprocal

of the product is the source of the field of information ((10.50)).
This is another useful linkage, which does not exist in IT.

e Improbability (pj, [10.56) and Q-information (/;, have come
about as by-products of this derivation and these notions extend the
set of usable G-characteristics of uncertainty. All these gnostic charac-
teristics are inherently robust, which permits them to suppress various
kinds of data disturbances with a different intensityf'

e The next chapter will demonstrate how the four gnostic integrals of
virtual movement (Q- and E-entropy, Q- and E- information) are sub-
jected to variation theorems, from which the optimality of the Ideal

(11.19)

4The uncertainty of a datum (from whatever sources), which would be different for each datum, results
in the assignment of a specific weight to the datum.
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Gnostic Cycle is derived. This manner of justifying an estimate’s

optimality, although widely used in physics, is seldom employed in

theoretical statistics.
The unusual notion of improbability deserves a further comment. Unlike
probability, it is a complex variable. A complex characteristic of the un-
certainty of events is known from quantum mechanics—the wave function
of a particle. This quantity is not directly measurable, but its modulus
can be determined experimentally to characterize the expected spatial dis-
tribution of the particle (the spread of its location). This means, that the
exclusion of a complex characteristic of uncertainty from consideration can-
not be based on arguments of a merely formal nature. On the other hand,
QQ-information is a real function, which can be useful due to its special kind
of robustness.

It can thus be concluded, that both the notions of gnostic probability
and gnostic information changes are well justified.

11.3 Why the Least Squares Method (Sometimes)
Works

The notion of “the best estimate” of an unknown quantity from observed
data is closely connected to a definition of “the best”. In mathematics,
“the best” is ordinarily identified with the solution of an extremity prob-
lem. A criterion function evaluates the quality of the desired unknown
quantity’s estimate, and the estimate, that minimizes or maximizes the
function, is accepted as the best estimate. The most popular criterion
function is doubtless the second statistical moment of the estimate or the
mean of the sum of quadratic estimating errors. This relates not only to
one-dimensional estimation but also to multidimensional problems (eg to
regression modeling).

There are several important reasons for the least squares method’s pop-
ularity:
1. It can be well justified theoretically in statistics for a number of sta-
tistical data models:
(a) The least squares estimate may be shown to be a special case of
the broadly accepted estimation method of mazimum likelihood.
(b) The method may yield sufficient estimates, ie estimates, which
make use of all knowledge about the estimated parameter avail-
able in the given data sample.
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(c) The estimate may be efficient, ie its variance may reach the lower

bound of variance among all possible estimates of the given class.

(d) The method yields an unbiased estimate.

It is simple and easily understood.

3. It is a familiar concept because it is taught in basic statistical courses
and explained in statistical textbooks.

4. Its numerical solution is frequently simple because of linearity with
respect to data.

5. Its numerical procedures are available not only in statistical software
packages, but also in spreadsheet programs and even on pocket calcu-
lators.

6. Its results (when they consist of the solution of a system of linear
equations) are unique. No interpretation problems arise in such cases.

N

As always in mathematics, if the theoretical assumptions of the method are
warranted, then the method “works” in the sense, that its results have the
theoretically predicted qualities. Conversely, if the assumptions cannot be
justified, then not very much can be said about the quality of the results.

Interestingly enough, many practicing statisticians can confirm, that
the least squares estimating method sometimes “works” in a practical
manner not only for the “proper” uses, but also for unknown data models.
Moreover, it sometimes works, even when applied to data, which evidently
do not satisfy the theoretical assumptions. This outcome can be explained

theoretically in the framework of gnostics by reference to the results of
Chapter 10.

Indeed, when the absolute value of an (additive) data observation error
S is sufficiently small with respect to the first terms to neglect the second
terms of and [I0.66] then all the characteristics Ej, E;, I; and I
approach quadratic errors. This means, that—in such special cases of
relatively precise data—minimization of quadratic errors also minimizes
both entropy and information changes caused by data uncertainties.

The term “sometimes” used in the heading of this section in connection
with a proper outcome of the least squares method can be now made more
specific; the method can be expected to give good results if at least one of
following assumptions is true:

Statistical: The data model satisfies all the requirements of statistical
theory, under which the applicability of the method is warranted.
Gnostic: Data errors are sufficiently small to neglect the deviation of en-
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tropy and information changes from the quadratic functions in [10.65
and [10.66

Another interesting conclusion can be drawn from and and
is also reflected by [10.67: if the absolute data error is relatively small,
then the Ideal Gnostic Cycle (approximately, up to the fourth power of the
data error) is reversible. The real meaning of this conclusion is, that “ideal”
estimators can exist, which completely remove the entropy increase and the
decrease in information caused by data uncertainty. For other situations,
gnostics is more realistic, showing that a process working in accordance
to the Ideal Gnostic Cycle cannot completely recover the damage done to
data by uncertainty.

From this point of view, the least squares method can be considered an
approximation to the special case of gnostic estimating procedures, justified
only in cases of sufficiently precise data.

The theoretical importance of this section is in that a theory (GT),
valid generally even for gross data errors, has been shown under some spe-
cial constraints (small data errors) to provide not only the same results
as a broadly accepted (statistical) theory, but also to explain and quan-
tify the limits of suitability of the particular statistical method. In other
words, an important non-empty intersection of the two theories based on
substantially different paradigms has been set out.

11.4 The Estimating Characteristics of Uncertainty

It will be useful to summarize the results of the previous sections, at least
for the estimating phase of the Ideal Gnostic Cycle, in a vivid form. The
practical importance of the estimating characteristics of data uncertainty
is in their robustness with respect to outliers. It is this kind of robustness,
that is needed more frequently in applications. This does not mean, that
the opposite kind of robustness—with respect to inliers—is unimportant.
Such robustness (achievable by using quantifying characteristics) is espe-
cially useful for problems, where values of rare large signals are observed
over the noise created by many “false” impulses, which have smaller am-
plitudes. This robustness of quantifying characteristics results from the
analytic form of quantifying weight and irrelevance (9.10| and with
c? = 1) as was explained in Chapter 9.

We limit ourselves at this juncture to the estimating characteristics
because they give a clear insight into the nature of robustness in estimation.
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A study, which includes both kinds of robustness will be examined later
on.

To classify uncertainty by its size, it is useful to introduce the relative
estimating error

Ay — Ay
— S
where A is again the ideal and Aj the observed value of the k-th datum,

and where S is the same scale parameter as before. Four classes of data
errors by size are defined in Tab. 11.1:

5 (11.20)

| Error’s size | Symbol of the class | Approx. bounds |

Very small errors VS 10;] < 0.005
Small errors SE 0.005 < |4;| < 0.015
General case GC 10;| < o0

Extreme EX 10;] — o0

Tab.11.1 Four classes of data errors

Tab.11.2 clarifies the behavior of estimating characteristics with respect
to the size of data error. The bounds were estimated by numerical methods.

Estimation Class of the error
characteristics | VS | SE | GC | EX
Data error 2 % 0; 2 % 0; h; (9.4 —1, or +1_
Data weight 1 | 1—2x%6? fi (9.3 04
Entropy fall 0 —2% 62 | f; —1(10.26 -1,
Probability | 1/2 | 1/2—6 | p (1042 0, or 1
E-information 0 2 % §2 I; (10.52 log(2)

Tab. 11.2 Estimation characteristics of data uncertainty for different
classes of data errors

This small table is worth a careful examination, as it summarizes the
results of the foregoing section. The fourth column (the general case) iden-
tifies each variable with the applicable general formula, which is valid for
an error of any arbitrary size. The other columns contain approximations

obtained for the special cases of data size, which were defined in Table
11.1:
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Very small data errors (VS): The estimating error evaluated by the
irrelevance approaches the value of the relative error, which is one of
the traditional evaluations of the error. (The constant factor 2 does
not play a significant role.) Data weight is a constant, independent of
the error value. All data have the full weight of 1. Probability equals
0.5: all we can get from the datum’s value is, that the unknown ideal
value may be either less or more than the observed data value. This
conclusion does not depend on the data error. Entropy’s changes as
well as information changes are completely ignored.

Small errors (SE): Error evaluation is the same as for very small errors,
but the data weight decreases with increasing squared error—worse
data are getting a smaller weight than the better ones. The proba-
bility of the ideal value is a linear function of the relative error. This
permits a rough characterization of the probability’s dependence to
the error for data values close to the ideal value. The entropy and
information changes are evaluated by the same formula, but with op-
posite signs. Entropy changes are thus completely balanced by the
information changes—the quantification/estimation cycle is (approxi-
mately) reversible in this special case. The quadratic character of both
functions of uncertainty supports use of the least squares method for
data contaminated with small errors.

Extreme errors (EX): The bounds for errors obtainable for gross data
errors and outliers are obtained as limits of the general case (GC) and
are shown in the last column of Tab. 11.2. The most important fact
is, that all estimating characteristics are bounded—an unlimitedly in-
creasing or decreasing data error (outlier) cannot force an estimating
characteristic beyond its finite range. This feature will be shown later
to be the source of robustness with respect to outliers, which charac-
terizes the gnostic estimating procedures.

11.5 Summary

The method of kernel estimation of probability density and distribution
plays an important role in statistics and it is supported by a well devel-
oped theory, that establishes the conditions, under which it is unbiased and
consistent. Its value is rooted in the broad range of distribution functions
and data, to which it is applicable. It has been shown, that the deriva-
tive of gnostic probability functions satisfies all the conditions for use as
a kernel estimate, and therefore the methodology can be used to estimate
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gnostic probability functions. It was also demonstrated, that the gnostic
kernel plays a geometric role and is suitable for use as a Riemannian metric
function for measuring distances (in probabilistic terms) between the ob-
served datum and its estimated value. The concept of gnostic kernels can
be generalized in a natural way far beyond the borders of the statistical
concept of kernel estimation. The great flexibility of the forms of gnostic
kernels extends their applicability to a very broad choice of distribution
functions and densities. All the foregoing justifies the acceptance of the
gnostic probability function.

A general concept of information theory as presented by Albert Perez
(which can be found in the literature) is sufficiently broad, that it can sup-
port not only concepts of information using the usual familiar statistical
probability theory, but it also can accommodate other approaches. When
gnostics is coupled with information theory, not only are the necessary re-
quirements fully satisfied, but a further advantage is gained by the addition
of several features, which are not available, when the usual classical form
is used.

The results of the gnostic theory explain, why the very popular least
squares sometimes works, not only when its application is justified by sta-
tistical theory, but also in more general situations. Gnostics shows, that
least squares methods are nearly optimal, if the relative data errors are suf-
ficiently small. This—both theoretically and practically—important result
is obtained by a detailed consideration of the behavior of gnostic character-
istics. This analysis also documents the robustness of gnostic estimating
characteristics of data uncertainty with respect to outliers or inliers.



Chapter 12

Optimality of Gnostic
Characteristics

12.1 Pragmatism and Theory

A conflicting definition of the notion “pragmatic” is given in [80]:
Pragmatic ... dealing with problems in a practical way rather
than by following theory or principles.

If we are to accept this premise, then all science would be nothing, but a
bare collection of ornaments, which embellish life as we know it. From this
point of view it would be difficult to understand, why the world’s most suc-
cessful industrial companies develop in their laboratories not only applied,
but also basic research on a level frequently honored by the Nobel prize.
Such activities are motivated by more than mere philanthropy. Nuclear
power stations, antibiotics, laser, electronics, communication satellites and
many other examples of recent technologies are all very practical, but they
would not exist without a highly developed scientific background. From
this standpoint, a more suitable interpretation of pragmatism can be found
in [112]:

Pragmatic ... testing the validity of all concepts by their practi-

cal results.

Now there is no contradiction in the notion of a “pragmatic theory”, which
can be defined as being a theory oriented to producing practical results
in the best possible way. This definition is in good agreement with the
popular statement the most practical thing is a good theory.

Gnostics aspires to be such a practical theory; in this context:

Producing practical results is the outcome of data processing, which
serves the needs of praxis by applying the principles of the gnostic

175
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theory of uncertain data.

The best way is determined comparing the results obtained, when a par-
ticular process is examined using different analytical methodologies.
The goal of gnostic procedures is to minimize the uncertainty of the
outcome by optimizing a suitable gnostic characteristic of the data’s
uncertainty. The most important among these characteristics are in-
formation loss and entropy increase. However, depending on the re-
quirements of robustness, other gnostic characteristics, which are in-
herently connected with data information and entropy, can be used.

The notion of the best possible way for data treatment is based on the
theoretically justified limits for the residua of information and en-
tropy changes within the Ideal Gnostic Cycle. The information loss
or the entropy increase caused by uncertainty cannot be completely
eliminated ((10.63| and [10.64]); however, using the theory, one can only
endeavor to obtain results, which are close to the theoretical limits.

Several gnostic characteristics as well as the notions of the Ideal Gnostic
Cycle as a model of quantification and estimation have been developed.
The goal of this chapter is to show, that this theory can be employed as
the starting point for “producing practical results in the best possible way.”

12.2 Gnostic Paths as Extremals

An extremal is a path of integration (one of a set of paths connecting two
fixed points), for which the path integral’s value reaches an extreme value.
The popular belief, that the shortest path between two points is a straight
line connecting the points is based on the hidden assumption, that one
applies Euclidean geometry. However, the use of a different geometry may
lead to a different result.

Indeed, consider a movement between two points (x,y) and (x4 dx,y +
dy) of the real plane R? written as pair numbers z+cy and (z+dz)+c(y+
dy). Applying two simple geometries (the Euclidean and Minkowskian),
the differential of the distance between the points is

= |\/(dx)? — (cdy)?|. (12.1)

Introducing polar Coordlnates, combining [8.31], 8.32] and [8.35] assuming
a constant positive scale parameter, and using ¢ € {j,i}, assuming = >
0,z > |y| expressions

r = 0.(cSQ,) cosh (¢S€,.) y = 0.(c¢S€,) sinh (¢S,) (12.2)
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may be written. (To consider both gnostic paths and alternative paths,
the radius variable g, is taken as a function of the angular variable ¢S¢)..)
Differentiating [12.2] substituting into [12.1) and taking into account the
equivalences

(c € {j,i})(dcosh (¢SQ.) = ¢*S sinh (¢SQ.)d(.)) (12.3)

and
(c € {j,i})(cosh?(cSQ.) — ¢* sinh?(cSQ,) = 1), (12.4)
dA. = |\/do?(cSQ.) — 02d(cSQ,)?|. (12.5)

is obtained. To calculate the length of a path P from a point u, = z,+cy,
to a point wuy, either the path integral

AP =1 Q"““’)Jl - (M) ol (126

0c(ua) do.

or

AP =1 fyi J (qees) - aatesoyl 2

can be used, where g.(u) and SQ.(u) are respectively the radius and angle
of the pair number u. In a general case, the path’s length may be a real or
a complex number.

Due to the nature of the Minkowskian plane, two points can be con-
nected by a continuous line only if both of them are in the same cone of
the plane (1Uj, 2Uj, 3U; or 4U;, see Definition 6, Chapter 10). Hence, we
shall assume in what follows, that all points on any path being considered
are restricted to the same cone. The same arbitrary restriction will apply
in the case of the complex plane because of the one-to-one mapping of com-
plex numbers onto the double numbers introduced in gnostics to represent
the duality of quantification and estimation.

The goal is to show, that three special paths (quantification and es-
timation paths Pg and Pg, introduced in Definition 7 of Chapter 10,
are extremals. For this purpose, alternative paths P*, which satisfy the
following conditions are needed:

1. they are continuous and at least once differentiable,

2. they connect the same (initial and end) points u, and u; as the paths
are subjected to variations,

3. the length of the radius vector () is not necessarily constant,
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4. the radius vector’s angles ¢S(). of the paths’ points are not necessarily

constant,

5. the inequality do? — 02d(cSQ.)? > 0 holds for all points on the path.
Those paths, which satisfy conditions 1 through 4 will be called variated
paths, while those satisfying all five conditions will be boundedly variated
paths.

Applying to the simple special case of straight lines connecting
points u, and uy, the angle ¢S€). is constant for all points on the paths
including the end points, and the second term in[12.6] vanishes. The lengths
under the geometries considered are

Ac(Pr) = |oc(up) — 0c(ua)l, (12.8)

where Py, stands for the non-variated, straight-line connection of the two
points.

For variated paths and ¢ = ¢ the inequality
|0i(up) — 0i(ua)| = Ai(PrL) < Ai(Pr) (12.9)

obviously holds, because the second term added in is nonnegative and
the case of zero variation is not excluded. This relation becomes the well-
known Euclidean variational theorem for straight lines:

The straight line connecting two points on the FEuclidean plane
is the shortest of all variated paths.

However, the Minkowskian case (¢ = j, ¢* = 1) leads to more surprising
results. The positive second term in is subtracted leading to

Aj(Pr) < Ai(Pr) = |oj(w) — 0;(ua)l, (12.10)

where P; denotes an alternative boundedly variated path. The correspond-
ing Minkowskian variational theorem for straight lines thus states:

The straight line connecting two points on the Minkowskian plane
is the longest of all boundedly variated paths.
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It has been shown, that linear paths can model a real (eg inertial) move-
ment, while the circular gnostic paths (orthogonal to paths of real move-
ments) model the quantification or the estimation process, ie the virtual
movement under the action of uncertainty.

Let us now use the integral to consider variation theorems for gnos-
tic circular paths. Both the Q- and E-paths are completely determined by
the theoretical model of an observed datum. Let a particular datum be
modeled by the double number w,, = Zj, exp(S®,,). The radius of the
quantification circular path is equal to the ideal data value |8.32

Ojm = ZO,m; (1211)
while the radius of the estimation path is (by |10.8])
Oiim = Zomy/cosh(25®,,). (12.12)

It is important to note, that Zy,,, S and ®,, are constants for any given
datum, therefore both radii o, (¢ € {j,i}) are constants also. The polar
coordinates of points on the circular paths will be denoted by o. and ¢S€..
Circular paths having different radii are geometrically similar. To analyze
a general case of Q- and E-paths, which have different radii, it is therefore
useful to introduce the relative length of these paths (and of paths obtained
by their variations); this is defined as

Aem = A—m (12.13)

’ Oc;m
where A, is integral taken for ¢SQ.(u,) = 0 and ¢SQ(up) = ¢S .
By substitution of into [12.13

B cSQem i dQc 9
e~y J(@C Tesa) — (5] (12.14)

is obtained.

For a constant radius the first term vanishes and expression [12.14] re-
duces after trivial integration to

Aean(Pe) = /= (¢ 5Qem)?, (12.15)
where P; refers to Pg and P; refers to Pg.

The relative length of the estimation path (¢ = —1) is thus real, while
that of the quantification path is purely imaginary. For a variated E-path
Pi, equation [12.14] leads to the relation

S|om| = Nim(Pe) < Xim(Pr), (12.16)
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because the first term in is non-negative. In the case of the Q-path a
bounded variation of the path does not change the imaginary character of
the relative length. For the moduli of imaginary relative lengths of Q-paths
the relation

[Ajm(PQ)li < [Ajm(Po)li = S|®m] (12.17)

results from [12.14].

This leads to the following variational theorems for gnostic Q- and E-
paths:

Theorem 12: Let P, be a Q-path (¢ = j) or an E-path (¢ = i) of an Ideal

Gnostic Cycle defined in accordance with Definition 7 for an observed

datum, the dual model of which is u,, = Zyexp(j SP,,).

Let P be a variated (for ¢ = 7) or boundedly variated (for ¢ = j) path

defined as above.

Let ¢,, be the angular coordinate, for which relation tan (S¢,,) =

tanh (S®,,) holds.

Then

A. The relative length of the circular E-path Pg equal to S|¢,,| is the
shortest of all variated E-paths Pr.

B. The modulus of the relative length of the Q-path Pg equal to S|®,,|
represents the longest of all boundedly variated paths 7.

These variational theorems, which can be proved even using a more
strict and complete way (see [61] and [101]), have important consequences
related to the interpretation and optimality of the Ideal Gnostic Cycle.

12.3 Extremality of Entropy and Information

12.3.1 Extremality of a Path Integral

Calculus of variations as a method for solving problems of the extremal-
ity of path integrals was motivated by both scientific and practical needs,
especially in the development of physics. It became apparent, that im-
portant laws of physics could be formulated in extraordinarily economical
and elegant forms, which are called variational principles. So, eg the basic
(Newton’s) equations of mechanics (primarily accepted as axioms) can now
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be obtained by assuming the validity of Lagrange’s or Hamilton’s varia-
tional principles [67].

Variational techniques not only serve as an alternative mathematical
language to reformulate known regularities of Nature, but also as an inspi-
rational tool for discovering new relationships.

Variational principles are deeply interconnected with the conservation
laws (such as eg the Energy and Momentum Conservation Law) and with
a special category of path integrals called stationary H As stated above,
if the value of these integrals depends on the integration path, then the
path, for which the integral’s value reaches an extreme value is called the
extremal.

A simple example will illustrate these notions. An artificial satellite
above the Earth can maintain (by inertia, without activating its rocket
drives) an elliptical orbit. The parameters of this orbit are determined by
the initial conditions, which result from the launch process. The orbit is
the extremal, which satisfies the variational principle—the minimization
of the total (kinetic and potential) energy of the satellite (which may be
evaluated by a path integral). No additional energy and no additional
momentum is needed for it to sustain this periodic movement. A deviation
from the orbit (a variation of the path) is possible only by changing energy
and momentum, which results in a deviation from the original inertial orbit
(the previous extremal path).

There is a significant difference between the roles of path variation in
physics and in gnostics. Physics uses variational principles, which repre-
sent formal alternatives to Laws of Nature. These laws were discovered
and then generally accepted, because they did not conflict with experience
and no scientific evidence was proposed falsifying them. However, their
logical status are hypotheses, which have not yet been disproved; this
gives them the same status as basic axioms. In contrast, gnostics proves
such features as vartational theorems, which result from much more ele-
mental and directly verifiable gnostic axioms. However, the mathematical
technique, that applies to the variation theorems of gnostics, is identical
to that, which is used in the case of variation principles of physics.

There are several approaches to the formulation and solution of varia-
tional problems. In Riemannian geometry, the extremal line is called the
geodesic. It can be calculated if the (Riemannian) metric of the space has

LA path integral is called stationary if its value does not change under small variations of the integration
path.
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been determined. Variational features of functionals may also be studied
by direct analysis of integrals and integration paths. This technique was
used in [61] and [101] to show the extremity of gnostic characteristics. The
advantage of this approach lies in the precise and complete characterization
of the neighborhood of the extremal, within which the variational theorem
holds.

It is sufficient for the purpose of this book to make use of only one
simple method based on a well-known classical lemma [67].

Lemma 1:
Let u(t) be a differentiable and initially unknown function R!' — R!.
du

Denote © = q

Let F(u,1u,t) be a given differentiable function R* — R! and ¢; and ¢,
given fixed numbers.

Let I be the integral

I = / (u, @, t)d (12.18)

Then the integral I is stationary if and only if the following condition
is satisfied:
OF <8F >

o o (12.19)

The proof of this lemma can be found in the appendix to this chapter.

If a path is extremal, then the path integral must be stationary, but the
opposite is not automatically true. The stationarity of a path integral does
not directly imply extremity of the path, because there exist path integrals,
which do not depend on the path at all. This is why a determination
of stationarity has to include a demonstration, that the integral really
depends on the path.

12.3.2 Variational Theorems for the Q- and E- Entropy Change

Lemma 1 can be used to show the extremity of the changes in entropy.
Substituting [9.3] into the formula of the entropy change [10.26,

cSQem
Eep= [ " sinh(2c SQ.)d(2c S0) (12.20)
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is obtained, where (). ,, is a fixed pair number and 2, a pair variable. This
relation can be rewritten as

cSQem
En=4 [ " cosh(c SQ.) sinh(c SQ.)d(c S2.). (12.21)
Denoting t = ¢ S, u(t) = 2sinh(c SQ.) and u(t) = 2 cosh(c S.) one has
F(t) = ut and E. = [} F(t)dt, whereby
OF d OF
== = 12.22
ou ' dtou (12.22)

The integral E.,, [12.21|is thus stationary. Consider the integral {12.20| for
a variated path P;:

o= [ sinhA(P2)dA(P))), (12.23)

where P is again P, for ¢ = j and Py for ¢ = i. By applying Theorem 12

(inequalities (12.16| and [12.17)) to integral [12.23] and assuming a non-zero

uncertainty (S€.,, # 0), it can be seen, that for a non-zero boundedly
variated quantification path, the inequality

0<El, < B (12.24)
holds, while for non-zero variations of the estimation path
Eim < E;,, <0. (12.25)

We have thus arrived at the variation theorem for the entropy changes.

Theorem 13: Let E,.,, (c € {j,i}) be the entropy change taking
place within the quantification or estimation phase of the Ideal Gnostic
Cycle applied to an observed datum, the dual model of which is

Um = Zoexp(j SPu,).

Let E7,, be the entropy change corresponding to the variated (c=1) or
boundedly variated (¢ = j) path of the integral for jQ;,, = ®,, and
Z'Qi,m — ¢m-

Let SQ.,, # 0 and let the trivial case of variations identically equal to
zero be excluded.

Then

0< E;-:m < E;n (12.26)
and

Eim < Ef,, <0. (12.27)

The increase in entropy from quantification is thus maximized, when the
integration path Pg is followed. Conversely, if the estimation path is used,
Pr, the entropy decrease is as large as possible.
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12.3.3 Variational Theorems for E- and Q-information

To show in a simple way how both Q- and E-information are subjected to
variational theorems, it is useful to recall equations [10.43|and [10.44] which
describe the relationship between sources of entropy and information fields.

Q-information is obtained by integrating the Q-entropy along the esti-
mation path with a radius of r;. If a variated path r; is used for the same
entropy field, the absolute value of the variated sources of information
increases, because r; < 7“;- by |12.9. Hence, relation

1 1
_(1 _p)p < _(1 _p’)p' <0 (12.28)

m is given for a variated source of information) follows from

(where —

E-information is obtained by integrating the E-entropy along the quan-
tification path with a radius of r;. For this radius relation {12.10] holds.

Relation
1 1

0< — <

(1 - pi)pi (1 - pi)pi
based on [10.45 therefore exists between sources of E-information in the
case of the path Pg and of a boundedly variated path Pg. All the sources

(12.29)

preserve their signs for all values of their parameters (p, p, pi, p;). The
stronger the field’s source, the stronger the field. Relations, which are
valid for the information fields analogous to and also exist
and have been developed for a given (fixed) entropy field. However, due
to the extremality of the entropy fields as shown by Theorem 13, both
the Q-entropy increase and the E-entropy decline are maximal. These
features together with and justify the variational theorem for

information.

Theorem 14: Let 1., (c € {j,i}) be the information change (12.26)
taking place within the Ideal Gnostic Cycle of an observed datum, the
dual model of which is u,, = Zyexp(j SP,,).

Let [ ;’m be the information change obtained for the variated (¢ =) or
boundedly variated (¢ = j) integration path of information’s sources

[10.43] or [10.45l.

Let SQ.,, # 0 and let the trivial case of variations identically equal to
zero be excluded.
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Then

0<I;,, <Iljm (12.30)
and

Ly < Lim < 0. (12.31)

Variational theorems for entropy and information of individual data
represent important results of gnostic theory. They were originally proved
using methods, which differ from those applied in this chapter (see [61] and
[101]). Unfortunately, the technical details of these methods may compli-
cate understanding of the main ideas, which were offered. The objective
of this chapter has been to provide an insight to these thoughts, which is
“as simple as possible, but not simpler.”

12.4 Optimality as a Game with Nature

To reach a desired destination from a given starting point an aircraft needs
a time interval and consumes an amount of fuel, which is dependent on the
chosen path. A detailed knowledge of physics is necessary for a theoretical
determination of the optimum path to be taken. The role of the aircraft’s
crew in trying to maintain the best possible path may be interpreted as that
of men playing a game with Nature. By using its own laws (eg gravitation,
air dynamics), Nature not only impedes the solution of the air transport
problem, but also makes it difficult to follow the optimum path by intro-
ducing pressure disturbances and air turbulence as it makes its moves in
a game played with the crew. A theorist computes the optimum path, a
navigator checks for deviations from this optimum path, and the pilot tries
to eliminate the deviations. Moves “against Nature” are more successful
with better knowledge of both Laws of Nature and the true position of the
aircraft.

A similar “game model” may be applied to data processing by repre-
senting Nature’s move as the introduction of disturbances into the quan-
tification process. A data analyst’s “counter-move” is the application of
an estimation method, which minimizes the “costs” imposed by the un-
certainty contaminating the data. Gnostics provides data analysts with
a detailed theoretical description of this game, the Ideal Gnostic Cycle.
Theorems 13 and 14 describe Nature’s “strategy”—to maximize data en-
tropy and to minimize data information by following the Q-path of the
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IGC. Nature’s game is thus crafty and refined, but it is always played ac-
cording to honest fixed rules. The same theorems show, that the entropy
increase and the consequent reduction in information can be minimized by
using the E-path. This is thus the best “counter-move.” We already know
from Chapter 10, that Nature always wins in its play with men: residua
of entropy and information changes within the Ideal Gnostic Cycle can-
not be completely eliminated. However, the amount of uncertainty can
be decreased by using better measuring techniques and by identification
and elimination of factors, which contribute to data uncertainty. There are
therefore two ways of improving the results of the information game with
Nature:

1. To maximize data quality by improving observation, identification and
measuring techniques.

2. To maximize information obtained from given data by improving data
processing techniques.

While the first task is self-evident, the second one is far from trivial. There
exist many data processing methods; and all of them are based on a model
of uncertainty. Statistical ideas have dominated this field for centuries,
but recent doubts about the universal applicability of statistics (eg as dis-
cussed by [22], [42], [44], [70], [72], [75] and [44]) have brought about the
present state of the art, which can be characterized as a highly structured
competition between models of uncertainty and methods based on these
models. The paradigm based on the gnostic theory of uncertain data is
also one of those competing ideas. It is not likely, that there will be a
clear winner; it is more probable, that suitable methods based on different
approaches will be found to solve specific tasks. But, among these, the
challenge represented by the gnostic model of uncertainty, which explains
the “mechanics” and “physics” of uncertainty and culminates in unique
variational theorems should not be left out.

12.5 Summary

Unlike physics, which uses variational principles to reformulate its axioms,
gnostics develops variational theorems from its much more elemental and,
in principle, experimentally verifiable axioms for the paths of gnostic vir-
tual movement and for entropy and information changes caused by data
uncertainty. Gnostic variation theorems relate to the phases of the Ideal
Gnostic Cycle and state, that

1. The quantification and estimation paths are extremals:
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(a) the relative length of the quantification path represents the max-
imum from all the boundedly variated paths,
(b) the relative length of the estimation path is the minimum of all
variated paths.
2. For a given individual datum
(a) the entropy increase caused by data uncertainty reaches its max-
imum, when the quantification process follows the extremal Q-
path,
(b) the datum’s entropy falls to a minimum, when the estimation
process follows the extremal E-path.
3. For a given individual datum
(a) data information is minimized under the effect of uncertainty,
when the quantification process follows the extremal Q-path, and
(b) data information rises to a maximum, when the estimation process
follows the extremal E-path.
The variational theorems have shown, that the Ideal Gnostic Cycle can be
used as the optimal path to be followed by the data processing algorithms
to minimize the effects of data uncertainty.
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12.6 Appendix to Chapter 12, Proof of Lemma 1

Since knowledge of calculus of variations is not in everyone’s tool-box,
a sketch of the proof is included here to facilitate understanding of the
principal steps and the results of the chapter, [67]:

Proof of Lemma 1:

Let I be the stationary value of integral [1 m corresponding to the path P, and I’ the
integral’s value obtained for a path P" modified by & — variation, in the following way:
assume, that a point (t,u+du) of the variated path P’ is attached to each point (¢, u) of
the path P. The variation is arbitrary, but sufficiently small and subjected to boundary
conditions

du(ty) = du(ty) = 0. (12.32)

This variation may be expressed as
ou = Ya, (12.33)

where « is a parameter defined over the path and ¥ is an arbitrary function of ¢, for
which
I(t1) = I(tg) = 0. (12.34)

The corresponding variation of the derivative w has the form
Vi = Do, (12.35)

where 9 denotes the derivative 4 dt Since the variations are small, the integrand F'(u, 1, t)
can be expanded into a Taylor series using only the first terms to obtain the mtegral
I =1+ 61 for the variated path as

A OF OF .
I _/tl [F(u,i,t) + 5060 + - dsaldt (12.36)

After integration by parts applying [12.34] one obtains

t OF . d OF
[ G et = /tl . (12.37)

The integral’s variation is thus

b (OF d OF
5 = da /t (au - = m)) 9dt, (12.38)

which will be identically zero for an arbitrary function ¢ if and only if [12.19| holds.
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Chapter 13

Aggregation of Uncertain Data

To this point the (gnostic) answer to the question, “How should the uncer-
tainty inherent in the observed value of an individual datum be measured?”
has been derived and justified. It has been shown, that the task of mea-
suring uncertainty is far from a trivial effort, and that it is a long way
from what might be considered a common sense approach. Now with the
background of the gnostic theory of individual uncertain data, a second
significant question can be posed:

Data aggregation problem: Given a sample of data, which are the
results of (a real) quantification of a fixed (“ideal”) quantity: how should
be the individual uncertain data and/or their characteristics aggregated
to obtain those quantitative characteristics of the data sample, which
will be useful in estimating the ideal quantity?

This is another seemingly trivial question, which is likely to motivate a
non-trivial exploration of a range of issues.

13.1 Data Aggregation in Statistics

13.1.1 Linear and Nonlinear Weighing

It is useful to distinguish between classical and robust statistics: the latter
notion is used extensively to describe statistical methodologies, which do
not require the analyst to use a specific data model, but permit a broader
class of models to be employed instead. The results of robust methods are
therefore less sensitive to deviations of real data behavior than those, which
rely on classical models. The practical application of statistical methods is

191
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thus enhanced at the price of an acceptable loss of efficiency [33]. We will
use the notion of “classical” statistics to denote “pre-robust” methods.

A well known data aggregation problem in classical statistics concerns
estimates based on data taken from several samples, which have different
variances. It is an easy exercise to show, that eg an estimate of the mean
of all the data (obtained by a weighed data sum) has the smallest vari-
ance, when the weights are the reciprocal of the relative variances of the
respective data sources. The same weights must also be used to estimate
the weighed mean’s variance as an additive aggregation of the variances
of each of the individual data sources. These and similar procedures are
worth further comment:

1. There is no connection between the uncertainty of a particular datum
and its weight. The source of the weight, which is applied to the datum
is the variance, a “collective” characteristic of all the data from the
same source. The particular datum’s uncertainty has only an partial—
through its contribution to ’collective’ variance—and limited role in
the determination of its own weight.

2. The use of constant weights for the additive aggregation of data and
of the squared deviations from the arithmetic mean (used in the es-
timation of the ordinary mean and standard deviation) is a special
case, that is justified only when the variance of the data is assumed
to be the same for all subsamples of the treated sample.

3. The additive aggregation of data and of the data squares is based on
a FEuclidean measure of data errors.

4. The data aggregation methods for robust statistics are derived in an-
other way. The data weights, which are applied, depend on the errors
of individual data, which in turn are dependent on the statistical mod-
els of the data, that are believed to apply. These are based on a priori
assumptions about the data, which differ from the assumptions of
classical statistics.

There is an alternative (geometric) interpretation of the nonlinear weighing
of errors used in robust statistics. Indeed: errors are distances. A distance
can be thought of as an interval additively aggregated of subintervals. The
sum of the lengths of each subinterval measured along a straight line using
Fuclidean geometry is equal to the difference between the interval’s end
points, independent of the location of the subinterval within the interval.
The total length, that represents several Euclidean errors, is obtained by
the addition of the length of each individual error; they enter the sum with
the same (unitary) weight. The result of such a aggregation is therefore a
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linear function of the end points of each interval. In contrast, when using
Riemannian geometry, the lengths of the subintervals in an interval depend
on the location of the subinterval. This causes the aggregation law of errors
to be a nonlinear function of the end points of the individual intervals.

Therefore, the data-dependent weights typical in robust statistics can
be viewed as an application of a non-Euclidean geometry. A mathematical
purist could become concerned about the mathematical consistency of ro-
bust statistics, as a structure built over classical statistics. Both approaches
have been presented as being based on probability theory, however, prob-
ability is defined as an additive measure. It can be said, that statistics
evolved from Euclidean geometry. Is it then legitimate to ask, whether
it is (mathematically and philosophically) correct to apply non-Euclidean
concepts within the framework of a theory, which has been grown from
a Fuclidean seed? This contradiction is fortunately not a problem with
gnostic theory, which has not hidden its close connection with Riemannian
geometry.

The data aggregation method used in classical statistics is also inter-
esting, but from another point of view. What might be the origin of the
additive aggregation of errors and their squares?

13.1.2 Newtonian Aggregation

Consider a group of N “small” material objects from the point of view of
classical (Newtonian) mechanics. The mass of the k-th object will be my,
and the projection of its velocity on a coordinate axis is v;. The momentum
of this object is thus myvy, and its kinetic energy is myv3 /2. Because of the
linearity of Newton’s equations, the moments may be added so that it may
be concluded, that if there are no forces acting on the objects, the sum
of the moments (as well as the sum of kinetic energies) of all the objects
is constant. Newton’s equations are thus equivalents of the (Newtonian)
Conservation Law. It is important, that the validity of this Law of Nature
(for sufficiently small velocities) had been supported by experience over
several centuries. If it is desired to find an object with a mass

N
me = Y My, (13.1)
k=1
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which is equivalent to the mass of a series of smaller objects in the sense
of classical mechanics, then the velocity of this equivalent is equal to

1 N
= — Z mrvg. (132)

and the kinetic energy of the equivalent object is given by

N
mev?/2 =3 mpvi /2. (13.3)
k=1

The aggregation preserves the sum of masses [13.1, moments [13.2] and
kinetic energies [13.3]

Suppose, that a smooth curve, X(¢), is to be fit to a series of obser-
vations, x(t1),...,z(ty), which represent the movement of an object. The
observation errors, ey, evaluated in the Euclidean way are X(t;) — x(t)
and their impact on the result is wy, (the manner, in which the weights are
determined, is not important).

Inspired by the idea of Newtonian aggregation, the objective is to create

a single, aggregated error equivalent to the sum of all N errors. Therefore
the linear mappings

WE = Klmk (134)

and
€ = K2Uk (135)

are introduced. Each weighed error wyiey is thus attached to the momentum
myvk and the weighed quadratic error wkez to twice the value of the kinetic
energy myvi. It is then logical to attach the equivalent momentum

Z WCk (13.6)

MeVe =

K1K2

to the sum of weighed errors, and the equivalent energy

mev?/2 =

2K1 K2 Z wye: (13.7)

to the sum of weighed error squares. For a scientist accustomed to see-
ing the world through Newtonian glasses, the best fit of the smooth curve
will minimize the equivalent energy of the fitting errors under the con-
straint, that the equivalent momentum of fitting errors is zero. In other
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words, the requirement is, that the sum of the weighed squared errors be
minimized, while keeping the sum of weighed errors equal to zero.

From the initial idea of the Conservation Laws of classical mechanics, we
have followed a path, that has lead to the family of unbiased least squares
estimates of classical statistics. This was not a particularly roundabout
trip, for before the specialization and compartmentalization of the various
scientific disciplines, researchers pursued interests in many branches: me-
chanics, astronomy, mathematics, etc., so that these ideas were not followed
by a single individual, but very likely by several working independently,
and over an extended period of time (Mayer, Euler, Laplace, Legendre,
Gauss and others). The point is, however, that the methodology was de-
veloped to explain natural phenomena, ie, some perceived Laws of Nature.
Among the objects of interest of these scientists an important role belongs
to fitting smooth parameterized curves (eg ellipsis) to observed astronomic
data. The idea of measuring the fitting errors by moments and energies
was thus under then existing conditions natural. And these scientist were
among founders of statistics . ...

CLASSICAL MECHANICS
An object's Additive Conservation Law Sum of momenta =
momentum D Jor momenta I: total momentum
| CLASSICAL STATISTICS L
Errorvof an indi- Additive Aggregation Law I: Aggregated error =
vidual datum E Jfor data errors sum of data errors

Fig. 13.1 Classical aggregation of momenta and errors

CLASSICAL MECHANICS
An object's Additive Conservation Law Sum of energies =
energy D for energies D total energy
Mi' Me'
Y7 CLASSICAL STATISTICS
Squared error of Additive Aggregation Law [ Aggregated error =
an individual datum D Jfor squared errors sum of squared errors

Fig. 13.2 Classical aggregation of energies and squared errors

The thought behind this ‘mechanical’ explanation of statistical aggre-
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gation can be summarized using the commutative diagrams (Figs. 13.1 and
13.2). The simple mapping M4 in Fig.13.1 defined by [13.4] and [13.5| de-
picts the mechanical momentum of an object onto the weighed error of an
individual datum. Mapping Me illustrates the mechanical equivalent of
the moments of all the objects—the sum of all moments—on the equiv-
alent of all the errors. To ensure the commutativity of the diagram (the
equivalence of the result of the transformation of individual momentum —
total momentum — aggregated error with that of individual momentum —
individual error — aggregated error), one also has to choose the additive
aggregation law for data errors. It is obvious from through [13.6] that
the mappings Me and M7 cannot be chosen independently of each other).

Fig. 13.2 is an analogous commutative diagram for energies and squared
errors. An important feature of the mapping of mechanics into statistics
is its invariance with respect to the group of linear transformations of the
coordinate system moving with a constant velocity.

Another possible inspiration of statistics from mechanics is covariance.
In statistics, it is the mean of the product of two centralized random vari-
ables. In mechanics, a similar expression exists, and it evaluates the in-
ertial moment of a rotating body. A popular aid for the visualization of
multivariate correlation—the correlation ellipsoid—also has as a possible
mechanical predecessor: the ellipsoid of inertia.

The link between classical mechanics and classical statistics demon-
strated above undoubtedly exists, although it does not exclude other moti-
vations for the additive data aggregation law, ie the aggregation of adding
data, linear data errors, and squared data errors. So, eg, mathematicians,
who might prefer the use of only a pure mathematical explanation can
recognize the source of the mapping in the linear and quadratic character
of the statistical and mechanical variables. The above discussion is not
meant to imply, that the pioneers of statistics simply copied the mechanics
of the time to create the basic notions of statistics. The only real connec-
tion is, that these similarities really exist and they provide solid support
for the additive aggregation of data, errors and squared errors; however
the common roots of this link lie with its geometry. This comes from not
only that the notion of linear errors is based on Euclidean geometry just
as the notions of classical mechanics, but also from the fact that Galileo
made an important contribution to both mechanics and also to Euclidean
geometry, which is not as well known as his other contributions to scien-
tific knowledge. The notion of time was not considered in geometry until
Galileo explicitly formulated the idea of “time-homogeneous” space, which
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is equivalent to the assumption of an unlimited speed of light ([I18]). This
assumption, of course, existed before Euclid’s formulation of geometric ax-
iomd'] but it was hidden and accepted unaware of its origin. History has
shown, that some of the greatest scientific revolutions were preceded by
the explicit statement of assumptions, which had heretofore been implic-
itly accepted. Later developments in physics rejected the implicit idea of
the time-homogeneous space and lead to relativistic mechanics with aggre-
gation laws, which substantially differed from those of classical mechanics.
Given all of these parallels, it is not unnatural to expect, that the aggre-
gation of uncertain data also requires substantial parallel revision.

13.2 Aggregation Axiom of Gnostics

13.2.1 Motivations

The decisive impetus for a substantial revision of both the mechanics and
geometry of real space resulted from experiments, which proved the finite
speed of light. Instead of a time-homogeneous purely geometric space
it became necessary to consider space-time along with its non-Euclidean
geometry. Relativistic relations respecting the finite speed of light appeared
to be invariant with respect to the Lorentz’s group of transformations of
all inertial (moving with a constant velocity) coordinate systems. Thus
this single physical fact determined both the geometry to be used as well
as the class of transformations, which describe the underlying processes.

Gnostic theory, which models entirely different processes of quantifica-
tion began from yet another experience resulting from quantitative observa-
tion and the measurement of natural processes: real data form a structure
manifesting the features of a commutative group. In developing this idea,
we arrived at data uncertainty models, which are in a close (linear) relation-
ship (7.10, Theorem 5) with the energy-momentum tensor of relativistic
mechanics. Major features of this relation need to be emphasized:

1. it has been derived for individual free relativistic particles and indi-
vidual uncertain data,

2. it holds for all pairs joined by the mapping condition v/v, = tanh (®)
and it is therefore Lorentz-invariant,

3. it is linear.

The relativistic Conservation Law states, that the energy-momentum ten-

L About 300 B.C.
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sor of a group of free particles is equal to the sum of the tensors of the
individual particles; moments as well as energies are thus aggregated ad-
ditively. The invariance of the relation with respect to Lorentz’s
transformations warrants its universality. Addition of the left-hand side
of this relation results in the addition of matrices M (0,2®). These matri-
ces contain the weights and the irrelevances of individual data. The sum of
moments and energies of particles correspond to the sum of quantification
weights and irrelevances. Both the quantification weights and the quan-
tification irrelevances of individual data are thus aggregated additively. If
one accepts the Conservation Law of relativistic physics, then—so as not
to give rise to a mathematical contradiction—one have to accept the ad-
ditive aggregation law for both weights and irrelevances of uncertain data,
at least for quantification.

Commutative diagrams in Figs. 13.3 and 13.4 illustrate the idea in the
same manner as for classical mechanics and statistics (as was shown in
Figs. 13.1 and 13.2). By appealing to well known principles of physics,
there is no need to introduce the aggregation law for the quantification
phase of the Ideal Gnostic Cycle as an axiom. However, the gnostic the-

RELATIVISTIC MECHANICS
An object's [ Additive Conservation Law Sum of momenta =
momentum Jor momenta D total momentum
Li Le
7 GNOSTICS L
Irrelevance of an [ Additive Aggregation Law Aggregated irrelevance
individual datum for irrelevances |> = sum of irrelevances

Fig. 13.3 Aggregation of relativistic momenta and of gnostic irrelevances

RELATIVISTIC MECHANICS
An object's Additive Conservation Law Sum of energies =
energy D Jor energies = total energy
Li' Le'
Y7 GNOSTICS K7
Gnostic weight of Additive Aggregation Law Aggregated weight =
an individual datum D Jfor gnostic weights = sum of gnostic weights

Fig. 13.4 Aggregation of relativistic energies and of gnostic weights of data
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ory of individual data has been developed as a mathematically consistent
theory from Axiom 1. Knowledge from other sciences (measurement the-
ory, thermodynamics, mechanics) was used only as motivations to support
the mathematical definitions. To maintain the mathematical autonomy of
gnostics, it is desirable to accept the relation [7.10| again as a motivation
and to introduce the aggregation law of uncertainty as another axiom. The
case of estimation also gives reason to proceed in this manner.

There is a one-to-one mapping between quantification and estimation
models of each uncertain datum induced by the relation of trigonometric
and hyperbolic tangents [8.36] However, this relation does not map the
group of Minkowskian rotations onto the group of Euclidean rotations. It
can be easily seen that the mapping of individual angles considered does
not result in the same mapping for their sum. The aggregation laws for
estimation irrelevances and weights do not result automatically from those
accepted for quantification. One must therefore look for other reasons to
choose the estimation version of the aggregation law. The simplest idea is:
to take over the additive aggregation law from quantification and to ap-
ply it to estimation. There are conditions, which support this idea: both
quantification and estimation weights were interpreted as linear functions
of thermodynamic entropy, which is an additive quantity. Both quan-
tification and estimation irrelevances are derivatives of the corresponding
weights. Hence, additive aggregation of weights results in the additive
aggregation of irrelevances.

Other factors, which support the idea of the same aggregation law for
quantification and estimation are of a formal mathematical nature. Both
types of data models form special structures, 2-algebras of double and
complex numbers. Addition is a defined operation within these algebras.
Moreover, the similarity between these structures allowed pair numbers
to be used and this lead to the formally identical appearance of both the
quantification and the estimation formulae. To preserve this advantage and
the formal unity, it is natural to accept the same—additive—aggregation
law for both kinds of weights and irrelevances.

In order to formulate the aggregation axiom, it is necessary to describe
precisely, what shall be understood to be a data sample.

13.2.2 Data Sample

In statistics, the notion of a sample is used together with the notions of
population, parameter and statistic ([110]):
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e A population is the complete and entire collection of elements (scores,
people, measurements, and so on) to be studied.

e A parameter is a numerical measurement describing some character-
istic of a population.

e A sample is a subset of a population.

e A statistic is a numerical measurement describing some characteristic
of a sample.

Because of the substantial difference between the mathematical models,
the role played by population in statistics can be only approximated by
the set of possible data in gnostics. As we have already seen, the gnostic
model of a set of possible data is the commutative group, while the most
frequently used model of a statistical population is a much more complex
structure, the sigma-algebra. Notions of samples are therefore also differ-
ent. Statisticians require, that a sample be more than an arbitrary subset
of a population; they assume, that the sample has been obtained from the
population by a purely random selection. There is no randomness in gnos-
tics and no random selection. Instead, a sample is a finite collection of
uncertain data obtained by the quantification processes. They all are as-
sumed to satisfy gnostic Axiom 1. Each of the data has a theoretical model
of the type shown in Chapter 5. A sample may include data obtained by
the quantification of several (say, L) ideal quantities. To characterize the
effect of uncertainty on all the data aggregated into the sample, the char-
acteristics of the sample’s uncertainty must be obtained. The treatment
of data samples will be the main task of the remainder of Part II of this
book. A detailed definition of the important notion of the data sample in
gnostics follows:

Definition 12: Given an integer number L (L > 1) of N(I)-
tuples of multiplicative data Zi(l), ..., Zy()(l) having models Z;(l) =
Zo(D)exp (S()®x(1)) (k = 1,..,N(l), | = 1,...,L), where ®, € R!, and
where Zy(l) and S(l) are positive reals, constant for each fixed .

Denote
ZI(N(), Zy(1),S(1)) = (Z1(1), ..., ZN(Z)(Z)> (l=1,...,L). (13.8)

This N(I)-tuple is the sub-sample or cluster.
The L-tuple

Z(L) == (Z21(N(1), Zo(1),5(1)), ..., ZL(N(L), Zo(L), S(L)))  (13.9)

is the data sample. A data sample with an unknown number L of sub-
samples will be denoted Z.
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A data sample will be called homogeneous ifft L = 1. A data sample
with L > 1 is heterogeneous.

Let N = 2N, N(I). Let <_1,_2, ...) be such a sequence of mappings,
that for all integers N relation =y : RY — R! holds. Denote

g (1) == (Zp()) | Zo()YSD (k=1,..,N(l), I =1,...,L). (13.10)
The value of a function

=En(Z(L)) = En(@(1), - avy) (D), s (L), vy (L)) (13.11)

is the gnostic characteristic of the data sample Z(L). Such a character-
istic will be additive, if the relation

Exn(Z(L)) == Ex(Z(L)) +<(avq (D) (13.12)

(where [ is an integer from the sequence 1, ..., L) holds for a function
s: R, — R.

Let for and hey, (c € {4,i}, k =1,..., N) be the weights and irrelevances
of all N data forming a data sample Z(L). The gnostic characteristic
F.(Z(L)) is the weight of the data sample Z(L), if it is a function of the
weights of the data in the sample. Similarly, the characteristic H.(Z(L))
is the irrelevance of the data sample Z(L), if it is a function of the
irrelevances of data in the sample.

13.2.3 Axiom 2

We are thus prepared to accept following aggregation axiom:

Axiom 2 (axiom of the additive aggregation law): Let Z(L) be a
data sample [13.9) aggregated of IV data weights and irrelevances f. and
hey (c € {j,i}, k=1,...,N). Then the weight F.(Z(L)) and irrelevance
H.(Z(L)) of the data sample Z(L) are

1 X 1 N
F(Z2(L)) = N{:fc,k H(2(L)) = N{: (13.13)

Both the weight and the irrelevance of a data sample are additive gnos-
tic characteristics of the data sample. In consonance with the motivations
discussed above, these characteristics have the same form for both quan-
tification and estimation.
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The definition of gnostic characteristics is more general than that
of the weight and irrelevance set out by Axiom 2. While other characteris-
tics will be useful in the development of what follows, the aggregation law
13.13] is of fundamental importance in defining the gnostic theory of the
data sample.

It is emphasized, that the number of data N in a data sample is finite.

13.3 Summary

The additive aggregation law for data, errors, and squared errors commonly
used in classical statistics can be justified by the formal coincidence of the
basic statistical notions with those of classical mechanics. A weighed linear
error is analogous to the momentum of a freely moving mass particle, and
the square of this error corresponds to the particle’s kinetic energy. The
aggregation law for moments and energies is known, and it results from
the Energy and Moment Conservation Law of classical mechanics. To
complete the analogy and to show the strong support from mechanics to
statistics, the additive aggregation law for statistics also must be accepted.
The similarity of classical statistics to classical mechanics has deep roots,
which are derived from the fact, that both theories are based on the same—
Fuclidean—geometry.

Just as it was seen in the gnostic theory of individual uncertain data,
there is also a close formal relationship between the weights of data and
their irrelevances on one hand and moments and energies of freely moving
relativistic particles on the other hand. These relationships have a univer-
sal validity in the sense of Lorentz’s invariance: they exist independently
in a broad class of coordinate transformations. To preserve the validity of
these relationships for data samples, one has to accept the additive aggre-
gation law for both the gnostic weights of data and the data irrelevances.
This choice provides support for a aggregation law of uncertainty from the
Conservation Law of relativistic physics. The additive aggregation law for
both the quantification and the estimation of data weights and irrelevances
is accepted as Axiom 2 of gnostic theory. The similarities between gnostics
and (special) relativistic mechanics comes from the fact, that both theories
have common origins in non-Fuclidean, Minkowskian geometry.



Chapter 14

Gnostic Characteristics of a Sample

14.1 The Modulus of a Data Sample

The data composition axiom defined the weight and irrelevance of a data
sample. From these basic gnostic characteristics, a number of other impor-
tant features of a sample can be derived so as to describe its uncertainty.
Definition 12 introduced the notion of a data sample, which included
data with different scale parameters, so that the k-th datum’s uncertainty
was S .. So as to preclude the necessity of specitying particular scale
parameters, unless it is otherwise noted, Q}{,C = Si{; will be used to
describe the uncertainty of individual data in this chapter.

Definition 13: Let ¢ € {j, i}. Let Z be a data sample, the weight and
irrelevance of which are F, and H,.. Denote

1
Qg = ;argtanh(c H./F,), (14.1)
c

where the symbol argtanh(x) represents the inverse of the hyperbolic tan-
gent, so that ¢ H./F, = tanh(2c¢ Qz.).

The pair number

ez = exp(2c§z.), (14.2)
the components of which are denoted by
fze=cosh(2¢Qz.) and hyz.:=1/c sinh(2cQyz,.), (14.3)

is the equivalent of the data sample Z.

Then the ratio
MZ,C = Fc/fZ,c (144)

will be called the modulus of the data sample Z.

203
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It is obvious, that both pair numbers
Ez.:=F.+cH, (14.5)

and ez, characterize the uncertainty of the data in the sample. They
each represent the overall uncertainty of the sample, but in a different
manner. Unlike the pair number Ez., the data sample’s equivalent is
normalized in the sense, that |ez.|. = 1. It is therefore an operator rotating
a vector by the angle €17 ., which is composed of all angles Qlcjk, and which
represents the data of the sample (kK = 1,...,N). The composition rule
for angles results from the composition axiom [13.13] The argument of the
pair number Ez, is the same as that of ez, but the modulus |Ez|.
generally does not equal 1, because the arithmetic mean of sines (cosines)
is not necessarily a sine (cosine) function.

14.2 Some Forms of the Data Sample’s Modulus

The modulus of a data sample can be presented in several forms.

Theorem 15: Let ¢ € {j,i}.
Let Z be a data sample of data 7, (k=1,...,N).
Let the pair models of the data be

u = |uglc(cosh (¢ Q/Ck) + ¢ sinh (c Q;k)), (14.6)

where

wple = Zoj  (k=1,...N), (14.7)

and where the parameters Sj in Q;C,C := Sip{d; . are not necessarily the
same for all data.

Then the following statements hold:
a) The modulus of the data sample Z can be calculated using the relation

My, =\/F2 — @H2. (14.8)

b) This can be rewritten as the modulus of the arithmetical mean of pair
operators, which rotate vectors by twice the value of the angles of the
sample’s data:

1 XN /
Mz, = \N kzjlexp(Zc Qc’k)\c, (14.9)
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¢) which can also be expressed as the geometrical mean of two special
arithmetical means:

(1 Ny 1 N Co(uy)
e\ (v S ) (vE ) e

where Co(uy) denotes the conjugate of the pair number wy.
d) An alternative form is

1| X / /
Mz.=— 1> cosh(2c(2,.; — Q1)) (14.11)
N\ kiz1 ’ ’

e) If for all data in the sample Z relations Zy; = Zy and S; = S hold
(k=1,...,N), then

My, Jlﬂéﬁv:(fi,kfi,l)@c?>/2<<zk/zz>1/8—(Zz/ZkWS), (14.12)
k>l

where i = /=1, and where fi = 2/((Zx/Z0)¥° — (Zo)Z1)*®) is the
estimation weight of the k—th datum.

Proof of Theorem 15: The result from [14.1] and [14.3] is

hZc Hc
- = —. 14.13
fZ,c Fc ( )
Therefore, by [14.4}
fZ,c = FC/MZ,C hZ,c = HC/MZ,C- (1414)

Statement a) (above) results from [14.3] which states, that the modulus of the data
sample equals the modulus of the pair number Ez., which by [13.13] represents the
arithmetic mean of rotation operators f., + ¢ h.x, the exponential form of which is

exp (QCQC k) ‘) Hence we come to b).
The same form can also be applied to restate [14.8| written as

V(F+cH)(F, —cH,)

in the form

J;] (iexp (QCQ’CJC)> (é exp <_2c9;7,€>)

k=1
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, which is identical to ¢). Now using the well-known decomposition exp (*) = cosh () +
sinh () and calculating the product of sums, we arrive at d).

The quantification version of e) ([14.12)) results from d) (14.11]) by elementary substi-
tutions:

cosh (2(®y — ¥))) =
((exp (@) = @1))* + (exp (B — B))*)/2 =
1+ (exp (P — ®)) — 1/ exp (P — B)))* =
L+ ((Zi) 20)1° = (Zi) 21,)5)2.
Recalling and [9.5] relations

cos (2(dr — dr)) =
cos (2¢y) cos (2¢;) — sin (2¢y) sin (2¢) =
firfia(1 4 sinh (2®) sinh (29,)) =
1+ firfia(1 — cosh (2(®r — P;)))

can be derived, from which the estimation version of the statement e) (14.12)) results by
14.11] and by the foregoing formulae.

Formula [14.12| unifies both the quantification and the estimation cases.

It is seen from this proof, that the modulus of a data sample is one of the
gnostic characteristic of the data sample Z.

14.3 Some Important Features of Moduli

14.3.1 Ordering of Moduli

Theorem 15 permits the data samples’ moduli to be ordered.

Corollary 15.1: Let Mz ; and Mz; be the quantification and estima-

tion version of the modulus of the sample Z. Then following relation
holds:

0< MZ,Z’ <1< MZ,j < 00, (1415)
where the cases Mz ; =1 and Mz; = 1 take place simultaneously.

Proof: Let all data in the sample be precise. Then all arguments Qlck
in [14.9) are zero and both versions of the modulus are equal to 1. If one
of either modulus is 1, then all arguments 2., in|14.9 must be zero. The

quantification and estimation angles Q; . are bound by the equivalence of
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their tangents [8.36, they must therefore reach zero simultaneously. The
modulus My; is positive, because the moduli of all non-zero complex
numbers must be so. The modulus Mz ; is bounded, because all the

uncertainties of the real data measured by the angles Qljk are bounded.
The inequalities in reflect the fact, that the hyperbolic cosines in
(14.11]) are for non-zero arguments, and these are always greater than the
corresponding trigonometric cosines.

It can be seen from [14.11], that the values of the data sample’s modulus are
determined by the data spread, which increases as the absolute differences
between the data uncertainty and the data’s true value become larger.
Starting with values of 1 for the moduli of precise data, the quantification
modulus increases and the estimation modulus decreases as the uncertain-
ties increase. In order to use to evaluate a modulus, the ideal value
Zy must be estimated so as to obtain the angles 2.;. It is remarkable,
that this requirement does not involve the quantification modulus, which
is completely determined by the data values and by the scale parameter

(see|14.12).

14.3.2 The Case of Concatenated Samples

It is instructive to analyze relations between the moduli of concatenated
samples.

Corollary 15.2: Let Z’ and Z” denote two homogeneous data samples,
which have the same ideal value Z; and the same scale parameter S. Let
N’ and N” be the number of data in the samples.

Let Z be the data sample created by concatenation of the samples Z’
and Z". Let ¢ € {j,i}. Let Mz., My . and My, be the moduli of the
data samples Z, Z’ and Z”. Then the equivalence

N’ 2 N 2
2 2 2
MZ,C - (N/ + N”) MZ’,C + (N’ + N//) M ”,C+
2 Y Seosh2e (), - 9L)
—_— cosh (2¢ (., — Q.
(N’ + N”)2 b S k il

together with the inequalities

(N MZ,; + N"M%, )/* <
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(N'+ N")Mz; < (N'Mgi;+ N"Mg»;) < (N'+ N") <
(N MZ/ + N’ MZ” ) (N,—I-NH)MZJ (1417)
hold.

Proof: By substituting the concatenated data sample into [14.11| and by
application of the features of the functions cos(x) and cosh(x).

14.3.3 Gnostic Covariance

To simplify notation, the following symbol for the arithmetic mean of an
N —tuple of real numbers ()1, ..., Q). is introduced:

) L s 14.18
Q-—Ng::le- (14.18)

Definition 14: Let ¢ € {j,i}. Let Z be a data sample composed of data
Zi, ..., Zn. Let Qc 1y e Qc N represent the same quantities as in Theorem
15. Then for all K = 1 ., N — 1 define the gnostic autocovariance:

1

Nk Z he(26%, ) he(26€0 1 k). (14.19)

acov, :=

Z4 and Zp are data samples composed of the same number N of data.
Let hC(QCQ/C’n’ 4) and hc(2cQ'C7n7B) be the irrelevances of these data for
n=1,...,

Then the gnostic crosscovariance is

1 X )
COOVe 1= > h (QCanA)hC(chcm,B)' (14.20)

n=1

When the context clearly identifies the choice between auto- and crossco-
variance, the composite label G-covariance can be used.

Gnostic autocovariances play a role, which can be clarified by means of
another form of the data sample’s modulus:

Corollary 15.3: Let Mz, be the modulus of the data sample Z in
accordance with Definition 13. It can be written alternatively as

_ 627

My, = \l(fC)2 — N( NEZ: (1 —k/N)acov.(N,k)). (14.21)
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Proof: By expanding the square of the mean value of the irrelevances
(H,.) in [14.8, reordering and summing their products, by using definition

14.21], and notation [14.18|

Unlike the values of (f.)? and h2, which are always non-negative, the
covariance terms in [14.21| may be either negative or positive. Their sign
depends on the combination of the individual uncertainties. A general
impression is, that if there is no systematic interdependence between angles
Q/Ck of individual data, the gnostic covariances might tend to zero in a
manner similar to ordinary (statistical) covariances. Such a conclusion
has support, as is shown below for the case of sufficiently precise data.
Equation [14.21| shows, that the influence of covariances on the sample’s
modulus can change its value only if there is a systematic pattern in the
data, which produces non-zero covariances. It can therefore be expected,
that gnostic covariances (as in classical statistics) can serve as one of the
tools for measuring the mutual dependence of data within a sample, but
in a robust manner.

14.3.4 Gnostic Median

In statistics, the notion of the median is related to two situations:

1. The median of a data sample is the middle value, when the data are
ordered.

2. The median of a distribution function is the fractild] related to the
probability 0.5.

In statistics, the median may be (but is not necessarily) connected to an-
other important notion, that of the unbiasedness of an estimate (a zero
mean of the estimate’s error). This idea also has two interpretations de-
pending on the definition of “mean:”

1. The estimate of a data sample’s location (also called position) is un-
biased, if the arithmetic mean of its errors is zero.

2. In relation to a probability distribution function, an estimate is called
unbiased, if the integral of its values weighted by the distribution’s
density equals zero.

In gnostics, errors are measured by the (quantifying or estimating) irrele-
vances (9.4). In accordance with Axiom II, the irrelevances are composed
additively. The irrelevance H, of a data sample Z is the arithmetic mean

1The fractile (also called quantile) is a number (point) x,, at which the distribution function equals
p(zp).
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(13.13)) of irrelevances. It is therefore natural to define the sample’s G-
median as the number Z,,.4, for which

1 N
AT Z hc,k(Zmed) =0 (1422)
Nk:l

holds (where h., is the same expression for irrelevances as in (13.13). This
equation can be rewritten using [9.11| and [9.7| for the quantifying case as

N 2 1 2
s 5l (14.23)
= 2

and for the estimating case as

Nogi—1/q;

=0, 14.24
kzl a + 1/q; ( )
where
ar = (Zi)Zmea)® k=1,...,N. (14.25)
These relations show, that )
20 = Zmeds (14.26)

ie that the role of the estimate of the (unknown) true value Z; is played by
the G-median, Z,,.4, in this case. The G-median is thus an estimate of the
sample’s location parameter. (Other estimates of Z; and other location
parameters are discussed below.)

Corollary 15.4: Let Zg 04 and Zg ;04 be quantifying and estimating
medians, which satisfy equations [14.23| or [14.24] respectively.
Then

1. The quantile Zg yeq sets the Q-irrelevance hy of the quantifying
equivalent of the data sample Z to zero, and maximizes both its Q-
weight f7; and its modulus My ; [14.4]

2. The quantile Zg cq sets the irrelevance hz; of the estimating
equivalent of the data sample Z to zero, and maximizes both its E-
weight fz; and its modulus Myz; (14.4]

3. The sample’s Q-median Z ;.q is identical to the quantile of improb-
ability of 0.5.

4. The sample’s E-median Zg ,,.q is identical to the quantile of probabil-
ity of 0.5.
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Proof: Both statements 1) and 2) of the Corollary directly result from
definitions [14.1] and [14.3

Let p and p; be the arithmetical means of probabilities and the im-
probabilities defined by [10.42, Writing equation [14.22 as h.(Zmeq) = 0,
relations

p(Zmed) =1- p(Zmed> pi(Zmed) =1- m (1427)

are obtained, which prove statements 3) and 4).

Hence, the gnostic notion of the two medians is always closely connected
with the specific value (1/2) of probability or improbability.

14.3.5 Gnostic Variance

Variance is a measure of the volatility of data. Its estimate can be obtained
in statistics as the arithmetic mean of the squared deviations from the
mean. A similar role, in a way, is played in gnostics by the difference
1 — f., where ¢ € 4,7, and where f. is the G-weight (9.10). As shown
in [9.21], this difference is a function of the squared data error (®2). The
arithmetic mean of this difference is thus one candidate for measuring the
volatility or spread of the data. However, there are other functions of 2
available in gnostics, both Q- and E-information ((10.66|), and the square of
Q- and E-irrelevances . All these functions have their own important
special meanings in gnostics. The difference 1 — f. evaluates by the
change of entropy caused by the uncertainty, the Q- and E-information
evaluates the change of information caused by uncertainty, and squared
Q- and E-irrelevances determine the intensity of the normalized sources of
the entropy field (shown by substituting f2 = 1 + ¢*h2 into [10.61). These
functions can therefore characterize the volatility of data in a precisely
defined way, each deserving of its proper interpretation. However, when
referring to the G-variance (Gvar) of a data sample below, it will be
understood to be the arithmetic mean of the squares of Q- or E-irrelevances.
There is a sound reason to prefer this version of the variance: it is a
special case of covariance, which enables the gnostic correlation (Gcor) of
two samples Z4 and Zp to be defined in a way similar to correlation in
statistics: -

var.(Z) :=hz  (c€{j,i}) (14.28)

and CCOV¢ A, B

Vvarc(Za)var(Zp)

COTe AR 1= (14.29)
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Recalling [9.7] and [9.11], the dependence of the new characteristics on data
can be shown: for an n-th datum Z,,, and ideal (true) value Zy, the irrele-

vances are 9 5 9 5
qn_l/qn 1y _qn_l/qn

B = = | 14.30
"= eV e
where
7 1/S,
G = () (n=1,...,N). (14.31)
Zy

Then the crosscovariances () — ccov and E — ccov are found by substituting
[14.30] into [14.20] and the variances are obtained by using formulae

var; = h? var; = h?. (14.32)

Both variances and covariances are dependent on the unknown ideal value
Zy. There are two ways of overcoming this difficulty: to

1. choose the value to serve to a particular purpose, or to
2. substitute an estimate Z; for Z, instead of the true value.

The former is especially useful in exploring the behavior of the variance
(or covariance) as the value of Z; changes; the latter allows a particular

value for some of these functions to be set. This is illustrated by corollary
15.5:

Corollary 15.5: Let h.,,(Zy) (c € {j,i}) be the G-irrelevances (|14.30))
and f.,(Zy) the corresponding G-weights.

Let var. z(Zy) = hez(Zy)? (c € {j,1}) be the G-variance of data sample
Z

Let Zoe (G € {Q,E}) be estimates of Zp, such that

Wzozzm =0 (14.33)
(hizf2) g5, =0 (14.34)
Then
1. the root ZO,Q of equation [14.33| minimizes the (Q-variance of the sam-
ple,

2. the root 207 g of equation [14.34]locally minimizes the E-variance of the
sample.
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Proof of Corollary 15.5: By differentiation relations

A(h2,) _ Afihy
dZy SZ

(14.35)

and 2052 2 2
d*(hs z) _ 8(f7 + h3)
(%) (520)?

hold. The first shows, that the necessary condition for extremization

is satisfied and the latter says, that the extremum reached under the

condition [14.33|is a minimum. The second derivative ({14.36|) is positive
for all Z warranting the uniqueness of the Q-variance’s minimum.

(14.36)

Analogously,
d(hiz)  AfZh;
w2/ = 2 14.
dZ, SZs (14.37)
e P(h2,)  S(fE - 2f202)
CRAAESA L S R £ (14.38)
d(Zo)? (52p)?

The root 207 g of equation [14.34| actually extremizes the E-variance. How-
ever, the sign of the second derivative of the (averaged) identity [14.38

depends on how the terms f} and 2f?h? are related. The first term is
strictly positive, while the latter can change its sign. For a sufficiently
small Zj all irrelevances h;(Zy) approach 1, and for a sufficiently large
Zy they reach —1. In both extremal cases, the E-variance is bounded by
1. However, non-extreme values of Z; decrease the variance’s addends.
There exists, therefore, at least one (local) minimum.

Additional location parameters of a data sample have thus been devel-
oped: estimates Zj g, which minimize G-variance. These estimates can be
called G-centers (or center.) of a data sample. The possible existence of
several E-centers of a data sample motivates an analysis of the inner struc-
ture of some samples by observing the behavior of the E-variance, while
the parameter Z; varies.

14.3.6 Similarity and Correlations

The main goal of the gnostic theory is to provide mathematical models to
depict the uncertain quantitative images of reality. However, in order to
be useful, models must embody the important characteristics of the object
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or processes, which they are to represent. Using such similarities permits
objects or events to be categorized, classified and sometimes even evalu-
ated. An example of such an idea might be taken from financial statement
analysis and entail a judgement as to the financial health of a firm by
comparing its financial parameters with those of “similar” firms. Practical
importance of applications of this nature necessitates the development of
a more detailed insight into the notion of similarity. In this manner the
following important statements can be justified:

1. Similarity is inherently connected with geometry.

2. Covariance and correlation enables dissimilarity to be measured.

3. The classical (statistical) definitions of variance, covariance and cor-
relation are based on Euclidean geometry.

4. The gnostic generalization of these same measures is based on Rie-
mannian geometry. This enables the results to be robust.

Consider a set of points in a plane connected by straight lines to form
a figure. Strictly similar figures have the same relations (proportions) for
the lengths of corresponding lines. Lengths are distances measurable in
accordance with the ‘accepted’ geometry. This holds even in a more gen-
eral case, when the requirement ‘approximate’ (instead of strict) similarity
applies: an analysis of similarity/dissimilarity leads to the measurement of
lengths (sometimes angles), ie to apply geometry. Let X and ) be samples
of data X,,, and Y, (where in both cases m = 1,..., M). A strict similarity
between the samples could be defined by the linear relation

Um = Co+ Ky *x2, (m=1,..,M), (14.39)

the coefficients of which can be easily found. In the case of real data con-
taminated by uncertainties the relation will hold only approximately and
the determination of the coefficients requires, that the notion of approxi-
mation be defined explicitly. A ‘natural’ condition is the validity of
for the arithmetical mean values of the data (the unbiasedness), that leads
to the elimination of the constant Cj,

Ym — Y =Ky * (xy, — ) (m=1,....M). (14.40)
These equations cannot hold exactly due to uncertainties. Another ‘natu-

ral’ requirement is minimization of the sum of the equations’ errors, from
which the ‘best’ estimate of
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or—using statistical notions—

P covariance(y, x) (14.42)
Y7 variance(x) |

results.

However, it is easy to see, that both of these ‘natural’ conditions are
based on Euclidean geometry:

Take the m-th error of in the form of the difference e,, = L,, —
R,, between the left hand equation’s side L,, and its right hand side R,,.
The absolute value |e,,| is the distance between two points in the uni-
dimensional (Euclidean) space 1D. Denote e and e, the positive and
negative error. The condition of unbiasedness then requires relation & +

€,, = 0 to hold. In other words, the sum of the length of positive errors

should equal the sum of the length of the negative errors.

Now consider M-dimensional Fuclidean space MD with a rectangular
coordinate system. Attach to each value e, the point on the corresponding
(m-th) coordinate axis to create M mutually orthogonal vectors, the vector
sum of which is E. The second ‘natural’ condition defining the ‘best’
estimate K, requires, that the (Euclidean) length of the vector E be

minimized. Note, that the Euclidean scalar product as in (Chapter 6)
is applied here.

The thusly obtained estimate is well-known as the coefficient of the
uni-variate regression, which ‘explains’ ) by X in the ‘best’ (unbiased
least-squares) way. A popular application is in Beta analysis using the
Capital Asset Pricing Model (CAPM, [83])Fl This example can be used
to emphasize an important aspect, which in logic is called symmetry; the
relation measured by Beta is asymmetric: it cannot be expected, that
reaction of the market return to changes in the return of a stock would be
the same as that measured by Beta. On the other hand, similarity is a
typical example of a symmetric relation: if object A is similar to object B
then B is similar to A. Therefore, the coefficient K, , of the regression taken
in the opposite direction should equal f(yx However, this will occur only
in the exceptional case, eg when X' = Y (then “X is similar to itself”). A
suitable unique dissimilarity measure satisfying the condition of symmetry
can be obtained by taking

cor(x,y) = sign((ym — §) * (T — 7)) % /| Kpy * K, 2], (14.43)

2The Beta of an investment measures the expected sensitivity of its return (y) to the return of the
market (z). The measure, normalized by the variance of the market, also has the form of [14.42
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which coincides with the ordinary statistical definition of the correlation

coefficient [14.42.

Let us follow these same steps, but now using the Riemannian metric
form [6.13] that applied to measuring an element of the length of a path in
the uni-dimensional space of uncertain data. This measurement reduces to
9.15] which after substitution of [9.3] and [9.4] leads to

dhe = c 1 f.(2eQ.)d(2¢8)  (c € {4,1}), (14.44)

where ¢ := j = v/1 defines the quantifying and ¢ := i = v/—1 the estimating
metric. Recall the geometric interpretation of , which shows that
when, because of uncertainty, the value of the observed m-th data item is
A,, instead of the true Aj, then the quantifying version of the angle ().

denoted P, is A y
D, = m;o (14.45)

where S is the scale parameter dependent on the spread of the sample’s
data. The error, which is caused by uncertainty is thus not directly mea-
sured by the difference A,, — Ay, but by its nonlinear function, the ir-
relevance h., which has the form of [9.11] Equation allows the role
of the metric weight F. in this measurement to be evaluated: it de-
creases/increases in the estimating/quantifying case as A,, moves away
from Ay. This is the feature, which makes the measurement robust with
respect to the outliers/inliers of the sample.

The similarity requirement ((14.40) thus takes the form
he(yYm) = Cya * he(xm) (m=1,..,M). (14.46)

The requirement for the optimality of this approximation can use several
gnostic functions depending on the criterial function, which is chosen. The
sum of squares of irrelevances can also be used, because it extremizes the
gnostic variance . Moreover, the squared Q- and E-irrelevances
determine the intensity of the sources of the entropy field (as can be shown
by substituting f2 = 1 + ¢?h? into . As demonstrated in Chapter
10, these sources are offset by the sources of the information field. This
means, that the extremization of squares of irrelevances affects changes
in both entropy and information. The errors of equations can be
computed as differences of both sides, ie additively, because irrelevances
are to be combined additively as prescribed by Axiom 2. The minimization
of the sum of squared errors is ensured by the analogy/generalization of
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14.41]
= (he(Ym)) * (he(m))
Cra ="y (14.47)
= Gecov(y, )
Cyaz = “Geov(n) (14.48)

When the nature of the object/process described by the data allows the
similarity of the relation Y(X) to be assumed, the gnostic correlation co-
efficient is

Geeov(z,y)

V(Geov(z) * Geov(y)

in accordance with the equation (14.29,

These relatively simple remarks on the nature of correlation lead to the
following conclusions:

Geor(z,y) = (14.49)

1. Covariance and correlation can be interpreted as measures of the sim-
ilarity of data samples based on the
(a) choice of geometry defining the measurement errors and the opti-
mality criterion,

(b) characterization of similarity by a linear relation,

(c) assumption of symmetry in the similarity relation for the case of
correlation.

2. Gnostic notions of covariance and correlation are consistent general-
izations of the classical statistical definitions.

3. The Riemannian character of the geometric background of these no-
tions results in their robustness, the type of which can be chosen (inner
or outer).

4. These notions have optimal features, because they are based on ir-
relevances, the optimality of which results from the optimality of the
gnostic cycle as proved in Chapter 12.

5. The similarity of data irrelevances is linked directly to the similarity
of data probabilities and improbabilities.

The last statement is justified by recalling relations [10.42} estimating ir-
relevances are simple linear functions of probabilities. The same relation
holds between quantifying irrelevances and improbabilities. These relations
are important, because they justify using regression models of probabilities
or improbabilities (See Chapter 17).
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14.3.7 Standard Equivalent of a Data Sample

The data sample’s equivalent was defined in definition 13 by using mean
values of G-irrelevances and G-weights. The idea was to represent the
mean of pair numbers of a data sample by a single pair number. As
shown in Corollary 15.4, the angular argument of this equivalent is zero
at the point Zy = Z,,.q. Another equivalent characterizing the variance
of the sample can be introduced. The statistical notion of the standard
deviation is based on deviations from the mean (error), the mean square of
which is the variance. An “analogous” definition of the gnostic standard
deviation (Z.sq) is the square root of the mean squared irrelevance
equaling the minimal G-variance of the data. Corollary 15.6 expresses this
characteristic and the formulae for its calculation.

Corollary 15.6: Let ¢ € {j,i}. Let Z be a data sample composed of
data Z1,...,Zn. Let Z. ., be G-center of the sample, which minimizes
its G-variance. Let Z. 44 be the gnostic standard deviation, such that
relation

Zestd )
(hc( )) = varez (14.50)
Zc,cen
holds.
Then
Zista = Zjeen * (J0ar; 7 + /1 +varj ) (14.51)
and

14+ var; S/2
Zi std — Zz cen ¥ ( o 7Z) . (1452)
’ ’ L+ \/variz

Proof: By substituting :14.30 into [14.50] and writing Z; 44 (or Z; sq) in-
stead of Z;,, and Z; cen, (0T Zj cep) instead of Z.

Before Z; .., is used, it must be checked for its uniqueness.

14.4 Important Features of Gnostic Characteristics

14.4.1 Limit Values for Precise Data

It was shown in previous sections, that the data sample’s modulus gives
rise to several new properties such as f., h., h? and cov.(N, K). Other
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useful features can be derived from data, when gnostic procedures are
used. In Chapter 9, the notion of sufficiently precise data was introduced
to identify data with a small enough uncertain component, that the higher
members of the power series expansion of individual data characteristics
could be neglected. Now the same concept can be applied to the gnostic
characteristics of data samples. (See section 13.2.2 for the gnostic defini-
tion of a sample).

Let the scale parameter of all data be constant and be equal to S. Define

A= max(|SO) (k=1,..,N) (14.53)

to characterize the bound of the uncertainties of a data sample. Expanding
the formulae of basic gnostic characteristics into a power series and using
Landau’s symbol O(x) to represent infinitely small quantities, one can ob-
tain the following approximations, which are valid for sufficiently precise
data:

fo=1422(5®)2 +0(AY), (14.54)
he = 25® + O(A?), (14.55)
E.=2(8®)2 + O(AY), (14.56)
I. = 24(S®)2 + O(AY), (14.57)
h2 = 4c*(SP)2 + O(AY), (14.58)
Mz, =1+23((S®)?2 - (S®)) +0(AY (14.59)
and
cove(N,K) = N ! % z S20,0 i + O(A?). (14.60)

In this specific case, there then exists a close relationship between basic
gnostic characteristics and between the first and second statistical moments
of errors. Under these same conditions, the gnostic covariance converges
to that of classical statistics. However, it must be emphasized, that no
correspondence exists, when there is a sizable data uncertainty. The salient
feature of the gnostic characteristics of strongly dispersed data is their
sensitivity /robustness with respect to outlying data. Let us consider this
problem in more detail.
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14.4.2 Sensitivity /robustness of Gnostic Characteristics

Chapter 11 examined the robust characteristics of individual data. These
same ideas will now be explored for the broader spectrum of characteristics
of data samples (see 13.2.2, Definition 12).

Definition 15: Let xny(Z(L)) be a gnostic characteristic of the data
sample Z satisfying Definition 13 (13.11)). This characteristic will be
called additive, if for an arbitrary data sample Z composed of data
Zi,...,Zn and for a data sample Z’ composed of data 71, ..., Zy, Z, the
difference xy1+1(Z') —xn(Z) depends only on the datum Z, its ideal value
Zy and its scale parameter S.

The largest positive or the smallest negative real number ~, for which
the inequality

0< limzﬁoo(b(]\ul — XN|)Z'y < 0 (14.61)
holds for an arbitrary pair of data samples Z’ and Z, will be called the

degree of robustness of the gnostic characteristic y. The negative of the
value of v is the sensitivity of the gnostic characteristic.

Gnostic theory needs both additive (eg f., he, f2, h2, ... ) and
non-additive characteristics (eg Mz, and cov.). Using the notion of the
degree of robustness/sensitivity, Tab. 14.1 summarizes the classification of

the gnostic characteristics of data samples.

x| f? h2 fi h; cov; |cov; | hi | B2| fi | f?

)

v | —4/8| -4/ | —2/S | —2/S | —=2/S| 0 | 0| 0 |2/S|4/S

Tab. 14.1 Sensitivity and robustness of several gnostic characteristics of
a data sample

To verify the values of the degree of robustness () in Tab.14.1, ¢ :=
(Z]Zy)"5 (9.7)) is substituted (Zy and S are the ideal value and the scale
parameter of the datum Z). The results from formulae(9.10},9.11{and [14.60)|
then show, that the differences yny.1 — xn have following forms:

((Q + q 2)/2)¢ 2/N (for the mean of weights),

(¢° ) / (2N ) (for the mean of Q-irrelevances),

(¢*—q2)/(¢*>+q %) /N (for the mean of E-irrelevances),

EE )/<N+1 K)_l)COVC(Na K)+hC,N+1—th,N—K/(N+1—K)
0

r covariances).
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The values of v can then be determined by substitution of these relations

into the inequality [14.61]

Definition 15 introduces the notions of sensitivity and robustness from
the standpoint of the response of a specific characteristic to the outlying
data. Such a characteristic, which is sensitive to outliers is robust with
respect to inlying data. The converse is also true. To prevent a misleading
classification, we prefer to speak of robustness with respect to outliers and
robustness with respect to inliers before using the notion of sensitivity.

The question may arise as to whether there is any real utility in having
both kinds of robustness. The answer is decisively positive. If the return
on equity for a sample of firms was being examined, for instance, then ei-
ther extreme positive or extreme negative returns would be interpreted as
“abnormal,” distorting the picture of the dominant part consisting of the
“normal” enterprises. These “peripheral” data (outliers) represent “noise”
in the observations. This is analogous to some repeated physical or techni-
cal measurements, where the (rare) peripheral results are caused by gross
measuring errors. An opposite situation occurs, when the objective of the
analysis is to uncover the dynamics of a market’s turning point, the goal of
which is to discover the start of a sudden process of rising or falling share
prices. In this case the “noise” is the “normal” volatility of the prices (in-
lying data) and the required “signal” is represented by (rare) peripheral
data (outliers), which reach beyond the boundary of the frequent “normal”
price movements. This becomes the signal to take some sell /buy action.

14.5 Summary

The sample’s modulus is introduced to normalize both the sample’s weight
and irrelevance. This allows a single gnostic event to represent the whole
of the sample. This is only a limited representation, similar to the case of a
relativistic particle representing a group of particles in the sense of its hav-
ing the momentum and energy of all of the particles. Many aspects of the
individual data in the sample are not reflected by the sample’s equivalent,
the existence of which is warranted only when a sample is homogeneous.
This draw-back in the utility of the data sample’s equivalent (obtained by
means of the modulus) is more than counterbalanced by the possibility of
making use of this feature for testing the sample’s homogeneity.

The data sample’s modulus can be used to demonstrate the role of
useful additive characteristics such as the arithmetic mean of weights as
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well as irrelevances and their squares and to introduce a new non-additive
characteristic, the gnostic covariance. It was shown, that in the case of
sufficiently precise data, there is a simple relation between the basic gnostic
characteristics and the statistical first and second moments. In the case of
gross errors, however, the behavior of gnostic characteristics is substantially
different from those of statistical origin. This difference stems from the
nonlinearity of the gnostic characteristics with respect to data and their
squares. The result is a desirable robustness in the characteristics with
respect to both outliers or inliers. These two mutually complementary
kinds of robustness allows suitable characteristics for each given task to be
selected. Robustness is a natural product of the theory, an inherent feature
of gnostic characteristics of uncertainty, and not something “imported”
from the outside to satisfy some additional requirements. The degree of
robustness of the gnostic characteristics can also be chosen to suit the
requirements of the problem to be solved.



Chapter 15

Distribution Functions of a Data
Sample

15.1 Goodness of Fit

15.1.1 The Problem

The problem under consideration is to design a smooth distribution func-
tion, which characterizes the pattern formed by different values of a given
data set (sample). In the previous description of the Parzen’s and gnostic
kernels (Chapter 11), it was made clear, that the objective of the discus-
sion concerned distributions of probability and/or probability density. The
outcome of the composition of gnostic kernels provides results, which are
interpreted as probability distributions and/or as distribution functions of
probability density (shortly density) of the data sample. It is to be recalled,
that the notion of probability in gnostics differs from the statistical defini-
tion. As it has been pointed out, in gnostics, probability can be interpreted
as the expectation based on the data in the sample.

The model should be a continuous distribution function of the actual
data distribution. It can be obtained in three steps by choosing:

1. A discrete distribution function (DDF) as a set of primary estimates
of the data’s probability defined by the data values.

2. a family of smooth distribution functions suitable to model the DDF.
(Only gnostic distribution functions GDF will be considered in this
connection).

3. A criterion function, the extremity of which ensures the best goodness-
of-fit of the specific GDF to the DDF.

Algorithms used to estimate the distribution functions can combine dif-

223
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ferent choices of these elements. It is useful to examine the steps in a more
detail.

The choice of the modeling function will be considered in detail below.
The elements of the distribution functions to be constructed—the gnostic
kernels, the unique form of which have been derived theoretically—are
already known. It “only” remains to establish the composition rules to
be applied to the kernels to satisfy the gnostic composition axioms. This
question has a simple answer in the case of Parzen’s method: the kernel
estimate of a probability density function is obtained as the arithmetic
average of kernels associated with all the data.

To obtain the discrete distribution function, DDF, a rule determining
the probability to be assigned to each element of the data sample must be
established. Three versions of the DDF will be considered:

1. The Empirical Distribution Function (EDF),
2. the Kolmogorov-Smirnov DDF (KSDDF),
3. the Maximum Entropy DDF (MEDDF).

An initial impression, that the problem of the best fit becomes a trivial
one once the DDF and its model has been determined (since there are
well-known solutions to the curve fitting problem such as least-squares, chi-
square, etc.) would be incorrect, because each of these methods assumes
a specific distribution for the fitting errors (most frequently the normal
distribution). It should be obvious, that when the objective is to find
an unknown distribution model, a fitting procedure based on having prior
knowledge of the distribution cannot be used. Instead, fitting procedures
based on more general principles are to be applied.

15.1.2 The Empirical Distribution Function

When treating sufficiently large data samples, one can approximate their
density distribution by constructing a histogram. The data range is split
into a series of intervals and the number of data falling within the range of
each interval (frequencies) are counted and transformed into a bar graph,
the horizontal axis of which delineates boundaries of the data value classes
(intervals), while the vertical scale describes the frequencies of events for
all the classes. A frequency polygon can be drawn over the set of average
points representing the classes by connecting these points with straight
lines. The cumulative frequency polygon or ogive is then obtained by con-
necting the cumulative frequency points by straight lines. These polygons
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can be used respectively as approximations of the data probability den-
sity and the probability distribution function. To estimate the frequency,
there must be a sufficient number of data in each class, the more there are,
the lower the estimation error. A well-known (Sturges’) recommendation
([110]) as to the necessary number of classes is 1 + (log(N)/log(2)), where
N is the total number of scores (size of the data sample). It is obvious,
that this method cannot be used for small data samples. Instead, methods
for providing the probability estimates for each element of the sample’s
data are needed.

In statistics, the empirical distribution function (EDF) is defined for a
random variable X as a function F(zx) = Pr{X < x}ﬂ, which assigns
a measure (between 0 and 1) to data x1,z9,...,xy, so that F(z,) is the
proportion of observed values not exceeding x. Formally,

F(x,) = Pr{iX < x,} = ;‘7 (n=1,...,N). (15.1)

This relation defines the EDF for N points, but it is usually shown as a step
function similar to an irregular staircasd?] The lower level of the bottom
step is zero, and its top is 1/IN. The level at the top of the last step is 1. It
is proved in statistics, that under some generally acceptable assumptions,
this EDF converges to the actual probability distribution function of the
data population, when the sample size (N) tends to infinity.

The EDF is thus useful in statistics in the sense of asymptotic behavior.
But this does not automatically mean, that it is acceptable for use with
finite sample sizes. To demonstrate, recall that according to the axiomatic
features of probability, the following identity holds for all x:

Pr{X <z}=1-Pr{X > x}. (15.2)

Let the lower bound of the data support be LB and the upper bound UB.
Then gives F1 = Pr{LB < X < x1} = 1/N and Fy = Pr{X <
xn} = 1. Using[15.2] the result is Pr{zy < X < UB} = 0. The probabil-
ity, that some X could lie “below the bottom step” (to not exceed wy) is
thus non-zero, while the probability of exceeding xy (“over the top step”)
is zero. This asymmetry is of no importance in the asymptotic case, be-
cause the step’s height tends to zero in this case. However, for a limited
data sample of size NV, this asymmetry leads to a contradiction. Indeed, the
roles of probability and of its complement defined by are completely

IThe symbol Pr{X < z} is to be read as “the probability that the variable X is less or equal to x”.
2The irregularity of a step’s height results from repeated data values.
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symmetric. The choice between estimating either F'(x) or its complement
is the matter of a subjective decision and both should lead to identical
results. But this contradicts the fact shown above, that the first decision
could assign a non-zero measure to one of the potentially infinite intervals,
and a zero value to the other, while the latter choice assigns measures in
the opposite manner.

In spite of the broad usage of the EDF in statistics, eg to depict an
“ideal” distribution for a finite sample, the application of this step function
to arbitrarily evaluate the goodness-of-fit cannot be recommended.

15.1.3 The Kolmogorov-Smirnov Points

The Kolmogorov-Smirnov test of goodness-of-fit represents an indirect
application of the empirical distribution function. It is based on the
Kolmogorov-Smirnov statistic, which is defined as the maximum abso-
lute difference between values of two given distribution functions defined
over the same data support. For a one-sample situation, the hypothesis to
be tested is that the sample was taken randomly from a population, which
has a known distribution function. This is not useful for gnostics, because
no a priori data distribution is assumed. The two-sample Kolmogorov-
Smirnov (KS) test is more relevant for our purposes, especially when one
of the two distributions is the EDF. The KS statistic is then evaluated
as the maximum absolute difference between the value of the distribution
function being tested and the step’s level at each of the data points. The
two-sample KS tests are based on the following rather general assumptions:

1. the samples are random samples,

2. the two samples are mutually independent,

3. the data are measured on at least an ordinal scale,
4. the underlying distributions are continuous.

It should be emphasized, that there is no assumption made as to a
particular form for either of the distribution functions. The application of
the KS two-sample test includes the following steps:

a) determination of the absolute difference between the values of the two
distribution functions at a given set of points (often at the data/points
of the sample),

b) finding the maximum value of the absolute differences,

c) comparison of the maximum value with the critical value of the KS
statistic (given by the sample size and the desired significance of the
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test),
d) decision on whether to reject the hypothesis of the goodness-of-fit.

Imagine a distribution model defined as a function (of a known analyti-
cal form) of not only the observed data, but also of an (unknown) parameter
(eg the scale parameter) or even of several unknown parameters (eg scale
parameter as well as the lower and upper bounds of a data support). In
the sense of this test, the best possible choice for each of the unknown pa-
rameters (to ensure the best goodness-of-fit) is the one minimizing the KS
statistic. In the case of a perfectly flexible distribution model, the model
values at the data points would cross the points of the EDF’s steps at ex-
actly the center of the step’s vertical edges. These “ideal” points will be
called the KS-points and their height can be determined by the formulafl

2n — 1
2N

Pr, ks = (n=1,..,N). (15.3)

The collection of these “ideal” points is symmetric, because the probabili-
ties assigned to the intervals (LB, 1) and (xy,UB) are the same and are
equal to 1/(2N). This is logical, because if there is no information as to
the size of either interval, they can be assigned the same probability. The
height of each of the steps is constant (1/N). Again: there is no infor-
mation on expectations, which would suggest, that different probabilities
should be assigned.

The distribution of the KS-points is in consonance with the concept of
Parzen’s kernel estimation: consider a symmetric kernel, the maximum of
which is located over the data point (say, z,). Let the positive kernel’s
values exist only over the interval [z, — A/2 z, + A/2] and let them be
zero outside of this interval. The kernel is normalized so that its integral
equals 1. Let us assume, that all data in the sample are different, and
that the kernel’s width A is small enough to ensure no overlapping of the
positive parts of the kernels. The kernel estimate of the density function
in this case is a collection of N separate kernels shifted along the data axis
in correspondence with the location of the data. The weight of each kernel
is 1/N, because of the accepted additive composition law. The estimated
probability distribution is given by integration of this density distribution

30ne, in which the curvature can change depending on the value chosen for the scale parameter. The
notion of flexibility relates to the ability to ”bend” the DF by decreasing S so as to make the local radius
of curvature unlimitedly small.

4A simplified case of data is considered here: the data values are not repeated and the a priori weights
of all the data are equal. For a more general case see below.
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and the estimated probabilities are then obtained by:

~ ~ 1
and |
Pr(z, 1 <X <ux,) = N (n=2,..,N) (15.5)

ie the same system of probabilities, which was formed by the KS-points

Prpgs forn=1,..,N (15.3).

15.1.4 The Maximum Entropy Goodness of Fit

Consider a k-th individual datum with E-irrelevance h;; (where i = /—1)
as in[9.6 As shown in the previous chapters, a value, py, (10.42) may be
assigned to this datum and it can play three important roles:

1. Its value is the (gnostic) probability (expectation) of the observed
datum’s ideal value.

2. It is the function of an (unknown) ideal datum’s value Ay (or Zy): the
probability distribution function of Ay or Z; (given observed value Ay,
or Z;) and /or—after differentiation—the density distribution function
(or a kernel for kernel estimation).

3. It is the parameter of the function H(py) (10.50]), which can be used
for evaluation of E-information.

Let us assume for the while, that the sample’s data are ordered, so that
relations 23 < 29 < ... < zy_1 < 2y hold. (If these relations are not
satisfied, then the data are to be ordered and renumbered). The bounds
of data support (27 and zy) always exist, but whether these values are
known is not important at this juncture. Probabilities are also ordered
as non- decreasing functions of the data. They define N + 1 non-negative
differences P, = p(z;) —p(zx—1) (kK =1,..., N+ 1), where p(zy) = p(z1) =0
and p(zy41) = p(zy) = 1. Consider the expression

RE_ Si=V Py x 1n(Pk)’
In (N +1)

which will be called the residual entropy of a data sample. To justify this

name, let us analyze four important features of the function:

1. Distribution: The sum of arguments 5 ' P, equals 1. This means,

that the probabilities p(z) (kK = 1,..., N) together with the bounds

(15.6)
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p(zr) and p(zy) define a discrete distribution of N + 1 subintervals
covering the whole interval of probability from 0 through 1.

2. Collapsed data support (z;, = zy = z; for all k): All P, are zero and
so is RE, because lim,_,g plog (p) = 0. This is the case of precise data.
There is no uncertainty in these data.

3. Convexity: It is well-known, that the numerator of RE is a convex
function of its arguments P;.

4. Maximum: It is also well-known from statistical physics, that
the numerator of RE (formally identical with Boltzmann’s statis-
tical entropy of a dynamic system) reaches a maximum (equal to
—log (N + 1)) if and only if all probabilities P have the same value
and if their sum is 1. Data are uniformly distributed in this case,
there is no data cluster, no “preference” to any part of the sample.
The residual entropy RE reaches a maximum of 1.

An important note as to the nature of the numerator of expression [15.6
can be added by recalling the way it was derived: it represents the amount
of information, which was provided by the estimation phase of the Ideal
Gnostic Cycle. The greater this information, the greater the portion of the
entropy increase offset by the estimation. The result is, that the system of
N probabilities
k

- N+1

forms a remarkable discrete probability distribution assigned to an ordered
data sample (z1, ..., zx). Points calculated according to will be called
the ME-points (points of maximum residual entropy). Compare this sys-
tem of ME-points with that of the KS-points considered above: a legitimate
reason for taking the first and last value of the KS-points (which equal only
half of the “inner” values) would be to have a priori knowledge of the data’s
behavior, information existing “outside” of the data sample. Example: We
know, that the interval between z; and z; is shorter than the other inter-
vals, and that it therefore “deserves” only half of the measure of the other
intervals. (But one can ask, why just a half, and why always a half, if such
special—obviously not general—information is available). In contrast, the
system of ME-points assumes no additional information on the probability
distribution, only knowledge of the data values themselves.

The form of the discrete distribution of the ME-points is especially
suitable, when all the data in the sample are different. The a priori weight
of each datum is the same and equals W} = ﬁ If there are repetitive
data points, it is more practical to go over to a “compressed” sample, where

Py (k=1,..,N) (15.7)



230 CHAPTER 15. DISTRIBUTION FUNCTIONS OF A DATA SAMPLE

all the data will be different, but with weights correspondingly multiplied.
Summing the “accumulated” weights W; creates a system of ME-points.

15.1.5 The Weighted Empirical Distribution Function

All three approaches to the construction of a discrete distribution function
DDF defined directly by the data considered above (EDF KS- and ME-)
were based on the a priori assumption, that all data have equal importance:
points on the EDF as well as the KS points assumed a priori weight 1/N,
while in the case of the ME-approach the weights were taken as 1/(N + 1)
for each element of the data sample. Such an assumption represents a
limitation, which cannot be generally accepted. In practice, one cannot
exclude cases of repeated data values. A simple example consists of data
given as integers (eg counts of events) or as real numbers with limited
precision. Under these conditions, the probability that a data sample will
include two or more equal data values is not negligible. Another example
of a data sample with repeated data values is for data provided in the form
of a histogram. In this case there is not only a data vector, but also a
vector of “a priori data weights”, which represents the number of times
each data value was observed.

It is important to distinguish between two kinds of data weights:

1. the prior weight,
2. the posterior weight, ie the G-weight defined by [9.5

A priori in this case means “known before data analysis is begun” or
“based on information available and obtained along with the data.” Indeed,
the information, that some of the data have the same value is available
at the same moment as the data. In the case of “histogram data” the
repetition is already made explicit by a weighting vector; for repeated
observations or measurements, such a weighting vector may be obtained
by simple calculations, which precede the data analysis. The fact, that
some data values may appear more than once provides information about
the data, which must not be neglected in the analysis. There are examples
supporting this position: a simple case is that of the arithmetic mean of
a finite number of data; it is strongly influenced by repeated data values.
Among many other examples is the principle of making decisions based
on a majority vote. The results of voting can be then given the weights
proportional to number of votes. Another example is the treatment of data
measured by methods, which differ in their accuracy.
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In contrast to using a weighting scheme established before the analy-
sis, the gnostic weight of each individual datum results from the gnostic
analysis. It is thus a typical posterior weight available only after the data
analysis has been concluded.

It can now be shown, that if a priori weights exist, then they can also be
used to improve the results of the gnostic analysis. Assume, that a sample
of multiplicative data Z; and a collection of corresponding a priori data
weights Wy, where k = 1, ..., N is given. Each of the variants of the gnostic
distribution functions considered in the following discussion can be adapted
to use the data weights, W, that have been provided. What is being sought
here is the discrete distribution function, which would make use of the a
priori weights. It can be approximated by using the gnostic distribution
function and a criterion function derived by testing the goodness-of-fit.

The form of this function, denoted Eyy is chosen so as to satisfy the
following requirements. It:

e is applicable to an arbitrary distribution of weights W,

e respects the given relations between weights,

e is consistent with the system of ME-points (the maximum entropy
ideal distribution) in the special case of all weights equal,

e is applicable to both finite and infinite data supports,

e has symmetrical behavior independent of the choice of either Ey or
its complement, 1 — Eyy.

Consider the following version of this function using normalized values

wy, of the a priori weights W;:

wp = ngl/kW (k=1,...N) (15.8)
Ewq = w/2 (15.9)
Ewi = Ewi-+ (we—1 +wy) /2 (k=2,..,N) (15.10)
These relations imply, that
Ewy =1—wy/2. (15.11)

Consider either a finite or infinite data support, an open interval I, ;7 :=
(Zr, Zy) split by the data into N + 1 semiclosed subintervals I_;; =
(Z(k —1),Z(k)], where k =1,...N+1, Z(0) = Z; and Z(N + 1) = Zy.
The probability is again the measure of each interval’s length. The value of
the probability distribution function Eyz in a (zero or positive) point Z,
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is zero, and in the (finite or infinite) point Zy, it is 1. The first value Eyy;
is a probabilistic measure of the first interval /; equaling the normalized
weight wy . Similarly, the last value Ey y has the measure 1 — wy.
Both of these values are related to the idea, that the measures are integrals
over the intervals. The measure of both intervals is independent of the
direction of the integration (from left to right or from right to left), which
corresponds to the choice between the Ey and its complement 1— Eyy. Such
a symmetry is ensured for the differences Eyy — Eyw—1, when they satisfy
[15.10[ The normalization of weights is properly chosen, because the
sum of the measures of all subintervals equals 1. This normalization does
not change the proportions of the weights. It is easy to verify, that if all
weights are equal, the points on the Ey coincide with the ME-points.

The discrete distribution functions £ designated the weighted empirical
distribution functions will be called WEDF.

15.1.6 Criterion Functions

Once a DDF is selected and a family of the GDF is chosen, the specific
form of the gnostic distribution function can be optimized to reach the best
possible godness-of-fit. To do this, a criterion function of the fitting errors
is to be extremized by finding the best estimate of GDF’s parameters’]
Gnostic theory makes available several functions reasonably applicable to
optimum estimation. They all are defined by the already introduced a
posteriori weights and irrelevances of data.

The G-weight (9.10) and G-irrelevance (9.11)), in the estimating case
(c? = —1), have the form

2 G —1/q;
_ hpp = = 14k 15.12
Iek a + 1/q; T 1/q (15.12)
where
@ = (Z) Zo) o) (15.13)

is an auxiliary variable in similar form to that of 9.7, where Zj, is the k-th
observed data value and Zj is the (unknown) ideal data value. To measure
fitting errors, the role of Z; takes over the probability estimated by the
GDF in the k—th data point Zj, while the ideal value Z; is determined as

5As shown in Chapter 16, there is no contradiction in the notion of ’parameters of non-parametric
estimates of distribution functions.
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DDR(Z}). Instead of |15.13 expression

~ (GDF(Z)\"*®
g = (DDR(Z’;)) (15.14)

is used.

The variable fg (the estimating posterior weight of a datum) will be
called the fidelity, because it measures the weight of the relationship be-
tween two numbers: the actual value and its required value. Both fidelity
and irrelevance are robust with respect to outliers as has already been
mentioned.

A formal note is in order here with respect to symbology. The bar or

_ N
overline, (X = %) is a commonly accepted way of denoting the arith-

metical mean of several values of a variable (eg X}j). When gnostic distri-
bution functions are defined or used, a more general averaging method is
required and the mean is weighted not only by constant weights, but also—
in the case of different a priori weights—by normalized a priori weights wy,
(15.8). Therefore the notation using a bar or overline will be retained in
such instances as the estimating version of [13.13],

N
E: Z wk*hE,k,, (1515)
k=1
which is applicable for both equal and different a priori weights. The
index ‘g’ denotes “estimating” and it is used instead of the complex unit
1= \[( — 1), which might lead to misinterpretation.
Everything has now been prepared to introduce gnostic functions suit-
able as criterion functions for the goodness-of-fit:

CF(fp):= g (15.16)
CF(h2) = h% (15.17)
CF(I) := —pln(p), (15.18)

where pr, = (1 — hpg)/2.

The additive composition applied in these formulae is justified by the
theory: From Axiom 2, it is recalled, that the fidelities (data weights,
entropies) are to be composed additively. The additive composition in
15.17| is justified by the fact, that the minimum of C'F(h%) is reached,

when (hg) = 0, ie when the weighted mean error vanishes. In this condition
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irrelevances are added in accordance to Axiom 2. The expression [15.18 was
derived by application of the linear operation of integration.

The value of the scale parameter S in deserves further comment.
The measurement of uncertainty by gnostic weights and irrelevances (and
by their functions such as entropy, information, probability etc.) is equiva-
lent to the application of a Riemannian metric. The main characteristic of
a particular metric is its curvature. The curvature in all gnostic formulae is
determined by the scale parameter. As will be shown, the scale parameter
is always estimated from the data and not assumed a priori. This is the
point of the statement “Let data speak for themselves”: data determine
the scale parameter and the scale parameter determines the curvature of
the geometry applied to measure uncertainty in a particular set of data.
The curvature in turn determines the degree of robustness of the gnostic
characteristics. An illustration is given by formulae [15.12]and [15.13], which
show how the value of S controls the form of the fidelity, the rate, at which
it decreases with the increasing size of the interval between the observed
7 and the ideal value Z,. However, these formulae signal a problem: the
limiting value of the fidelity for S — oo equals 1 independently of the ratio
Zy/Zy. In other words, a trivial “optimum” fit exists (independent of the
data) by using a sufficiently large S, therefore the structure of specific al-
gorithms must take this into account and provide a safeguard against this
possibility.

The suitability of gnostic functions to goodness-of-fit problem does not
exclude applications of other criteria. All three functions through
are robust with respect to outliers (see Tab.14.1). This robustness
can be useful, when individual fitting errors reach extreme values. In some
applications this robustness can cause discrepancies between model and
discrete function, which represents data. Another criterion functions can
provide an unrobust fit. Examples:

e (Criterion function obtained by summation of weighted absolute fitting
errors.

e Criterion function minimizing the Kolmogorov-Smirnov statistic.

e Application of weighted squares of fitting errors.

The problem of criterion functions will be examined further in Chapter
17 in connection with the optimality of multidimensional models.
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15.2 Four Versions of the Gnostic Distributions

15.2.1 Introduction

According to the statistical (Parzen’s) approach to kernel estimation, the
question “How to compose kernels” has a seemingly trivial answer: “Take
the arithmetical mean.” This manner of composition does not present a
problem in statistics, because it corresponds to the axiom of the additivity
of the probabilistic measure. The initial motivation to proceed in this man-
ner, as discussed above, probably originated from the possibility of formally
mapping basic statistical variables onto variables of Newtonian mechanics
along with the hidden assumption of the implied applicability of Euclidean
geometry. Moreover, additive composition ensures the asymptotic behavior
required by statisticians.

For gnostics, in the general case, additive composition of kernels cannot
be taken for self-evident, because the notion of probability does not exist
as a fundamental axiom. Probability, determined as a secondary product
of the theory, cannot be manipulated arbitrarily, but only in accordance
with the axioms. From this point of view, the irrelevance has a more fun-
damental meaning than probability, because Axiom 2 prescribes additive
composition for irrelevances, but not directly for probability. An initial
impression, that these two ideas are the same, because the integral of the
probability kernel is a linear function of the irrelevance, would be
misleading:

1. There are two ways to compose irrelevances based on Axiom 2. The
first is the arithmetical mean (13.13)), but the second, [14.14] is neither
additive nor linear. As previously mentioned, the composition law
applied to the former does not imply homogeneity of the sample, while
the latter does.

2. It was pointed out in Chapter 10, that in using the concept of double
numbers one should introduce probability not only as a real number
as in , but also as a double number . The real version of
probability does not contradict the gnostic theory, because p* (1 — p)
is equal to p;* (1 —pj;) in the key expressions(10.43|and [10.44] It is cus-
tomary to evaluate probability using a real, not a double number, and
gnostics accepts the use of real probability for calculations, too. How-
ever, the double number version is better suited to the interpretation
of the improbability p;, which is complex.

The point is, that when gnostic kernels are aggregated, primary attention
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should be directed to the aggregation of irrelevances. There are two ver-
sions of irrelevances, and when addressing gnostic distribution functions,
it will be necessary to distinguish between the two types: Q- (quantifying)
and E- (estimating). As discussed above, there are also two composition
rules for irrelevances, the universally applicable arithmetical mean and the
normalized arithmetical mean, which is suitable only for a homogeneous
data sample. To distinguish between the two kinds of gnostic distribution
functions: the local distribution function will be denoted by L (which is
based on the former composition rule), while the global distribution func-
tion will be identified by G (based on the latter rule). The result is four
versions of gnostic distribution functions: the ELDF, EGDF, QLDF and
QGDF. They all have a common root—they represent four applications of
the same formula, and they are all related to the probability distribution

of an individual datum ({10.42) derived in Chapter 10:
k% DF = (1 — hy)/2, (15.19)

where h,, is the specific version of the data sample’s irrelevance, either
her, hea, hor or hgg. Each of these functions will now be examined in
greater detail for samples, for which the scale parameter (S) is constant
throughout the sample.

15.2.2 Transformations of Data Supports

The data weights and irrelevances as well as all their functions introduced
in the previous chapters were taken to be defined over infinite data sup-
ports. There were two kinds of such data: additive data seen as arbitrary
real numbers from the interval R' := (—o0, +00) and multiplicative data,
strictly positive numbers from R, := (0,00). However, real data are al-
ways bounded, and lie within a finite interval (LB, UB). The theoretical
domain of gnostic distribution functions is R,. In application of these
functions, data must be transformed from their “natural” data support to
the theoretical infinite domain of distribution functions. The converse is
also true: when a quantile of a distribution function is estimated, it is set
in the domain R.,; to obtain its “natural” form, it must be transformed
backwards onto the finite data support. To unite the manipulations of
additive and multiplicative data and to simplify the numerical calculation
process, a unified finite closed interval is introduced,

Z. = [1/exp(1), exp(1)]. (15.20)
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To transform an element Ay from a sample of additive data onto the unified
interval, the transformation

2 % Ak: - Amax - Amzn) (1521>

Tr,. ::zfm:exp< P i
max min

can be applied; while in the case of multiplicative datum M, formula

(Mk/Mmin)(2/1Og(Mm”/Mmin))
exp(1)

Try, = Zfin = (1522)

can be used, where A,,,, and M,,,, are the largest and A,,;, with M,
the smallest data in the sample. The transformation Z, <> (0,00) then
can follow using the formula

Zfin — LB
11— me/[]B7

where LB is the lower and UB is the upper bound of the finite support.

The backward transformations can be obtained by solving these equations
with respect to their arguments.

Using[15.23| presents a problem, because it implies, that the data support
is assumed to be an open interval, where the strict relations zy;, > LB
and zy;, < UB must hold, but the solution of practical problems frequently
requires closed data supports. Overcoming this difficulty is taken up in the
next subsection.

15.2.3 Soft and Hard Data Bounds

The assumption, that real data are finite is based on the fact, that they
are real objects in the real world, and that the world itself is a finite entity.
While this fact is necessarily accepted, for data analysis, something more
is needed: information as to the value of the data bounds.

In some special cases, the data support bounds LB and UB are known
a priori, otherwise they must be estimated by using the EGDF. There are
two different cases of a priori known bounds of data support:

1. The open interval of possible data (LB, UB): it is not expected, that
data of values LB or UB will be seen in practice. Examples: zero
weights for real objects (excluding balloons), reaching the speed of
light by a non-zero mass particle.
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2. The semi-closed or closed interval of possible data values, ie (LB, U B,
[LB,UB) or [LB, U B]| data can reach the value of the closed end of the
interval. So eg establishing the proportionality of a slice of pie always
results in the closed interval [0, 1], while the values of both bounds are
possible: 0 means ‘zero size for the slice’ and 1 is equivalent to ‘the
whole pie.’

Data sets fitting the former case will be thought of as having soft bounds,
while the latter one will have hard bounds.

Acceptance of the idea of finiteness of real data implies, that both the
normal and lognormal distributions must be rejected, because their data
support is infinite. While they may approximate the occurrence eg of
people, who are close to average size, these distributions will not be very
useful in predicting the presence of extremal sizes: dwarfs or those taller
than NBA giants can serve as an example. Small but non-zero probabilities
would be attached to heights exceeding several times the average. On the
other hand, experience shows, that a maximum “possible” (understand
“not improbable”) height surely exists, but its value is different for each
population. This value is of course uncertain, “fuzzy”, but the form of
a distribution function strongly depends on it. The motive for estimating
these soft bounds is therefore obvious. The robustness of the EGDF can be
used to estimate these bounds as shown in the applied portion of this book
(Part III). The required (uncertain) information on the boundary values is
thus ‘mined’” from the data. The value of the distribution function at the
lower estimated soft bound (LB) is zero, while that of the UB is 1.

On the other hand, hard bounds for data come about from the im-
possibility of reaching data values beyond some point, but also having
the possibility, that the boundary values could be attained: The total
investment needed for a particular project cannot be negative nor can it
exceed 100%, but a prospective investor could either fund its totality or
refuse to participate. A holder of common stock cannot lose more than his
initial stake, expenditures for R & D or capital goods cannot be less than
zero, but then the firm need not make them at all, nor would dividends
paid generally exceed 100% of earnings’, but firms paying no dividends
are relatively common in some industries. Such limitations are implied
by the nature of things, the existence of hard bounds is sure. The fre-
quency of occurrence of the boundary values can be directly estimated as
a discrete probability. It is also true, that obtaining values “in between”

In the relatively rare case, when dividends exceed EPS, the difference is a nontaxable ‘return of
capital” and deducted from retained earnings.
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the two extremes is not excluded. The probability of nonextreme values
is characterized by a (continuous or discrete) distribution function. In
the continuous case, the application of a gnostic distribution function to
data subjected to hard bounds easily combines the discrete estimate of the
boundary probability (Pr(LB) and/or Pr(UB)) of hard LB or UB with
the continuous modeling of the nonextreme data. Its distribution function
satisfies the constraints Pr(LB) and Pr(UB).

Distinguishing between the two types of bounds is important from both
the theoretical and the practical (algorithmic) point of view.

15.2.4 The Estimating Local Distribution Function (ELDF)

To obtain this distribution function for a data sample Z, the simplest ver-
sion of the data sample’s estimating irrelevance H;(Z) as defined
by Axiom 2, is applied. Averaging may be either with equal or unequal
weights, therefore the sample’s estimating irrelevance hgy should be de-
noted by hg in the same sense as in . By using the general expression

15.19] the estimating local distribution function (ELDF or simply EL) can
be written in the form

ELDF = EL(Z,Zy,S) := (1 — hg)/2. (15.24)

This same expression could also be obtained as the mean of probabilities
10.42| of individual data in the sample, which would result in a kernel
estimation using the gnostic kernels.

Rewriting [15.24] in a more explicit form, again denoting the data in the
sample as Z; (k =1, ..., N), the ideal value as Z; and, using the auxiliary

variables [15.13] and [9.11]

EL(Z, Zy, S) = (1 iqﬁ) (15.25)

is obtained. The EL’s density can be found easily by differentiationm

dEL 1 1
dZy — SZy (g2 +1/¢})*

(15.26)

"This formula—as well as all other formulae of probability densities in this chapter is based on the
assumption of a constant scale parameter S.
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It is useful to recall the interpretation of the probability distribution of an
individual datum as the probability of the ideal value Z, given the observed
value Z;. This means, that this probability as well as its density are
functions of Z;, and that the ELDF (as well as other gnostic distributions)
are functions of data and of the ’free’ quantile Z.

The relations [15.25] and [15.26| reinforce the universal existence and ap-
plicability of this distribution function. Indeed, both the irrelevance and
the gnostic kernel can be attached to an arbitrary datum. Gnostic ker-
nels defined over the infinite data support are positive and finite and their
arithmetic mean is positive and finite as well. Moreover, the range of the
function EL is [0,1]. This function is non-decreasing, because it
represents the integral of positive kernels, and it can therefore serve as
a distribution function. Its interpretation as the probability distribution
function is thus justified. The adjective “local” emphasizes the fact, that
no “global” feature of the data sample such as its homogeneity was as-
sumed. It can be seen, that the ELDF is really “local” in the sense, that
it characterizes the data distribution even over a small subinterval of the
data support if the scale parameter S is sufficiently small.

15.2.5 The Estimating Global Distribution Function (EGDF)

This distribution function is based on the idea, that if a data sample is
homogeneous, then it is possible to represent it by a single gnostic event.
The gnostic weight and irrelevance of this equivalent event can be calcu-
lated by formulae [14.14] In the estimating case (¢ := i = \/—1), using
(the overline is the symbol of weighted averaging as above), one can
rewrite the equivalent irrelevance from as

(15.27)

where fp and hgp are (weighted) means of fidelities and irrelevances of
all the data in the sample Z, and where Mz, is the sample’s estimating
modulus (14.8],

Mz :=\(J&)* + (hp)*. (15.28)
In this case, the distribution function from [15.19|takes on the form
hg
EGDF = EG(Z, 2, 5) = ( - ME )/2. (15.29)
Zji
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The EG’s density can be derived by differentiating ((15.28)) to get
dEG 1 (fe)?**F2+ fp*xhp*x FH

— 15.30
dZ, SZ, M3, ’ ( )
where
N N
F2 =3 w, * fgk FH =Y wy* fer*hpg (15.31)
k=1 k=1

represent the (weighted) means of squared data fidelities and the products
of the fidelities and irrelevances, respectively. It is worth noting, that
the second addend in the numerator of may be negative. When
all data are so precise, that all fidelities fg; tend to 1, the term FH
approaches hg and its product with fg is positive. However, in the case of
strong uncertainties the variables F'H and hp reach negative values, not
necessarily simultaneously, thus making the product negative. This effect
may be so strong, that expression is negative. In such cases the
EGDF does not exist, because it does not possess the important
feature of a distribution function—that it not decrease. There are two
interpretations of this characteristic of the EGDF’s:

Bad: The applicability of the EGDF is not universal. This distribution
function is suitable only for data samples, for which the EGDF’s den-
sity is non-negative over its full range, and which have only one max-
imum.

Good: The EGDF may be used to test the homogeneity of a data sample.
It will be shown shortly, that such tests are extraordinarily efficient
and reliable, and that they reveal important features of the data.

For data with large uncertainties (which are far from the ideal value), the
auxiliary variable ¢ ((15.13)) tends to either zero or to infinity. This causes
the estimating fidelities ([15.12)) to be negligible and the corresponding irrel-
evances to approach 1 or —1. The EGDF therefore suppresses the influence
of the “peripheral” data and focuses on the “central” or “inner” data, for
which the fidelities are close to 1 and the irrelevances tend toward zero.

Other interesting features of this distribution function will be discussed
in the next chapter.

15.2.6 The Quantifying Local Distribution Function (QLDF)

There is an obstacle, which must be overcome in defining the quantify-
ing versions of distribution functions: both the quantifying irrelevance h;
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(9.11) and the improbability can reach infinite values, so that the
general formula, [I5.19] cannot be applied directly. However, as it was
shown in connection with the problem of quantifying kernels in Chapter
11, it is possible “to see” quantifying irrelevance as if it were the estimating
irrelevance by using formula [I1.17 It is therefore possible to compose the
quantifying irrelevances of all a sample’s data and to “observe” the results
by means of “estimating eyes” via the transformation

More particularly: -
h i (15.32)
L= T, .
T ()
where hg is the (weighted) mean of quantifying irrelevances of all of a
sample’s data. (Recall, that by the quantifying irrelevance of the k—th
datum is (¢ —1/¢*)/2, while the quantifying weight equals (¢*+1/¢?)/2 by
9.10,) In this (“local”) case the non-normalized composition of irrelevances

is applied as in the case of hg;. Then the quantifying local distribution
function takes on the simple form of [15.19

QLDF = QL(Z, Zy,5) == (1 — hor)/2. (15.33)

Denoting fg the (weighted) mean of the quantifying irrelevances of the
sample’s data and differentiating [15.33| one arrives at the density

dQL 1 7o
dZy ~ SZo(1+ (hg)2)*/

(15.34)

It is easy to see, that for a single datum (/N = 1) this expression provides
the same results as is obtained for the densities of the ELDF’s or the
EGDF’s—the gnostic kernel |11.9-—because %3 = Zio This does not mean,
that the distribution functions will be similar for N > 1; the opposite is
true, because the mean irrelevance hg and the mean quantifying weight
fo may include unbounded terms caused by the observed data’s significant
divergence from the ideal value. Taking this into account, one can expect,
that the QLDF will emphasize the “peripheral” data of the sample (the

outliers).

81t is important to see, that this artificial step was taken to obtain quantifying distribution functions.
These have values in the interval (0, 1), which are interpretable as probabilities. This is how distributions
complementary to the EGDF, with their opposite robustness can be obtained. However, improbability
as introduced in is a complex function, which can give rise to a (complex) distribution function of
data improbability, the modulus of which rises to infinity with increasing uncertainty. Such a function
can also have a realistic interpretation: eg the wave function of quantum mechanics behaves in a similar
way.
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15.2.7 The Quantifying Global Distribution Function (QGDF)

The same problem exists here as with the QLDF and the same trick is
employed to solve it, but using a different composition rule. Instead of
(weighted) averaging in accordance with [13.13], the normalized (weighted)

average (14.14] is used:
ho
hzj = (15.35)
V(7a)? = (hq)
where again fq and h( represent (weighted) means of quantifying weights
and irrelevances respectively. Using transformation [11.17],

(15.36)

is obtained. The quantifying global distribution function is therefore sim-
ply

QGDF = QG(Z, 2y, S) := ( - ?ﬁ) /2 (15.37)
Q

and its density is

QG 1 (, (hgy
iZy = 57 (1 (fQ)Q) (15.38)

It is again easy to show, that in the case of a single datum, this density
reduces to the form of one gnostic kernel as in all the other cases. More-
over, for sufficiently precise data the mean weight E will approach the
data sample’s quantifying modulus \/ ((fo)? — (hg)?). This remainder will
vanish and both the QLDF and the QGDF will return the same values
except in the case of strongly dispersed data.

15.3 Main Features of the Distributions

15.3.1 The Unlimited Flexibility of the ELDF

Given data and a scale parameter S, the F'L is a non-decreasing function of
the unknown ideal data’s value Zj. Its character is determined by the scale
parameter. The EL function converges to the step function (DDF), when
the scale parameter S tends to zero and its derivative converges to a
collection of IV §-functions each placed at a different data point. Fig.15.1
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demonstrates the behavior of the EL-distribution function as it approaches
the step function for a small data sample 24 = (1, 3,4, 4.5) for S = 0.5,0.1
and 0.05. Systems of both KS-points and ME-points are shown as well.
Note in the figure, that the values of the EL-functions at each of the data
point are close to the KS-points, but not necessarily near the ME points,
especially for a large S.

Fig.15.1: DISTRIBUTION FUNCTIONS "EL"
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The dependence of the EL-density on the scale parameter is illustrated
by Fig. 15.2. Observe, that the two kernels (peaks) belonging to data values
4 and 4.5 are entirely separate, when S < 0.1, but integrate into a perfectly
smooth hill form, when S increases to 0.5. (Such a group of integrated
peaks will be called a cluster). A scale parameter of 0.5 is large enough,
in this case, to create an inflection in the density curve at the point 3.0.
This causes the three peaks representing data values 3, 4, and 4.5 to be
assimilated into one cluster. The appearance of such a plateau on a density
curve always signals, that the density peak has screened out some other
data. The largest cluster of data will be called the main cluster. We have
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now arrived at the idea of marginal cluster analysis.

Fig.15.2: DISTRIBUTION FUNCTIONS "EL"
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15.3.2 Marginal Cluster Analysis

In statistics, the notion of “marginal distribution” describes the uncon-
ditional distribution of a single variable from a multidimensional model.
When addressing marginal cluster analysis in gnostics, we shall keep in
view the decomposition of a one-dimensional data sample into two or more
subgroups, which manifest themselves in the sample’s density graph as sep-
arated clusters. A simple way of doing this is by using the EL-distributions.

A data peak such as the one belonging to the smallest datum (1.0)
in Fig. 15.2 is sufficiently removed from other data to be considered as
separate from the main cluster. Similarly, Figs. 15.3 and 15.4 demonstrate,
that a data sample Zy; = (—13.5,1,2,3,4,5,6,7,8,9,10) is found to be
composed of 10 regularly distributed data and an “outlier” (—13.5).
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Fig.15.3: DISTRIBUTION FUNCTIONS "EL"
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The EL-distribution is close to the step function (DDF) if the scale
parameter is as small as 0.05. For the same value of scale parameter, the
corresponding density (Fig. 15.4) reveals separate peaks for each datum,
which subsequently dissolve into a principal cluster and an outlier as the
scale parameter is increased. If too small scale parameter is used, the result
is no better than just plotting the data values (the red triangles) on the
horizontal axis. Increasing S smoothes the density curve and leads to the
conclusion, that there is a “homogeneous” cluster of 10 data and an outlier
(-13.5). The designation of this data value as an outlier is supported by
the fact, that it has a separate peak even with as large a value of S as 1;
this also puts it at the lower extremity of the probability curve of the series
of KS-points in Fig. 15.3.

Another example demonstrating the flexibility of the EL-
distributions and of the integration of groups of peaks into clus-

ters is shown in Figs.15.5 and 15.6 by a symmetric sample
Zhs = (-10,—-9,-8,-0.2,-0.1,0,0.1,0.2,8,9,10).  This artificial
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Fig.15.4: DISTRIBUTION FUNCTIONS "EL"
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sample contains one narrow central group of 5 data and two symmetrically
placed peripheral clusters each formed by three data.

Marginal cluster analysis has to answer two categories of questions:

1. How many clusters are there in the data sample?
2. Which data form each of the clusters?

Even such a simple case as that of Zi; s shows, that there is no uniqueness
to the answers. As S is varied, 11, 7, 3 or only 1 cluster are obtained.
It is theoretically possible to get a separate peak for each different data
value, however when two or more data are equal, separate peaks cannot be
distinguished even by making S extremely small.

Due to computation limitations, the exponent 2/S cannot increase over
a certain limit; this is the reason, that the possible maximum of 11 peaks
is not realized (the inner data group is too narrow in comparison to the
sample range). But whether the “true” number of clusters is 7, 3 or 1 still
remains to be determined. Instead of a single answer, the following issues
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Fig.15.5: DISTRIBUTIONS "EL"
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must be considered:

e An objective and unique test for the homogeneity of a data sample
cannot be accomplished by using the EL-function; the EG distribution
function must be used. This will be considered in the following section.

e The choice of the S to use with the EL-distribution is a question of
the resolution power of the analysis, which depends on the particular
goal—in what detail do we want to see the inner sample structure.
(This choice is analogous to that of using the zoom of a camera: “What
is the right zoom level?”).

e There are two important aspects involved:

— It is possible to change the resolution power of the analysis by
choosing a suitable value for S.
— The number of separable clusters may be less then the number of
data:
x In some particular samples a specific number of clusters cannot
be obtained at all. In Fig.15.6, the density cannot have an
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Fig.15.6: DISTRIBUTIONS "EL"
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even number of maxima because of its symmetry (in some
cases this may be an important result of the analysis).

x Data, which have the same value, contribute to the same clus-
ter.

In different applications, the size of the interval for .S, over which the num-
ber of clusters remains constant, is not the same; therefore, the “best”
number of clusters to retain may often be taken as that number of clus-
ters, which corresponds to the widest interval usable without reducing the
number, that can be distinguished.

Which data belong to each cluster is only a technical question. Once
the number of clusters is established, it is easy to separate them by finding
the local minima of the density curve. Data associated with each of the
intervals between the minimum points are those, which form the cluster
above the interval.
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Fitting errors of the ELDF

As explained above, there is a benefit to be gained from reducing the
value of the scale parameter, S, but this also results in a trade-off with
respect to the residual entropy ratio, RE. This relationship is summarized
in Tab. 15.1 for the data sample Z; 4:

Scale parameter S | Residual entropy RE

0.05 0.972

0.1 0.929

0.2 0.868
0.35 0.810

0.5 0.769

1 0.714

3 0.705

Tab. 15.1 The residual entropy of the EL-distributions for the
symmetric data sample Z; .

Decreasing S improves the goodness-of-fit of the EL-distribution, but
the paid price for this is a reduction in the smoothness of the distribution
function. This can be seen in Fig.15.4, where wavelets appear in the
descending portion of the main density cluster at an already relatively
high value of S = 0.35.

15.3.3 The Robustness of the ELDF

The high flexibility of the ELDF may lead to an impression, that this dis-
tribution function is not robust, because the notion of robustness connotes
a feeling of rigidity contrary to the idea of flexibility. Such a conclusion is
not valid, at least in the case of the ELDF', because the smaller the value
of the scale parameter, the more flexible the ELDF is in adapting to the
placement of the data, and the weaker the influence of data, which form an
independent local cluster. There is a simple explanation: the width of each
kernel becomes narrower as the scale parameter decreases. This indepen-
dence of a local cluster with respect to a more distant cluster is the local
robustness. A much more complex set of interactions of data treated with
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the ELDF will be analyzed in next chapter in connection with estimates
of parameters of location. The above effects, related to local robustness,
have an important application for the ELDF in interval analysis; it allows
data to be split into several classes, ie to classify them with respect to their
relationship to the best estimate of the ‘central’ value of the data sample.
This problem is examined in section 16.4.

15.3.4 The Uniqueness of the EGDF

The estimating global distribution function (EGDF) behaves differently
than the ELDF. Because of the normalization by the sample modulus, the
scale parameter is unable to control the flexibility of the EGDF' as it does
in the case of the ELDF. The dependence of fitting errors on the scale
parameter is not a monotonic function as it is with the ‘local’ function.
When the parameter S is varied over a broad interval, the best value is
always found, where the fitting criterion reaches its minimum. No advan-
tage is gained beyond that point. This is the reason, why only the EGDF
finds the best scale parameter and—if it is needed—the best estimate of
the bounds of data support. This is important from several points of view:

e it simplifies applications—the scale parameter is chosen automatically
together with the bounds for the data support,

e it enables hypotheses such as the homogeneity of data samples to be
tested,

e the one and only (the best) EGDF for a homogeneous data sample
can be accepted as the sole representation of the data’s distribution
and it provides unique values of probability for selected quantiles and
unique quantiles for given probabilities.

In other words, the EGDF can be used as a model uniquely determined
by a data setf] It may be a good model, but other methods may produce
different models and the final choice of the model is always a matter of a
careful analysis. The applicability of the EGDF to uniformly distributed
data is demonstrated in Fig. 15.7.

The scale parameter and both bounds of the data support have been
optimized to minimize the fitting criterion (in this case to minimize the
entropy). The probability distribution is practically a straight line passing
through all the ME-points. The EGDF’s density is nearly constant over a
broad interval between 2 and 9 and changes from this constant value only

9The uniqueness problem is examined in 15.3.9 in more detail.
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Fig.15.7: DISTRIBUTION FUNCTIONS
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when the bounds of the data support are approached.

15.3.5 Testing for Data Homogeneity

The fact, that there are two density maxima shown in Figure 15.7 may ap-
pear contradictory, because in theory a homogeneous data sample should
only have a single maximum; and from the plot, the data sample surely
appears to be homogeneous. The answer to this paradox is simple: the
condition of uniqueness of a density’s maximum is related to the distribu-
tion function defined over infinite data support. The process of calculating
an EGDF passes through three important stages:

1. Transformation of the data (which are always defined over a finite
data support) to infinite data support R,. This transformation is
parameterized by the lower and upper bounds (LB and UB) of the
data support. These bounds may sometimes be given, but if they are
unknown, their value is optimized together with that of the S, so as
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to minimize the fitting criterion of the EGDF that is applied to the
transformed data (over R.).

2. Testing to determine the number of density maxima and for the den-
sity’s polarity. The data sample is homogeneous only if the EGDF’s
density has a single maximum over infinite data support R,. And
the EGDF is a distribution function only if its density is non-negative
over its full range.

3. Back transformation R, — (LB, UB) using the optimum value of S
and the given or optimized bounds LB and UB.

The EGDF’s distribution as shown in Fig. 15.7 results from the third stage
(after back transformation to finite bounds). It can be shown, that over R
there is no doubt as to the data’s homogeneity; the data sample’s density
has only one maximum.

There can be two causes for a data sample’s non-homogeneity; the ex-
istence of:

1. outliers, or
2. clusters.

An outlier is a datum, the value of which is so different from the other
data, that the EGDF’s density has a local maximum near the datum’s lo-
cation. The ability of the EGDF to sensitively reveal this non-homogeneity
is demonstrated in Fig. 15.8 and Fig. 15.9 for the data sample Z;.

The blue probability distribution function in Fig. 15.8 does not appear
to change its form at the value of the outlier (—13.5), but this is only
because the shape of the curve changes only minimally at that point, the
vertical scale in either figure is too rough to be able to visualize the local
“hill” of the density there, but numerical analysis shows, that it really
exists, and that its value reaches a local maximum of 0.00083. This same
result can be obtained with the EGDF over infinite data support.

The lesson is, that it is inappropriate to rely on what is seen on the screen
or on a graph. The decision as to the homogeneity /non-homogeneity of the
data must be made with the more sensitive numerical methodology.

The symmetrical data sample Z;; ; was used in Fig. 15.6 to show, that
the ELDF can interpret the peripheral triples of data either as groups
of three outliers (with a small S) or as two integrated clusters (using eg
S = 0.2). There is no such ambiguity in the case of the EGDF (Fig. 15.10
and 15.11).

The disturbances caused by the peripheral data are shown directly by
the EGDF’s probability distribution, the small ‘bumps’ in the blue line
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Fig.15.8: DISTRIBUTION FUNCTIONS

Uniform data with an outlier

N Outlier
A0S [ --13.5

-20 -15 -10 -5 0 5 10 15
Ideal data's value Ao

— EG — QG — QL = ME-points

of Fig.15.10. The EGDEF’s density curve in Fig.15.11 is even more im-
pressive: the peripheral data are seen as triples of outliers, because they
produce separated local maxima. Moreover, the density dips to negative
values at these data points. The necessary condition for a distribution
function—that it be non-decreasing—is violated. The blue function in
Fig. 15.10 calculated with the EGDF’s algorithm therefore cannot be used
as a distribution function. However, it provides the useful and important
information, that the peripheral data are separated outliers. Since the
group of five central data appears in Fig. 15.11 as a single cluster, it can
be expected, that if the six outliers were deleted, the resulting sample of
five data would pass the homogeneity test.

15.3.6 The Robustness of the EGDF

Consider the examples shown above from a new point of view: the reaction
of the blue distribution function (EGDF) to the existence of the outlier
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Fig.15.9: DISTRIBUTION FUNCTIONS

Uniform data with an outlier

0.12 -
0.] ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
S NOK |-l
£ 0.08 ‘
S :
> LOCAL
S 0.06 |- MAXIMUM
£ 0.00083
=
D
a

=
o
=

77777777777777777777777777777777777777777777777777777777777777777

-20 -15 -10 -5 0 5 10 15
Ideal data's value Ao

EG QG QL

—13.5 in Fig. 15.8 is so minute, that it cannot be seen in the graph. The
distance between the blue line and the ME-point corresponding to the
outlier is large, and the fitting error at this point is much greater than
that of the data belonging to the main cluster. This feature illustrates the
robustness with respect to outliers or tnner robustness. The central data
of the sample are accepted by the EGDF with a gnostic weight close to
1, while the peripheral data are given much less weight. This can clearly
be observed in Fig.15.10: the “inner” cluster of five data is completely
assimilated by the blue distribution, while the outer triples of data are
practically ignored.

15.3.7 Estimating a Sample’s Boundaries

Consider the EGDF denoted as P(Z, Z,,S), where P is probability, the
EGDEF’s value at the point Z; (quantile), Z is the data sample and S the
scale parameter. Assume, that the data have already been transformed
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Fig.15.10: DISTRIBUTION FUNCTIONS
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onto infinite data support (so that all data as well as all values of Z; are
strictly positive). A homogeneous data sample is defined as one composed
of only one cluster, therefore it has only one density maximum. If there
are several clusters in a sample then each will have a separate maximum
in the sample’s density function. This motivates two important tests:

Definition 16: Let P(Z,Sg, Z/) be the EGDF of a fixed sample Z
of positive data and of an arbitrary positive quantile Z;. Let Sg be the
global scale parameter, which optimizes the EGDF’s fit with the data.

Let Ny be the number of positive and finite solutions Z, of the equation
15.99

dP |
dZy =7
The determination of the number Ny will be called the homogeneity test.

The positive statement (“the sample is homogeneous”) will be considered
as supported if Ny = 1 and rejected with an Ny > 1.

= 0. (15.39)
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Fig.15.11: DISTRIBUTION FUNCTIONS
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Let Z be the same data sample as above and Sg its global scale pa-

rameter. Let Z¢ be a positive variable and 2’ := (Z, Z;) the extended
sample. Let Z and S be fixed.

Let P'(2',8g, Z;) be the EGDF of Z' abbreviated as P'(Z¢, Zp).

Let Z1 and ZL be respectively the smallest and largest datum in Z.
Let LSB be such a value of Z,7, that all three relations

0< LSB < Z1, (15.40)
&P (Ze, Z))

’ _ =0 15.41

72 | Z:=15B ( )
and BP(Ze, Z0)
&y 40

_ = 15.42

iZ3 |ze=1sB =0 (15.42)

simultaneously hold. Let LSB be the only number satisfying these con-
ditions. Then LSB is the lower bound of the sample Z.
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Let USB be such a value of the variable Z,i, which satisfies both equa-
tions and and the relation ZL < USB < co. Let USB be the
only number satisfying these conditions. Then USB is the upper bound
of the sample Z.

Numbers LS B and USB will be the bounds of the membership interval
of the sample Z, shortly the sample’s bounds.

A number Zp);, for which the relation
LSB < Zpy <USB (1543)

holds, is the potential member of the sample Z. Let Z be a given positive
number. Then the process consisting of the following steps:

1. determination of the LSB,
2. determination of the USB,
3. verification, that [15.43| holds for 7,

is the membership test.

It is well-known, that a point at which the second derivative of a
function reaches zero is an inflection point. The probability distribution
function P'(Z¢, Zy) is dependent on the value of the extending variable
Z¢, which plays the role of the additional datum to be tested. The
first derivative dP'(Zy, Z¢)/dZy is the density. At the point Z,, where
the second derivative d*P'(Zy, Z¢)/dZ¢ passes through zero, the density
reaches its local maximum or passes through its inflection point. The
probability’s third derivative d*P'(Zy, Z¢)/dZ$ is negative in the former
and zero in the latter case. Simultaneous zero values of both second and
third derivatives signal, that the density function has passed through an
inflection point. This takes place for a certain value of the parameter
Z¢, which represents either LSB or USB. Homogeneity of the extended
sample Z' is thus maintained if LSB < Z; < USB.

The difference between the homogeneity test and the membership test
can be explained by the question to be answered by the tests:

Homogeneity test: “Is the given sample Z homogeneous?”

Membership test: “Is a value Z¢ a potential member of the given sam-
ple Z7” In other words: “Will the homogeneous sample Z remain
homogeneous after extension by Z:”7

Note, that both homogeneity and membership problems are solved on
the binary (yes/no) level. Since the estimating global distribution function
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is uniquely determined by data for each homogeneous data sample, the
number Ny and the bounds LSB and USB are also uniquely determined
by the data. Both tests are objective, independent of the subject asking
the questions. The outcomes of the tests are thus completely defined by
the data.

Problems of this type also have a solution in statistics, however, the
results of such statistical tests depend on the (subjective) choice of signif-
icance level and on the (subjective) choice of an a priori data model.

The membership problem has both theoretical and practical importance,
eg in mathematics it plays a fundamental role related to notion of a set:
“is x an element of a set X7?” Different answers may give rise to different
mathematical concepts:

e In classical (Cantor’s) set theory, membership is taken as a primitive
notion (“everybody knows the right Y/N answer for any arbitrary x.”)

e In contrast, the popular fuzzy set theory is based on the idea, that
“everybody knows the value of the membership function—to what
degree does the x belong to a fuzzy set X.”

In both of these examples the responsibility for the solution of the mem-
bership problem and for its consequences lies with the user of the method,
on his subjective choice—just as in statistics.

Gnostic tests of homogeneity can be used to establish the membership
of a particular value z. Practical applications for sample’s bounds could
include:

e Given a group of enterprises comparable in the sense, that the sample
R, consisting of a set of financial ratios R is homogeneous, within what
bounds must the ratio R, of another firm lie to allow its membership
in the group?

e Given a collection of good products with quality parameters (), which
form a homogeneous sample Q; what should be bounds of another
product’s quality parameter (), in order to be accepted as “good?”.

The uniqueness and objectivity in the answer to these questions is un-
doubtedly desirable and the robustness of the EGDF with respect to out-
liers and peripheral data provides a reliable homogeneity test as well as
estimates of a sample’s bounds.
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15.3.8 The Flexibility of the QLDF and QGDF

The additive composition of the unbounded quantifying irrelevances, to-
gether with transformation [15.32) results in natural behavior:

1. The QGDF exhibit limited flexibility like EGDF.

2. There is a best scale parameter and best estimates of the probability
domain.

3. The QLDF has an unlimited flexibility like ELDF and can be used for

the marginal analysis.
4. Both the QLDF and the QGDEF are robust with respect to inliers.

Hence, the QGDF is also unique for a given data sample like EGDF. A
comparison of the behavior of quantifying distributions with the EGDF,
using the same examples that were considered above shows, that all three
probability distributions taken with the same scale parameter coincide so
closely in Fig. 15.7, that it is impossible to distinguish between their val-
ues. The densities are substantially different only in the vicinity of the
bounds of the data support. The outlier (—13.5 in Fig. 15.8) raises the
value of both the QLDF and the QGDF without affecting their monotonic
character. The fitting errors of the data 1 and 2 are large, while the “pe-
ripheral” data 7, 8, 9 and 10 are modeled by the QLDF and the QGDF
more precisely. Both probability distributions in Fig. 15.8 and densities in
Fig. 15.9 document a similar behavior for the QL- and QG-distributions.
The similarity of these distributions is also seen in Fig.15.10 and 15.11:
they are essentially identical in the case of symmetrical data samples.

The example in Fig.15.8 shows, that both the QL- and the QG-
distribution are more rigid than the EGDF—their slope (unlike that of
the EGDF) does not change to reveal the presence of the outlier (—13.5)
when the scale parameter and bounds of distribution’s domain are the
same.

15.3.9 The Robustness of the QLDF and QGDF

Figures 15.8 and 15.9 demonstrated the EGDF’s robustness with respect
to outliers or inner robustness, however the behavior of the quantifying
functions is not the same. In Figures 15.10 and 15.11, both the QLDF and
the QGDF ignore the inner cluster and try to model the peripheral triples
of data, (especially the first and last ones). Such a behavior can be called

the robustness with respect to inliers or the outer robustness. Instead of
the S-form of the EGDF, the QL- and the QG- probability distributions
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take on a less usual form, which can be called the reverse S-forn{™"}

These two categories of gnostic distribution functions (E- and Q- types)
provide an analyst the opportunity to interpret a given sample from two
different perspectives, emphasizing either the inner or outer robustness of
the analysis. Three questions can be raised in this connections:

1. Is there a need for robustness when analyzing real data?

2. If the response is positive, then are two mutually opposite types of
robustness really necessary?

3. If this second answer is in the affirmative, then how should the type
of robustness to apply to any arbitrary data set be chosen?

Question 1) has two aspects. The first one is related to data, which strongly
deviate from a “main” distribution (either outliers or inliers). Any experi-
enced analyst will answer the first question positively. Using a mass pro-
duction process as an illustration: in spite of a high degree of automation,
a high level of production control, and sophisticated quality assessment,
defective products will persist. They must be identified and rejected. As
discussed in Chapter 2, economic data include errors, and it is impossible
to eliminate them without careful analysis. Even with the use of the most
evolved technology, measurement errors cannot be avoided entirely.

The second aspect is connected with the problem of a priori assumptions
with respect to statistical models of data. A method based on such assump-
tions risks, that the real character of data differ from the assumptions. To
guard against the use of potentially false a priori assumptions, statisticians
have labored for decades over the development of robust methods.

Both of these aspects support the idea, that robustness is necessary.
When the problem of dependence of a data processing method on an a pri-
ori data model is considered, the task is clear—such dependencies should
be minimized if the assumptions cannot be verified. What about robust-
ness with respect to outliers/inliers? The need for both types of robustness
can be demonstrated by example: When an inaccurate measurement tech-
nique is used to measure a certain constant quantity, the measurements
are repeated in the intuitive belief, that results, which fall close to a cen-
tral (eg average) value, are more reliable than the peripheral ones. This
notion is based on the Law of large numbers. Such ideas gave rise to the
first robust method of statistics, the so called trimmed mean, which has
been used for physical measurements for centuries. The procedure is to

0However, the outer robustness of the quantifying DFs is related not only to the reverse S-form, it
also manifests itself in the case of S-form quantifying distributions.
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order the measurements and then to eliminate (trim) a percentage of the
results on both ends of the ordered sample. The arithmetical average of
the remainder of the sample (the trimmed mean) is then accepted as the
best estimate of the true value of the measured quantity. In other words,
the data belonging to the central part of the sample are given a full weight,
while the peripheral data are awarded a zero weight. Such discrete weight-
ing can be criticized by observing, that all data are composed partly of
information and partly of “noise” or measurement error. The latter point
of view would augur for a continuous weighting, giving weights to data with
respect to their distance from the sample’s center—the greater distance,
the less weight. Such a weighting scheme is used in gnostics, but instead
of being arbitrarily assigned, the weights are precisely determined by ap-
plication of the theory. While the trimmed mean is (at least at first sight)
a simple procedure, the gnostic methodology results in the preservation of
more information. From the foregoing, it can be seen, that the long lived
use of the trimmed mean shows, that there is a need for inner robustness
in the structure of estimating methods.

Now consider another class of problems:

1. A very short term time series of the price of a security may be tem-
porarily stationary with a modest volatility component; this could be
termed its “normal” behavior. To be able to distinguish a departure
from this state—a rise or a fall-—would provide an opportunity to
either buy or sell the issue on advantageous terms. The ability to
quickly recognize a deviation from the normal price pattern would be
a valuable trading tool.

2. Monitoring the quality of production is a similar problem. “Normal”
results fluctuate around a required “central” value within some given
bounds (tolerance). Exceeding these bounds requires an action—at
least the removal of the bad product from the flow of normal products.

3. A third example is monitoring vital signs of a patient. A departure
from the region of “normal” values requires an intervention.

The similarity of these examples lies in their underlying principle: the (fre-
quently observed) “normal” data are much less important (or useful) for
an analyst than those data, which represent a departure from the normal
state. The “normal” data are close to the sample’s center, while the “inter-
esting” ones are peripheral data. If there were no volatility in the “normal”
data, recognition of the change would be simple, but the more volatile the
“normal” data are, the more difficult it is to establish a change in their
mode of behavior. This means, that for a system, which should initiate
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any action, the “normal” data are “noise”, while the required information
is contained in the outlying data. For such cases, it is natural to apply
methods, which suppress the central part of a data sample and emphasize
its periphery. In other words, under some conditions outer data robustness
is also a desirable trait.

The choice then is closely related to the task of the analyst or that of
an automated decision process. If the goal is to identify and describe the
normal (quasi-stationary) behavior of a stock, characteristics of normal
production, or the vital signs of a patient, then the inner robustness is
required. If the objective is to design software for an automatic monitor
to detect departures from the “normal” situation, then outer robustness is
necessary.

There may also be situations, where the goal of analysis has not been
established beforehand. An example is in exploratory analysis: the objec-
tive here is to explain the data in the best possible way. In such cases, it
may be useful to apply both inner and outer robustness and then compare
the results. The “right” robustness in such a case is that, which better
explains the data. “To better explain data” may sometimes mean “to pro-
vide the fit of the data with the least fitting error”, while at other times it
may be something else.

Referring once more to Fig.15.10, consider first the blue EGDF dis-
tribution, which has the S-form and reveals the peripheral outliers thus
manifesting its inner robustness. It is the best distribution function in the
sense of minimizing the ME-criterion. But if a different criterion were to
be applied, the situation could change.

Now if the MF—criterionE (which is general in the sense of its appli-
cability to an arbitrary system of a priori data weights) is used instead,
the three functions that are graphed, each take on a reverse-S shape. The
QGDF and the QLDF are essentially on top of each other, while the EGDF
(now using the MF criterion) generally follows the same pattern except for
the central data; the global maximum of the sum of the fidelities is (0.8694)
and it is obtained using the scale parameter S = 6.31. This EGDF has
the reverse S form and it practically coincides with the QGDF and QLDF.
The S-shaped distribution can also be obtained, but only with a much
smaller scale parameter (S = 0.182). The resulting distribution function
will correspond to a local maximum of the MF-criterion, which is only 0.67.

There is no contradiction between the two models. A careful analyst

H)\aximization of the fidelities’ sum.
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would make use of both of them: the more flexible to characterize the
clustering of the data, and the more rigid to describe the overall view of
the sample. To obtain either version is easy, it is a matter of the starting
value of the scale parameter. The optimization algorithm will converge
to the local optimum from a small initial S (say, less then 1.5) and to
the global optimum from a larger initial S (greater then 1.8). The same
multiple interpretation can also be used with the QGDF and QLDF.

15.4 Comparison of Distributions

To summarize the results set out above, it will be instructive to compare
the numerical characteristics of the “rigid” distribution functions EGDF
and QGDF, which maximize the mean fidelity of the fit (the MF-criterion).
The optimal parameters of the distributions are S (the scale parameter)
and LB and UB (the lower and upper bounds of the data support).

Para- | Distribution Function

meter | EGDF QGDF

S 3.76 4.54
LB 0.062 0.122
UB 10.95 10.88
MEF |0.99999 0.99999

Tab. 15.2 Comparison of the maximum fidelity values M F' obtained by
the rigid distribution functions as applied to the data sample Zy. (Both
distribution functions have the same nearly linear character.)

Although each of the functions was computed using a different value
for the optimum scale parameter, all of them model this uniformly
distributed data with the same (very high) precision (Table 15.2). The
major difference stems from the different boundaries for the data support,
LB and U B, particularly the lower bound; this different behavior can be
seen in Fig. 15.7.
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Para- | Distribution Function

meter | EGDF QGDF

S 1.15 2.14
LB -13.5 -164.1
UB 23.55 10.80
MF 0.903 0.865

Tab. 15.3 Comparison of the maximum fidelity values M F' reached by
the rigid distribution functions applied to the data sample Z;;.

This data sample is non-symmetrical (Table 15.3). The EGDF has the
S-form (inner robustness). The QGDF manifests outer robustness. The
large difference in the estimated bounds is caused by the different character
of each of the distribution functions.

The symmetrical data sample Zi; ¢ may be used to show the multiple
interpretation of the S-forms versus reverse S-forms.

Para- | Distribution Function

meter | EGDF QGDF

S 0.182 0.245
LB -10.1 -10.3
UB 10.1 10.3
MF 0.670 0.664

Tab. 15.4A Comparison of the maximum fidelity values M F' reached by
the rigid distribution functions applied to the symmetrical data sample
2115 (Both distributions are of the S-form.)

The “small S” functions EGDF and QGDF violate the basic condition
for being distribution functions, they are not everywhere non-decreasing.
Their quality measured by the MF-criterion (although locally maximized)
is low. This leads to the conclusion, that these S-form interpretations
(Table 15.4A) cannot be accepted. It is useful to look for better results in
a region of greater values of scale parameters.
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Para- | Distribution Function

meter | EGDF QGDF

S 6.31 7.25
LB -10.3 -10.3
UB 10.4 10.4
MF 0.869 0.870

Tab. 15.4B Comparison of the maximum fidelity values (M F') reached by
the rigid distribution functions applied to the symmetrical data sample
2115 (All three distributions are of the reverse S-form.)

Both distributions cited in Table 15.4B seem to have the same S-form
and to provide the same quality of fit. However, it would be incorrect to
conclude, that they are identical. The EGDF is flexible enough to reveal
the peripheral outliers (although not as completely malleable as the ELDF,
which can approach the empirical function as closely as desired), while the
QGDF “ignore” these data completely. These differences can be seen by
exploring the behavior of the functions using a more refined numerical
procedure.

However, the most important lesson is, that there can be several (local)
solutions to the optimization task of parameters S, LB and UB. Some of
the solutions can even be unusable and certain efforts may be necessary
to find the global optimum.

The examples and comparisons of the distribution functions (EGDF
and QGDF) optimized by the choice of the scale parameter show, that the
estimating global distribution function (EGDF) has unique features, and
that it has no substitute. When the iterative calculation of this distribution
is initiated using a small scale parameter, a reliable test of the homogeneity
of the data sample can be performed, and the robustness is of the inner
type. If the iterative optimization process of the QGDF is started from a
sufficiently large scale parameter, it manifests robustness of the outer type.
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15.5 Cross-section Filtering

It is quite common in the field of data treatment to associate the notion of
a filter with processing time series. The task is to make use of the whole
signal to extract the desirable components and to suppress the residual
“noise.” The process consists of making use of a known regularity of the
desired signal. When using gnostic distribution functions (which represent
a model of the data’s regularities), reliance is placed on both the theory
(which shows how to create these functions) and experience (in manipu-
lating the data, which make up the distributions). If data are related to
the same time frame, cross-section analysis is used. An example of such a
situation could be a data sample composed of certain financial ratios taken
from financial statements of a set of firms from the same period. The distri-
bution of such data reflects regularities relevant to the financial situation
of the whole group at that point in time. Distribution functions—as a
collective experience—can therefore be used to revise individual data since
these, as a rule, do not exactly correspond to the sample’s smooth distribu-
tion function. Four ways to discretely characterize data distribution were
examined above (the empirical distribution function EDF, collections of
KS-points and ME-points and the WEDF). Each of these systems of points
represents a version of a discrete distribution function (DDF), which can
be directly calculated from the data. Each of the four gnostic distribution
functions (xxDF) is a tool for smoothing the DDF. Discrepancies between
the discrete and smooth representations of data may be used to suppress
uncertainties in individual data, ie for cross-sectional filtering.

Definition 17: Let Z be a data sample consisting of data Z;,..., Zy.
Let the DDF be the discrete distribution function, points (Dy) of which
are evaluated from data Z using formulae [15.1} [15.3, [L5.7]| or [15.10}

Let *xxDF be any of the gnostic distribution functions ELDF, EGDF,
QLDF or QGDF of the sample Z and let P(Z;) be the probability esti-
mate at the point Z; obtained as the value of this distribution function.
Let Z; be the estimate of the true value of Z; such that

P(Z;) = Dy, (15.44)

holds.

This procedure for obtaining estimates Zj for k = 1,..., N is defined
as cross-sectional filtering.

The ideas behind this notion of filtering are, that
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1. the value of Z, (obtained by inverting the distribution function for
probability Dj) may be closer to the true value of Z, because it better
corresponds to the direct representation of the data by the DDF than
Zk:)

2. the *xDF better describes the regularity reflected by the data than
the DDF, because—due to its smooth character—it integrates the
influence of all the cross-section data, compensates for uncertainties
of individual data and awards to them optimal weights according to
the (x*DF’s inner, outer or local) robustness.

It is thus obvious, that this cross-section filtering is robust and the specific
kind of robustness may be chosen by the selection of the xxDF.

15.6 Homo- and heteroscedascity

Homoscedasticity (heteroscedascity) refers to the circumstance in which
the variability of a variable is equal (unequal) across the range of values
of a second variable that predicts it. The variability of a kernel estimate
is determined by the kernel’s width. The kernel’s integral is normalized
to 1. Both width and amplitude of a kernel are determined by the scale
parameter. The “equal” variability of a number of kernels is achieved
when scale parameters of all kernels coincide. The heteroscedastic data
case corresponds to unequal scale parameters of the kernels. There was
an assumption of a constant scale parameter when different probability
densities were considered above. However, this does not limit the appli-
cation of the formulae to heteroscedastic cases, because a constant scale
parameter is used for the entire kernel’s form. The probability and density
of heteroscedastic data will be modeled by kernels having different scale
parameters.

15.7 Summary

Unlike parameterized families of statistical distribution functions, the gnos-
tic distributions have no a priori prescribed form. However, this does not
mean, that they are not parameterized; the primary parameters of gnos-
tic distribution functions are data. The most frequently used secondary
parameters are the scale parameter, and the lower and the upper bounds
of the data support. These are ‘secondary’ in the sense, that they are es-
timated from data. The data thus play the full role of determining both
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the distribution functions and their densities. Again, this is the real thrust
behind the gnostic ‘credo’ of “Let data speak for themselves.”

To estimate the secondary parameters of distribution functions, it is nec-
essary to solve the “goodness-of-fit” problem—to find parameters, which
ensure the best correspondence of the gnostic distribution functions to the
data sample as it is represented by its discrete distribution function.

Several types of discrete distribution functions for a primary represen-
tation of data were examined and several criterion functions were found
suitable to obtain the best goodness-of-fit. The choice of criterion func-

tions can be made from several gnostic criteria, which lead to robustness
of the fit.

Four gnostic models of distribution functions were created from a gen-
eralization of the notion of the gnostic probability of an individual datum.
The main element of these functions is the irrelevance of a data sample,
which is obtained by the composition law (Axiom 2). There are two types
of irrelevance in gnostics; these evolve respectively from the estimating
and quantifying processes. Two composition rules result from Axiom 2
and these create the weighted and normalized weighted mean of the ir-
relevances. The local distribution functions use the weighted irrelevance,
while the global functions are a result of using the normalized weights. The
four versions of gnostic distribution functions are the EL (estimating and
local, ELDF), EG (estimating & global, EGDF), QL (quantifying & local,
QLDF) and the QG (quantifying & global, QGDF).

Formulae for these distribution functions reveal some interesting char-
acteristics: the local ones (ELDF and QLDF) differ from the global gnostic
distribution functions by its unlimited flexibility, which is controlled by the
scale parameter. This feature can be used for marginal (univariate) cluster
analysis to “zoom in” and get a detailed look at the data structure.

The global distribution functions (EGDF and QGDF) have limited flex-
ibility and they are unique for each data sample in the sense, that the best
fit can only be obtained by using an optimizing value for the scale param-
eter. These functions are based on the assumption, that the data sample
is homogeneous (that its density has only one maximum). In the case
of a non-homogeneous data sample there may be more than one density
maximum or the density may even be negative. Given this possibility, the
EGDF and QGDF are particularly suitable for conducting a reliable test
for data homogeneity. Both global distributions are robust; the EGDF is
robust with respect to outliers, the QGDF with respect to inliers. This
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innate robustness of gnostic distribution functions is a welcome feature

especially in the treatment of small samples of widely spread data.

The following table summarizes the major characteristics of each of the

distribution function:

Distribution Function

Attribute ELDF | EGDF | QLDF | QGDF
Type of DF Estimating | Estimating | Quantifying | Quantifying
Kind of DF Local Global Local Global
Composition of Kernels WA WAN WA WAN
Bounds of Data Support | Arbitrary | Optimized | Arbitrary Optimized
Scale Parameter Arbitrary | Optimized | Arbitrary Optimized
Robustness Local Inner Local Outer
Flexibility High Low High Low
Formula for Probability 15.25 15.29 15.33 15.37
Formula for Density 15.26 15.30 15.34 15.38

Tab. 15.5 Comparison of the Features of the Four Distribution Functions.
The composition law for gnostic kernels in Tab. 15.5 is WA (arithmetic
mean of gnostic kernels weighted by a priori weights) or WAN (normalized
weighted arithmetic mean of gnostic kernels).

The suitability of gnostic distribution functions to different applications
is summarized in Tab. 15.6.

Task Symbol | Suitable Distribution Function

ELDF | EGDF | QLDF | QGDF
Estimate Probability P(Zy) Y Y Y Y
Estimate Density % Y Y Y Y
Estimate a Quantile Zo(P) Y Y Y Y
Est. Location Parameter LP Y Y Y Y
Est. Global Scale Parameter Sa N Y N Y
Est. Data Support Bounds LB, UB N Y N Y
Est. Sample’s Boundaries SB N Y N Y
Interval Analysis IA Y Y Y Y
Cluster Analysis CA Y N Y N
Cross-section Filtering CSF Y Y Y Y
Test for Homogeneity TH N Y N Y
Test for Membership T™ N Y N Y

Tab. 15.6 Applicability of the Four Distribution Functions. Y ... “Yes,” N ... “No.”



Chapter 16

Parameters of Distribution Functions

16.1 Parameters of Non-parametric Estimates?

Reality is richer than the words, which attempt to describe the experience.
There are many more objects than words to characterize them, which is
why one word can be used to define a myriad of things. The casual use of
words in this way is imprudent in scientific discourse, where words purport
to precisely define a process or an activity. The synonymity of a definition,
which represents various activities can be confusing to the uninitiated,
but this very often occurs over the period, over which a scientific discipline
develops. What statistics means has been relatively clear for some decades;
the sense of the word corresponds to a definition such as that given in [110]:

Statistics is a collection of methods for planning experiments,
obtaining data, and then analyzing, interpreting, and drawing
conclusions based on the data.

There is no reason to doubt the validity of this definition as it applies to
modern statistical applications, but the processes cited do not uniquely
pertain to statistics. The definition is too broad to delimit the statistical
framework, while—at the same time—distinguishing it from many other
recently developed approaches to the same tasks. One can agree, that ob-
taining data is one of the tasks of statistics, but it is also applicable to
many other methodologies: eg measurement theory describes in detail the
process of “obtaining data” using mathematics (but not statistics), and
derives conditions, under which this process is consistent. Neither statis-
tics or measurement theory are subsets of each other; nor does statistics
use the results of measurement theory to support statistical definitions or
axioms. A rich survey of methods for planning experiments, analyzing
and interpreting data and for drawing conclusions based on data include

271
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a plurality of theories, among others: Fuzzy Sets Theory, Rough Sets, Al-
ternative Sets, Theory of Evidence, Belief Networks, Possibility Theory,
Chaos Theory, Fractal Geometry, Non-standard Logics, Non-monotonic
Logics, Default Reasoning, Temporal Reasoning, Approximate Reasoning,
Multivalued Logics, Belief Updating, Tree Structures, GUHA Methodﬂ,
Knowledge Acquisition and Representation, Machine Learning, Inductive
Methods, Neural Networks, Databases, Information Retrieval, Data Min-
ing, Uncertainty in Cognition, Expert Systems and—Ilast, but not least—
Gnostics. All of these undertake the tasks set out in the above definition,
but this does not mean, that they are all a part, a “chapter,” of statistics,
because these approaches are encountered as non-statistical methods. It
has been said, that the present state of the art in this field is a “compe-
tition of paradigms,” but, as yet no one has any idea, as to which of the
methodologies will become the future “medalists.” Therefore, it is diffi-
cult to say today, which of these approaches is more importan‘ﬂ In all of
these procedures one encounters the notion of chance, when the task is to
estimate an unknown element. There is not much doubt as to what this
means in terms of ordinary human activity; however it typically demon-
strates the labeling of different things with the same word. In expressions
such as “a chance of winning,” “a chance to explain,” “a chance to take,”
“to meet by chance,” “no chance,” “by any chance,” “to chance it,” and
in many other uses, the meaning of the word differs. The scientific (un-
derstand: statistical) notion of this word is closely related to the Law
of Large Numbers, which behaves with a surprising consistency among
events, that seem to occur “by real chance”. The non-statistical “com-
petitors” of statistics ordinarily avoid this—on the one hand fuzzy and on
the other hand “reserved for statistics”—word and use another term, eg
uncertainty. A similar nomenclature problem exists with parametric and
non-parametric estimates. In the framework of statistics, a parameter is a
numerical measurement, which describes a characteristic of a population,
while a statistic is a numerical measurement, which describes some char-
acteristic of a sample (a subset of the population). Parametric methods of
statistics can usually be applied under conditions, where some fairly strict
requirements (related to the population) are met. One of these is typi-
cally that the sample data come from a normally distributed population:

'GUHA stands for General Unary Hypotheses Automaton—a powerful method developed by Czech
scientists J. Hajek and T.Havranek used to discover the logical interrelations in large masses of data.

2The major portion of the above list was taken from the call for papers of the 7-th conference on
“Information Processing and Management of Uncertainty in Knowledge-Based Systems” held in Paris on
July 6-10, 1998.
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it is then reasonable to use as estimates of the population’s parameters the
arithmetic mean and the standard deviation. The parametric statistical
methods can be called “distribution based”, because a narrower definition
for a statistical parameter would become something like “the parameter
of a population’s distribution function of a specific type.” In contrast to
the above, statistical non-parametric methods do not assume a particular
distribution for a population and they are sometimes called distribution-
free methods. The six most frequently used non-parametric statistical
tests described in [110] are based on the ranks of ordered data samples
or on patterns of sequences. The name “distribution-free” is not always
justified, because to derive critical values for some tests of this type, it is
necessary to apply the binomial distribution. “Non-parametric” cannot be
strictly interpreted as “having no parameter”, because all the statistics de-
rived from these tests are parametrized at least by the size of the samples.
Another example is the Parzen’s kernel estimating method been discussed
in previous chapters. It is suitable for the estimation of a broad class of
distribution functions independent of their parameters. However, kernels
do have parameters, which determine their form, width, height etc. This
means, that the use of parameters by non-parametric methods is initially
a confusing notion.

Gnostics is not based on the idea of a population. Instead, as has been dis-
cussed previously, it deals with data samples as given objects. The samples
may be extended, because they are elements of a group of data, however,
each extension is the subject of an investigation as to its impact on the
characteristics of the sample, to test if—and to what degree—it is indeed
a member of the sample. The notion of parameters is therefore related
not to an assumed population, but to the data, that is being used. Gnos-
tic distribution functions are estimates, parametrized primarily by data
(much like estimates generated by some other methods), but they also em-
ploy several other parameters (the scale parameter S, the bounds of data
support LB and UB, as well as the location parameter, which is dealt
with in the next section). All these characteristics are estimated from the
data. In this sense, gnostic distribution functions are parametrized only
by data, they are not only “distribution-free” (in the sense of being based
on a priori assumed distribution functions); they also are “parameter-free”
in that they yield all the information necessary for estimation from the
data itself. Despite this definition, the notion of parameters of distribution
functions (such as S, LB, UB and others) will be used to distinguish dif-
ferent features of the estimated distributions. As such, these also will be
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“parameters of non-parametric methods.”

16.2 Scale Parameters

The discussions in the previous chapters should have instilled in the reader
a sense of the importance in the role played by the scale parameter. For
the EGDF, QGDF and QLDF a unique scale parameter exists, which en-
sures the best possible goodness-of-fit. In the case of the ELDF the scale
parameter determines the “resolution power” of the representation of the
data sample’s structure. Moreover, it also determines the width of the tol-
eration interval of typical data intervals as used in interval analysis (to be
discussed later in the chapter). It will be shown shortly, that the value of
the scale parameter is closely connected to the degree of robustness of both
uni- and multivariate gnostic models and to robust filters and predictors.
To delve further in the idea, “Let data speak for themselves,” these impor-
tant parameters must be estimated from data “in the best way”. However,
different applications may require a different notion as to what the best
scale parameter is.

16.2.1 Global Scale Parameters

The unique scale parameters, which optimize the distribution functions
EGDF and QGDF (jointly denoted as #xDF) will be called global scale
parameters, because these distributions provide an overall view of the data
of a sample. To do this, the global scale parameters satisfy the condition
of the best fit. The notion of the best fit depends, on which type of
discrete distribution function is to be fitted. The three approaches, the
KS-points, the ME-points and the WEDF', were described in Chapter 15
along with several criterion functions. Three specific versions of the global
scale parameter will be considered here denoted Sg kg, Sg.me and Sg arr.

Global Scale Parameter S; ks

In a simple case, when the bounds of data support are known, the proce-
dure for estimating Sg x5 as described in Chapter 15 can be written as a
minimax task. Denoting

erm— =*x DF (S, Z,,) — EDF(Z,,)- (16.1)
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and
ermye =*xx DF (S, Z,,) — EDF(Zy,)+, (16.2)

where 71, ..., Z are data, and where *x specifies the function (EG, QG or
QL). Expression EDF(Z,,)_ is the left hand limiting value of the empirical
distribution function EDF at the point Z,,, while EDF(Z,,); is its limit
on the right side. Quantities er,,_ and er,,, are thus the fitting errors.
The task is

Sc. ks = arg (mgn(mﬂ%x(max(|erm_|, lermi]))))- (16.3)

This scale parameter has one advantage and several disadvantages. The
advantage is, that it provides a clear statistical sense of the distribution’s
optimality: the distribution function minimizes the Kolmogorov-Smirnov
statistic, which is familiar to statisticians. A statistician may need to be
persuaded from time to time, that a particular gnostic distribution func-
tion is good enough to be used. A useful argument in this case is the value
of the Kolmogorov-Smirnov statistic minimized by Sg xs. Its value is fre-
quently so small, that the KS-test rejects the hypothesis of a bad fit with
a high level of significance. The main disadvantage of the S¢ kg is, that
the procedure for solving requires the extremization of a non-smooth
function. There are suitable algorithms for this, but they are neither very
simple nor fast. In the more general and useful situation of unknown
bounds, additional numerical problems may arise.

The S¢ ks scale parameter was applied to the EGDF distribution func-
tion to compute all the estimates of gnostic location parameters for the
comparison of robust methods cited in [62].

Global Scale Parameter S /x

This type of global scale parameter is associated with the maximum en-
tropy fit. Its value is determined by solving the maximization problem

N
Sc.ME = arg (méxx(Fl s In (Fy) + Y (Fx — Fe—1) *In (Fy — Fr—1))),
=2

(16.4)
where

is the value of the distribution function x x DF' at the data point Z;. In
this case the scale parameter, Sg g, is computed by finding the extreme
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values of a smooth and differentiable function, but its disadvantage is, that
it is not suitable for data, which do not all have prior equal weights.

Global Scale Parameter S/ r

It is not difficult to extend the problem to the simultaneous estimation of
Sa.mr along with the bounds of the data support LB and U B. This global
scale parameter maximizes the sum of the fidelities and is denoted Sg a/F;
its value can be obtained by solving the equation

N 2

=1 (Fe/ Ex)*S + (Ek/Fk))z/S)’
where the Fj are values of the weighted empirical distribution function
(15.9] and and Fj, is again [16.5] This scale parameter can also be
simultaneously estimated with the bounds of the data support. As already
noted, the values of the weighted empirical distribution function E are the
same as the ME-points, when all prior data weights are equal, so that for
this special case the scale parameter Sg ar coincides with Sg a/g. Because
of its universality, the scale parameter is a basic type of global scale
parameter suitable for most applications.

Sc.MF = arg (max (16.6)

16.2.2 Global Scale Parameter S;;

A useful version of the global scale parameter can be obtained by solving
the equation

N
Sp1 = arg(mbin > | Fy— Ex ), (16.7)
k=1

where the same symbols are used as in [16.6, and where the symbol L1
is used to recall the name of ’L1-approximation’.

16.2.3 Local Scale Parameter

When non-homogeneous data samples (those with a complex structure hav-
ing several clusters of data) are to be analyzed, it cannot be automatically
assumed, that the most suitable model is a single scale parameter, which
is constant for all clusters. It often occurs, that such samples are a mix-
ture of several subsamples, each of which represents a different object or
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process. Individual clusters may have a different width due to a different
spread of data. The composite sample may thus need a “local” parameter
dependent on a specific point on the data support rather than a single
scale parameter, which is constant over the whole sample. The value of
such a parameter characterizes the spread of data over the neighborhood of
the point. Such a suitable local scale parameter results from the following
theorem, which then characterize a region of the ELDF.

Theorem 16: Let Zy be a sample of multiplicative data (71, ..., Zy)
defined over the infinite data support R, and let Z;p be a location
parameter of the sample not necessarily equal to the ideal value Z.
Let Sp(Zn,Zrp) be a local scale parameter of the sample. Now let
Ei(Zy/Z1p) = [i{(Zi/Zrp) — 1 be the change in entropy of quantlﬁcatlon

10.26) and f;(Zx/Zrp) the corresponding Q-weight (9.10) for ¢* = 1)
written as

(Zk/Z1p)* + (Zip) Zk)*
2

[i(Zk)Zp) = (k=1,..,N). (16.8)

Let

4
(¢S 4 q71/5)28”
where ¢ = ( Zip)2, and where S is an abbreviation for the scale parameter
SL(ZN, ZLP)- Let

g(ZN,Z,ZLp,S) = (169)

IE; = / (2/Z1p)g(%)dz, (16.10)

where g(x) is the density [16.9)).
Then:

A There exists exactly one scale parameter Si(Zy, Zrp) < 2 satisfying

the condition
Sier Bj(Zi/Z1p)
N
B This scale parameter can be obtained as the solution of the equation

©S/2 T f](Zk/ZLP>
sin(rS5/2) N

— IE;. (16.11)

(16.12)
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Proof of Theorem 16: In order to prove[16.11| for the discrete quanti-
fying weight it is sufficient to show, that the means of f;(Z;/Zrp) (16.8)
and of its continuous version f;(z/Zpp) = ((2/Z1p)* + (Zrp/2)*)/2 are
equal (the means of the constant terms, which equal 1 on both the left
and right sides of [16.11| cancel). Taking into account, that dq = 2-5—dz,

Zip
one can write the integral

~ [ z \? 2 oo dq
) (ZLP> g<z)dz:5/0 (q/5 + ¢~ 1/5)> (1613

where g(z) is the density (16.9). The latter integral is a special case of
the integral

t—1

© X 1 (=r)r/r
b T e = = e (16.14)

(known from the literature [29]), which exists for ¢t < 2r. Integral [16.14]
therefore also exists for S < 2 and has the value shown:

I (Z;>2g(z)dz - 2%. (16.15)

The differential of the reciprocal value ¢’ = 1/q is —ql—qu, so that

~ (Zrp\’ 20 dq'
/0 (z) 9(z)dz = _S/oo (¢S + ¢-1/5)2 (16.16)

Exchanging the integral’s bounds in [16.16| to get the same direction for
the integration path as in [16.13], summing the two equations and adding

1 results in /E; (16.10])

This expression should equal the arithmetical mean of the entropy
changes of the data in accordance with condition[16.11] After substitution
of and its equivalent into the continuous weight f;(2/Zrp),
statement B [16.12] is obtained. The left hand side of [16.12 increases
monotonically from 1 to infinity, when parameter S increases from 0 to 2.
The right hand side of this equation does not depend on S and may take
values between 1 and infinity depending on the data and the value of the
location parameter Z;p. Hence, given a data set, there exists exactly one
S(Zpp) for each value of the parameter Zp. Therefore statement A.

The idea expressed by condition [16.11| deserves further interpretation.
The function g(x), (16.9), is the probability density of the estimating local
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distribution function (ELDF). Integral IFE; is therefore the inte-
grated mean of the continuous quantifying entropy E;(z/Zrp), which is
one estimate of the mean quantifying change in the entropy of the data
sample. This estimate is dependent on the scale parameter S as is the
density. A second estimate of the entropy’s change is the arithmetical
mean of the discrete entropy changes evaluated without prior knowledge
of the scale parameter. Condition [16.11] requires, that both estimates be
equal. The proper value for the scale parameter is then calculated by ap-
plying [16.12] The mean quantifying entropy change is robust with respect
to inliers (but is sensitive to outliers). Estimates of the scale parameter
obtained from [16.12] will therefore retain these same characteristics. How-
ever, obtaining an estimation procedure robust to outliers is not difficult; it
is sufficient to recall, that equality f; = 1/f; holds between the estimating
and quantifying weights. The scale parameter estimate robust to outliers
results from the solution of S of the equation

sin(75/2) YLy fi(Zk/Zep)
wS/2 N

. (16.17)

16.2.4 Scale Parameter for Required Fidelity

The global scale parameterf’| can only be used with distribution functions
EGDF, QGDF and QLDEF. Applying a local scale parameter instead would
not make good sense, because there is no freedom in the choice of scale
parameters for these distributions; they are to be used with the best—
global—scale parameter. Because the local scale parameter is dependent
on the spread of data in the neighborhood of a location parameter Zjp,
its local character is useful in some applications of the ELDF, but it may
be undesirable in other cases. Under certain conditions, it may become
necessary to find the value of a scale parameter, which will provide a given
quality of fit for the whole data sample. A suitable measurement for such
a condition is the mean fidelity of the fit

QF = [(EL(Zx, 21, 9))/ Estr (16.18)

where Ejyrpy is the k-th value of the weighted distribution function ((15.9
through [15.11]) of the MF-fit, and EL(%) is the value of the ELDF of the
data sample Zy at the point Z;,. While formula [16.18]is used to evaluate

3Note, that using the adjectives ‘global’ or ‘local’ to describe distribution functions does not necessarily
imply, that the same type scale parameter (global/local) is the parameter, that should be estimated.
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the quality of the MF-fit, when the scale parameter S is given; in cases,
where a specified quality for the MF-fit (QF) is desired, it can also be
solved for S to find the scale parameter, which will provide the required
quality. Such a scale parameter is denoted Sip. There are interesting
applications for this scale parameter. In marginal cluster analysis it may
help in deciding, which level of resolution power should be chosen (or how
many separate clusters should be revealed). The resolution power may be
“normalized” by always requiring the same quality QF' for the MF-fit of
all the samples to be analyzed. When the similarity of samples is being
tested by interval analysis (to be discussed in section 16.4), the samples’
intervals can be made comparable in this manner.

16.2.5 Variable Scale Parameter

There is, of course, no reason to expect, that all the data in a sample
will have a constant spread. In statistics, this condition is known as het-
eroscedasticity. Heteroscedastic data are frequently encountered in eco-
nomic analysis, especially when the cross-section structure of groups of
non-homogeneous objects is being examined. It is also true, that time
series data cannot be automatically taken as having a time-independent
spread. Gnostics provides tools to overcome this difficulty. The statistical
notion of heteroscedasticity is based on the notion of variance. As previ-
ously explained, this measure of data spread is acceptable in gnostics only
in the case of small data errors, as a limit to the mean data weights ({14.54]),
the mean data entro, mean information change ({14.57]) or mean
squared irrelevance ((14.58)) under decreasing amounts of uncertainty. All
of the cited formulae demonstrate the role of the scale parameter S. More-
over, the first derivatives of all four gnostic distribution functions (density
functions) are proportional to the reciprocal value of the scale parameter
(see [15.26], [15.30}, [15.34] and [15.38), and the second derivative is propor-
tional to 1/5%. Recall, that the second derivative of a function is a measure
of its curvature. The local curvature of a gnostic distribution function is
thus specified by the local scale parameter, and vice versa: the local scale
parameter is determined by the local curvature of the distribution function.
A low S < a high curvature and low data spread, large S < a flat form
for the distribution function and a large spread. The local scale parameter
can be estimated by solving for the data sample being considered.
Solutions can be obtained for different values of the parameter Z;p, ie at
different points of the data support. The greater the change in the local
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Ss, the larger the change in the data spread. This effect can be viewed
more vividly by using the idea of the kernel estimation of densities and
distributions dealt with in Chapter 11. Both the statistical kernel and
the gnostic kernel are functions of the scale parameter S, which de-
termines the width and height of the kernel: a large S < a broad, flat and
low kernel, a small S < a narrow, sharp and high kernel. The former case
is that of a strong data uncertainty (large spread), the latter corresponds
to a small spread (better precision of data). The distribution functions
and densities are obtained by superposition of kernels. Heteroscedastic-
ity thus leads to changes in scale parameters and vice-versa. A practical
observation related to the algorithmic use of the variable local scale pa-
rameter obtained by is, that this equation does not warrant using
the best fit to data, it gives only a relative profile S;(Zrp). To optimize
the fit, it is necessary to introduce another parameter Sj, the value of
which in Sy % Sp(Zrp) minimizes the fitting errors. Kernels can also be
used in estimating global scale parameters in view of the fact, that the
distribution function consists of kernels attached to individual data. In a
heteroscedastic case, a scale parameter, which is a function of the ideal
value Z could be used rather than a constant (unknown) S for all ker-
nels included in the optimization process. An example of such a function
might be S = Syexp (cZy). Both constants Sy and ¢ are unknown, but
they can be estimated using the extremization condition of the best fit.
This simple function embraces several types of spreads: the homoscedastic
case (o0 = 0), decreasing and increasing linear cases (a small |o|) and expo-
nential changes (an arbitrary real number o). The type of function, that
applies in each case, can be chosen by inspection of the data fitting errors.

16.3 Location Parameters

The location parameter is the numerical characteristic of a data sample,
which provides information, as to where the data are placed on the data
support. There are many types of location parameters; the most frequently
used in statistics are eg the arithmetic or geometric mean and the quan-
tiles directly obtained from an ordered data sample (median, quartiles and
others.) The minimum and maximum data value of a sample also indicates
the breadth of the data. Analogously, the given or estimated bounds of the
data support may also play this role. When a robust distribution function
for a data sample is available, other location parameters such as robustly
estimated quantiles (related to their probabilities) can be used. Useful lo-
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cation parameters such as quantiles, for which the density function reaches
its maximum may also be derived from this function, ie the most frequently
occurring value of the sample’s data (the mode). Two such kinds of pa-
rameters will be distinguished, the GEL (Global Estimate of Location)
and the LEL (Local Estimate of Location). The former parameter is asso-
ciated with the three versions of the gnostic distribution function (EGDF,
QGDF and QLDF), for which a unique “best” scale parameter exists. The
latter location parameter can be derived from the ELDF'. It is important to
emphasize, that the “location of the maximum density” in all these cases
is informative only if it is specified, to which data support it relates.

16.3.1 The GEL vs. Traditional Location Parameters

The behavior of the different location parameters can be illustrated by
examples using the simple data sample Z;y of uniformly distributed data

1,2,3,...,10 (Fig. 16.1).

Fig.16.1: LOCATION PARAMETERS
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These data are fixed, while an 11-th data element is free. Its value
changes as it rises from a negligible value to infinity. When it is on either
side of the range of the fixed data, the free value is an outlier. The red line
shows the effect of these changes on the arithmetical mean (AM) of the 11
data taken together. When the outlier is very small, the AM approaches
the value 55/11=5. An unlimited increase in the single outlier results in
the unlimited increase of the location parameter. This effect is the well-
known wunrobustness of the arithmetical mean. The median, evaluated
directly from the data, (the sampling median SM) shown by the magenta
line is constant (5) until the point, at which the free datum reaches the
highest value in the sample (10). At this point and for all larger values of
the free datum the SM is again constant and equals 6. While the AM is
oversensitive to large outlier values, the SM exhibits the opposite tendency
and is completely insensitive to changes in the value of the free 11-th datum
over broad intervals. The trimmed mean TM (blue line), obtained by
omitting the smallest and the largest data elements, is constant outside
the data range just as the SM. Within the range, it gradually increases
from 5 to 6. The robust median (RM, green line, the quantile for which
the EGDF reaches 0.5) and the global location parameter GEL (brown
line) exhibit a surprising behavior: they both decrease with an increase in
the outlier from a very small value to that of the smallest datum (1). This
effect may be examined from at least two different points of view:

1. It may simply be accepted as the outcome of a mathematical theory,
which results in maximizing the information contained in the data, or
2. the analyst may try to interpret, what it really means.

The former approach needs no further comment. An attempt to explain
the latter can take a more intuitive form. With only the data Z4, the
estimate of their “mean” value of 5.5 can be accepted. However, after it
is learned, that there is an additional 11-th datum, with a value of less
than 1, the estimate is revised and a lower “mean” is computed. There
may also exist a contrary effect: if the additional value is a real outlier,
which has a value much less than 1, the smaller it becomes, the larger the
weight of the remaining (fixed) values in the sample and the weaker the
outlier’s effect on the mode. The dependence of the location’s estimate on
the position of the additional value is continuous. This is why the mode
rises, when the free value approaches the value of the smallest datum (1).
A similar explanation may be applied to an “overshoot” of both RM and
GEL beyond the largest data value of 10. Note, that in the case of an
outlier, which is well beyond the range of the fixed data, the application
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of the EGDF is limited by the potential appearance of a second density
maximum. Both the quantifying distribution functions QGDF and the
QLDF have a “global” character in that for them there is a unique (best)
scale parameter, which is also the case with the EGDF. A comparison of
the sensitivity of these three functions to an additional “free” datum is
shown in Fig. 16.2.

Fig.16.2: LOCATION PARAMETERS (GEL)
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There is no significant difference in the behavior of the three functions
over the range of the fixed data (1 through 10) nor over the interval (0,
1). However, as the free data’s value increases beyond the last datum’s
value, all three location parameters first decrease, then begin to rise. For
both the QGDF and the QLDF the increase is accentuated, while for the
EGDF it is much less pronounced and levels off at about 6. This effect is
caused by the outer robustness of the quantifying distribution functions,
which both give an increasing weight to the “outlier.”
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16.3.2 A Detailed Comparison of Location Parameters

The fast pace in the growth of robust statistical theory over the postwar
decades resulted not only in the development of many robust estimating
methods, but also in the appearance of extensive numerical studies de-
signed to compare their respective features and to evaluate the efficiency
of the new techniques. In order to validate these tests, “artificial” data
were used (where both the “true” and the “disturbance” components were
known). The use of this procedure was defended using the argument, that
it was necessary to know in advance, what the “true result” should be.
However, researchers with a more realistic orientation objected, that in
practice, the true character of data is never known beforehand, and that it
would be difficult to judge, whether a “theoretically” good method would
provide substantive results, when applied to real data. This was the objec-
tive behind S.M.Stigler’s [L06] decision to test 11 types of robust statistical
estimators of location using 16 independent samples of real data made fa-
mous for their historical measurement of well known physical parameters:

1. the parallax of the sun (Short 1763),
2. the mean density of the Earth (Cavendish 1798),
3. the speed of light (Newcomb 1882, Michelson 1879 and 1882).

The samples contained between 17 to 100 observations. The eleven robust
estimating methods tested were: six “traditional” measures (sample mean,
sample median, three trimmed means (10%, 15% and 25%) and Edge-
worth’s L-estimator) and five “recently” developed parameters (outmean,
three types of M-estimators (Huber P15, Andrews AMT and Tukey Bi-
weight) and an adaptive estimator (Hogg T1))f} His motivation was, that
since the true value of these measured quantities (which were unknown at
the time the measurements were taken) have recently been estimated with
a high precision:

The closer the realized value of an estimator to the current ‘true’

value of the estimated quantity, the better the estimator.

Stigler concluded, that
Modern estimators are not worth the time necessary to compute
them,

and that

The smallest non-zero trimming percentage included in the
study emerged as the recommended estimator and the mean itself

1A description of these methods can be found in [106]
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did rather well.

A second study using contemporary analytical-chemistry data [94] also at-
tempted to determine the most useful location parameter. In this endeavor,
it was felt, that the current “true value” of the classical data was irrelevant,
because of the possible existence of a bias, which could be larger than the
variation across the data:

What is of importance is the variance of the location estimator
used, since lower variance means, that the population location
parameter is more precisely determined.

A comparison of the variance of the estimators applied to both the classi-
cal and modern analytical-chemistry data resulted in the suggestion, that
either severely trimmed means or modern robust estimators are required
to obtain optimum performance. These conflicting conclusions suggested,
that a comparison of the gnostic global estimate of location (GEL) with the
11 statistical ones using the same classical physical data [62] would prove
instructive. Since the 12 estimating methods were to be compared using
16 samples of data, each sample was normalized, so that the task could
be interpreted as the estimation of a single fixed quantity. The problem
of the “true” data values was solved by associating the idea of an “expert
board” of top statistical experts with the respective methodology of each of
its members (Profs. Huber and Andrews, among others), whose outcomes
are listed by their names in the table following. The authors of the classical
methods are, of course, unknown, but it can be assumed, that they were
the top experts of their time. It is therefore possible to accept in the same
manner the ideas of “Prof. Mean, Prof. Median” and others. Thus there are
12 expert estimates of location parameters for 16 normalized independent
data samples. Justification for this approach can be shown by the test,
which demonstrates, that the distribution of the 12x16 ‘expert estimates’
around the mean value of 1 is undoubtedly Gaussian. The outcome of using
these methodologies, ordered by the standard deviation of the estimating
errors from the mean is summarized in Table 16.5.

Conclusions drawn from Table 16.5:

e The best results, which were close to the mean of the estimates of the
whole “expert board,” were provided by the gnostic estimator GEL.

e The higher percentage of trim, the better trimmed mean.

e Both the sample median and the arithmetic mean performed badly.

The last two conclusions are similar to those of [94]. In contrast, to [106],
this study showed, that (some) robust estimators are really worth the time
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necessary to compute them. The standard errors of about 4% (GEL) or
of about 6% (Hogg T1) have to be preferred over the more than 20% SE,
which results from the use of the sample mean or the sample median.

Estimator Measure of the error

(method) Stand. deviation | Mean error | Range of errors
Gnostic (GEL) 0.038 —0.001 0.139
Hogg T1 0.061 —0.017 0.261
25% Trim 0.070 —0.029 0.261
Edgeworth 0.079 —0.011 0.273
15% Trim 0.104 0.032 0.447
Tukey Biweight 0.131 —0.043 0.631
Andrews AMT 0.147 0.025 0.660
Huber P15 0.210 0.083 0.856
10% Trim 0.211 0.097 0.821
Arithmet. mean 0.212 0.078 1.055
Sample median 0.278 —0.124 0.962
Outmean 0.610 —0.086 2.603

Tab. 16.5 Errors of 12 robust estimation methods of location parameters
applied to 16 normalized samples of historical data.

16.3.3 Local Location Parameters (LEL)

The sensitivity of the estimating local distribution function ELDF to out-
liers has been shown to differ significantly from that of the EGDF (Chapter
15). It is no surprise, then, that the local estimate of the location param-
eter (LEL) behaves differently. Moreover, an examination of its behavior
under a changing additional datum opens a path to a new way to classify
data. Once again consider the same data sample, Ziy, of 10 uniformly
distributed data 1, 2, ..., 10 and once more extend it with an 11-th ‘free’
datum, which changes its value over a broad interval. The object of interest
is the sensitivity of the estimating local distribution functions ELDF for
three values of the scale parameter S (0.8, 1.0 and 1.2). The ELDFs have
unimodal densities for these values of the scale parameter. The dependence
of two location parameters (RM—the robust median and LEL—the local
estimate of location) on the value of the additional free datum is shown in
Fig. 16.3.

The behavior of the robust median is not surprising, it is reminiscent
of the form of the trimmed mean from Fig. 16.1, only the sharp edges are
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Fig.16.3: LOCATION PARAMETERS OF ELDF
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smoothed. A difference can also be observed outside of the data range,
where the trimmed mean is constant (5 or 6), while the RM deviates from
these values. Using it can be shown, that the limit of the devia-
tion in this case can reach +7;;. The LEL’s behavior is more interesting.
When moving from left to right on Fig.16.3, three portions of the LEL
can be distinguished: one, which decreases to a minimum, an increase to
a maximum and then once again a decreasing portion. These effects are
considered in more detail in the following section and they are illustrated
in Fig. 16.4.

16.4 Interval Analysis

16.4.1 Three Interesting Data Intervals

The following definitions will facilitate the analysis of the location param-
eters of a data sample derived from the estimation of the local distribution
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function (ELDF) of a data sample.

Fig.16.4: LOCATION PARAMETER (LEL)

Sensitivity to a moving datum

Value of the Location Parameter LEL
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Definition 16: Let Zy be a data sample of N fixed data elements
defined over the infinite data support R, .
Let wy (k=1,...,N) be a priori weights of fixed data.
Let Z, be an N + 1-th datum, which can take any arbitrary value from
R, so that Zy. is the data sample Zy extended by the variable datum
Z., the a priori weight of which is 1.
Let the ELDF be the estimating local distribution function of the sample
Zy calculated for a scale parameter .S, such that the ELDF’s density is
unimodal, and let Z; be the mode of the ELDF’s density, ie location of
the density’s maximum. Let Zy(Z,) be the main mode of the extended
sample Zy,1. Denote Zj the smallest and Z;; the largest finite value of
Z,, for which the equation

d(ZO(Zw))
dZz,

=0 (16.19)
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holds. Introduce notation

Zor = d(ZC?;Zm)) (Z1) (16.20)
and 17 (7
0 = 2ol Z:)) c(z)é;)) (Zv) (16.21)

Then the interval [Zy 1, Zoy] is the tolerance interval of the mode and
interval [Z1, Zy] is the interval of typical data. An analogous notation
and terminology will be used for finite data support, onto which the points
of infinite data support are transformed.

Figure 16.4 shows the function d(%(zm transformed onto the finite sup-

port of additive data, ie as function == v All multiplicative data Z,
are represented as their additive transforms A,. The graph represents the
sample A of fixed additive data 1, 2, ... , 10, which is extended by a “free”
eleventh datum (“outlier”) A1, whose value is indicated on the horizontal
axis as Al1l. Values of the corresponding location parameter of the type
“mode” are on the vertical axis. Several observations are in order:

O1 The mode of the extended data sample exactly equals the mode (Ap)
of the original (non-extended) sample, when the value of the eleventh
datum is A;; = Ayp.

O2 Regardless of the value taken on by the eleventh “free” datum the
location parameter (mode) will always remain within the tolerance
interval [Ao.1, Aou]-

O3 The value Ag as defined in O1 above is the limit of the mode of the
extended sample, when A;; — —oo as well as when Ay — oo.

O4 The function W increases only within the interval of typical data
delimited by the points A7 and Ay.
O35 There may also be some peripheral data from the fixed sample, that

are atypical if they lie outside the interval of typical data.

These features are preserved even when the outlier takes on an extreme
value; under these circumstances, the distribution becomes bimodal, the
second mode coinciding with the outlier’s location. The form of the graph
in Fig.16.4 is considered “typical behavior” for the location parameter,
when an increase in the value of a datum causes the location parameter
to change also. It might have been expected, that the location parameter
would increase as well; a view probably rooted in the habitual use of the
arithmetic mean as the location parameter, where this expected behavior
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is natural. In the case of the LEL (Local Estimate of Location) defined
as the mode of the ELDF such “natural” behavior is only observed inside
the typical data interval, which is obviously determined by the sample of
fixed data. If datum Aj; is typical, the “board” of fixed data, “supports”
increases in the mode as a result of increasing the value of A;;. However,
a value of Aj;, which is outside the interval of typical data is “rejected”
by the “board”, because it is in conflict with the location of the fixed
data. This “resistance” manifested by the decreasing mode is weak, when
the outlier is very far from the fixed data—the weight of the outlier is
small, but when the outlier approaches the bounds of the typical data, its
weight increases and its influence on the mode reaches extreme values. It
was shown in the foregoing sections, that the global distribution functions
EGDF are robust with respect to outliers. It should now be clear, that the
ELDF is also robust in this same sense. When the bounds of the intervals
are revealed, they can all be used to undertake a new type of data analysis,
interval analysis’l Making use of the fact, that a finite data support has
a lower and an upper bound (LB and UB), and transforming the bounds
of the intervals introduced in this section and the mode Z; onto the finite
support, the additive data support can be split into subintervals defined
by following bounds:

(_007 LB7 AL7 AO,LJ AO; AO,U? AU7 UB; OO)

Therefore, data may be classified by noting, within which of the eight
intervals it falls. It is even possible to measure the probability of a datum
being assigned to each of the subclasses (intervals), because the distribution
function (ELDF) is available. This procedure permits different samples to
be reliably tested as to identity, similarity and dissimilarity, which whets
an interest in exploring the theory of data intervals.

16.4.2 Theory of the Data Intervals

The estimating local distribution function ELDF (shortly denoted as EL,

15.25|) has the density d(dLZOL) 15.26)). Under the theory of intervals, it is

assumed, that EL(Z;) is defined over the infinite support R, of multi-
plicative data. (For applications to real data, which have a finite support,
transformations of the resulting bounds onto the finite support is assumed.

®Kind readers are asked to again tolerate usage of a term, which already has its meaning elsewhere (to
denote treatment of data given as intervals instead of 'mere’ numbers). Taking of such data into account
in estimation of gnostic distribution functions will be considered in Chapter 19.
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The logarithmic scale naturally lends itself to graphing the probability and
density over the infinite support. Then the density of the sample Zy ex-
tended by Z, according to Definition 16 is:

d(EL)  N+l1

dlog (Zy) ; g (16.22)

(resulting from [15.26)), where

fr = :

(Zk/20)%/5 + (Zo) Zk)¥ S

(16.23)

is the estimating weight (the fidelity), and where Zy.1 is Z,. This density
reaches its maximum, when equation

2(EL)
(dlog (Zp))?

holds. Both S and Z are strictly positive finite numbers, therefore equa-
tion [16.24| may be rewritten after differentiation as

N+1

> wief{((Zk) 20)"° — (Zo) Z1)*°) = 0, (16.25)

—0 (16.24)

where Z is the mode (the location of maximum density). According to
the assumption, only N data (Z; for k = 1,...,N) are fixed, while the
N + 1-th datum denoted Z, is a variable taking arbitrary values from R.,.
The equation of the mode is therefore

> wifi % (Zi) 20)*° = (Zo) Zi)*') + % (Zo) Z0)*° — (2o Z,)*'") = 0.

k=1

(16.26)
Equation may be used to show, that the observation O1 (in 16.4.1)
based on Flg 16.4 is of a general nature. Indeed, in the case of Z, = — 7, the
second term in 6| vanishes. However, Z; is the mode and the first term
is zero also. The locatlon parameters of the non-extended and extended
sample always coincide, when the additional datum Z, is equal to the mode
of the initial (non-extended) sample. The stage is now set for a formal
statement, which defines the intervals of the local estimates of location.
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Theorem 17: Let Zy,; be a sample of N multiplicative data defined
over the infinite data support R,. Let this sample be partitioned into
a subsample Zy containing data Zj (their prior weights are wy, k =
1,...,N) and the N + 1-th data element is Z,. Let data Zi,...,Zy be
fixed positive numbers having fixed weights and let a positive constant S
be a scale parameter, such that the ELDEF’s density has only one mode
Zo, which is a root of equation . Let Z, be a positive real variable.
Then the following formula holds

dZy Iy 3fy —2f7
dZ,  Zp S (3w fif — 2w ff) + 314 = 212
where f; and f, are the same fidelities as in [16.23]| and [16.26]

(16.27)

Proof of Theorem 17: Write equation [16.26| as an implicit function
of two variables -
F(Zy, Z,) = 0. (16.28)

From [16.26| function F' is differentiable by both its arguments, therefore
the total differential exists and equals zero:

OF OF
——dZy+ ——dZ, = 0. 16.29
07" oz, (16.29)
Assume, that the derivative 8875 is zero. Then the second term in (16.29
0

must be zero, and the function F(Zy, Z,) does not depend on its argu-
ments; however, it is also the second derivative of the distribution func-
tion ELDF ([15.25). According to the assumption, the function must be
a quadratic function of the ideal value Z; and of a datum Z,. Since this
contradicts formula [15.25] the assumption is wrong, and the derivative
cannot be zero. Derivative

dZy %
t 07,
therefore exists. The numerator of this ratio is
oF 4
= 1 —3h2 16.31
97, 57, * ( 3h%), (16.31)

where h, = 4,/1 — f2 is the estimating irrelevance. Analogously, the
denominator is

oF 4
0Zs  SZ,

z wipfp* (1 —3h3) + f2% (1 - 3h§)) . (16.32)
k=1
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Taking into account the relation between irrelevances and fidelities and
substituting both partial derivatives into [16.30], the relation [16.27|is ob-
tained.

It can now be seen, that Theorem 17 completely solves the problem of
the bounds, that are needed for interval analysis:

Corollary 17.1: Let the conditions of Theorem 17 hold and let Z; and
Z be the lower and upper bounds of the interval of typical data. Then

7 = Zy * (\/3\/;)5/2, Zy = Zy * (\/g\/gl)m, (16.33)

Zu _ (\/fii)w (16.34)

Zr
Zr % Zy = (Zy)* (16.35)

and

Proof of Corollary 17.1: According to its definition, Z)Nis a root of
equation |16.26| for a given Z,. As such, it is a function Zy(Z,). The

derivative of this function results from Theorem 17 ((16.27). The lower
(upper) bound Zp (Zy) of the typical data’s interval is defined as the

point, where the function Zy(Z,) reaches its minimum (maximum), ie at
the points, where the numerator of [16.27| equals zero:

=z (16.36)

There are two points satisfying this condition, namely the roots of the
quadratic equation

2 2
—JZ=0. (16.37)

Zy Zy
(70)2/5 + (Z)Q/S 3

Identifying these roots with bounds Z; and Zy, one arrives at [16.33|
Ratio [16.34] and product [16.35] of the bounds result directly from [16.33].

As a result of Corollary 17.1, the width of the typical data’s interval is
determined by only one parameter of the data sample, the scale parameter
S. Moreover, the bounds Z;, and Zj; of this interval are placed on the data
support so, that the mode Zj of the EL’s density of (non-extended sample
Zn_1) is the geometric mean of the interval’s bounds (see [16.37).
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16.4.3 Steps in Interval Analysis

Interval analysis of a data sample is comprised of the following steps:

1. Test of homogeneity of the data sample by means of the EGDF'. If the
sample is not homogeneous, it is split into homogeneous subsamples.

2. Estimate the EGDF’s parameters LB and UB (bounds of the data
support) and the scale parameter S.

3. Solve [16.26| (with f, = 0 and with the EGDF’s S) for the mode Z; of
the non-extended sample.

4. Calculate the bounds of the interval of typical data Z; and Zy using
16.33

5. Calculate the bounds of the tolerance interval Zj ;, and Z ;7 by solving
first with Z, = Z; and then with Z, = Zy.

6. Calculate probabilities EL(Zy), EL(Zy 1), EL(Zyy) and EL(Zy).

There are two typical applications for interval analysis: determining,
whether a datum belongs to a data sample and testing for the similar-
ity between data samples. Given a datum Z,, it can be determined if
(and to what degree) it can be considered as a possible member of a given
data sample Zy. Interval analysis of the sample (performed without the
candidate datum) permits the following expectations as to Z,’s potential
membership in Zy to be estimated:

Highly probable: Z, = Z,.

Within tolerance: Z, € [Z) 1, Zyv].

Typical: Z, € [Z1, Zy].

Possible: Z, € (LB,UB,).

Improbable: Z, < LB or Z, > UB.

Probabilities evaluated by means of the ELDF can be used to quantify
these statements. Examples of simple applications include:

e For financial statement analysis, a set of ratios taken from a group of
comparable companies form the sample Zy, while Z, is a ratio of the
same type for the candidate firm. How closely does the candidate’s
behavior follow that of the group taken as the “norm” for that specific
measure of performance?

e In a quality control application, the parameters of a “normal” sample
are Zy. The analysis would then determine, whether Z, fits within
the bounds of acceptable quality.

An additional situation, which Interval Analysis can resolve consists of
determining the similarity between two samples, say Z4 and Zp. The
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similarity of the samples’ states or processes can be classified by using the
following criteria [°}

High: ZO,A = ZO7B-

Within tolerance: [Zy 1 4, Zou.a] N [Zo.L.B, Zov.B) # 0.

Typical: [ZL,Ay ZU,A] N [ZL,Ba ZU,B] 7& 0.

Possible: (LB4,UB4) N (LB, UBg) # 0.

Improbable: (LB4,UBy) N (LBp,UBg) = 0.

Two data samples are very similar, when their modes coincide. Similarity
“within tolerance” (a non-empty intersection of tolerance intervals) means,
that there exist a single datum to each of the samples such that extension of
both samples by their suitable datum would cause equality of their modes.
The “typical” similarity (a non-empty intersection of the typical data’s
intervals) means, that some typical data of sample A may be typical data
of sample B. The “possible” degree of similarity (non-zero intersection of
the data supports) means, that there exist some “common” data in both
samples.

16.4.4 A Link to Statistics

Within the framework of statistics, there is an idea, which plays a role
complementary to probability, the likelihood. Probability is a theoretical
construct, which is not directly related to any particular data. In contrast,
with the likelihood function, a data set with unknown distribution or den-
sity parameters is tested to determine the likelthood, that it belongs to a
specific distribution. Estimates computed using the maximum-likelihood
method have favorable statistical features. A further development of this
concept can be observed in robust statistical theory with M-estimates of
location parameters (which maximize the likelihood function) ([33]). As
shown in [77] and [78], formula|16.26| for the LEL estimator Zy—under cer-
tain statistical assumptions,—may be interpreted as a special case of the
statistical robust M-estimator. This formal coincidence is further amplified
below:

1. There are a large number of different M-estimators in robust statistics,
each based on different statistical assumptions. It is therefore not easy
to choose “the right one” to apply to a particular real data set (see
Tab. 16.5 for an example). The gnostic LEL estimator does not need
any prior statistical assumptions, because it is a product of a theory,

6The symbol N corresponds to the interval’s intersection and 0 denotes the empty interval.
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which is independent of statistics. The LEL’s form is unique and there
is only one parameter (S) to be fixed.

2. From the point of view of science and contribution to general knowl-
edge, it is a positive development, when a new autonomous theory
(gnostics) coincides with special cases of a generally accepted old the-
ory (statistics) even though the fundamental ideas of both theories
are entirely different. Such “common boundaries” between gnostics
and statistics have already been shown by the limit behavior of gnos-
tic characteristics in the case of a weak data uncertainty. The formal
similarity of the LEL and an M-estimator is more important, because
it exists not only for weakly spread data, but also for a general case.

3. If the statistical assumptions (independent and identically distributed
data) really apply to specific data, then the LEL also possesses
the favorable statistical features proved in robust statistics for M-
estimators. However, if the data are not “iidﬂ”, nothing can be said
about the use of M-estimators, while the LEL is still valid.

16.5 Membership of a Data Sample

The idea of the sensitivity of a given sample’s characteristics with respect
to its extension by an additional ”free” data item can also be applied to
an estimating global distribution function (EGDF). Recall, that a data
sample is considered homogeneous only if its EGDF, calculated for the
unique scale parameter of the global type, is unimodal. Considering the
notion of a sample’s homogeneity in more detail, let it be noted at the
start, that a data sample is created to satisfy the need for quantitative
information about a subject or an event. Therefore, the subject or event of
interest must first be qualitatively delimited. Data are thus “messengers”
delivering a (more or less certain) message to the “client”, the observer.
It is natural to expect, that this transfer of information has some sense of
“order”: observations on an object, “A,” should not be disturbed by data
attributable to another object, “B.” The membership problem is “easy”
as posited as a primitive notion in classical set theory; it is assumed, that
“everybody knows, whether any element is a member of a given set.” The
problem in Real Life is more complex. Example: is our kind reader sure
to belong to the set of healthy people? In contrast, “fuzzy theorists” use
a function to provide a vivid notion of the “degree of membership” of an

"Independent and identically distributed (a statistical condition).
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element to a (fuzzy) set. Instead of the “sharp” yes/no determination
used by the classicists, the required fuzzy statement takes the form of a
number, which places the location of the statement somewhere between
the two extremes of ‘yes’ or ‘no.” However, it often occurs, that the
observer only has the data and nothing further to help distinguish the
data coming from “A” from that of “B.” Such necessary supplementary
information may be unavailable. Data have their values and a data
sample is specified by its distribution function. This explains, why the
membership problem in statistics is solved by using estimated probability:
highly probable data values are considered to be “members” of the data
set, while data to which a low probability is attached are deemed to be
“non-members,” or outlieréﬂ. The risk attached to making the statistical
decision of member/non-member is measured by probability; and this risk
corresponds to a (sometimes subjectively chosen) significance level: “Do
you wish to ensure against membership by a non-member? Then increase
the significance.” Subjectivity is also seen in the fuzzy approach, when the
choice of the membership function is left to the user of the method. The
major difference between the above methods and gnostics is, that gnostics
solves the membership problem of a given (homogeneous) sample uniquely
A data sample defines its global distribution function uniquely, the EGDF
is completely determined by the data and by three other numerical pa-
rameters (the global scale parameter and the bounds of the data support),
which are also uniquely estimated using the data. The homogeneity test
(the EGDF’s unimodality) also has a “sharp” yes/no character. By leaving
out data, which cause inhomogeneity, the rest of the data can be made
into a homogeneous sample. Taking a set of homogeneous data, together
with their scale parameter and the bounds of their data support, consider
changes in the EGDF'’s density caused by the addition of another datum,
Z., which is transformed onto the infinite data support. Specify the EGDF
as F(Z;) : (0,00) — (0,1). This function is continuous and unlimitedly

differentiable, the density D1 := % and derivatives D2 := %

and D3 := % exist and are also continuous. Increases in Z, to
values sufficiently greater than the largest fixed data, or decreases in Z,
below the smallest member of the fixed data can lead to the formation
of a second density’s maximum. (The density D1 over the infinite data

support has always at least one maximum.) The boundary state between

8To be an outlier is not necessarily something bad. So, eg, an extraordinarily high profit for a company
may be an outlier in a group of otherwise comparable companies.
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the one-maximum and two-maximum situation corresponds to a Z, value,
at which exactly one additional inflection point exists in the density, D1.
It is easy to see, that for an inflection point in D1, equation D3(Z,) = 0
holds. This equation has two roots in the case of unimodal density D1
and four roots in the bimodal case. The boundary point is characterized
by coincidence of the third and fourth inflection point. Such a “double in-
flection point” is easy distinguishable from the “ordinary” first and second
inflection points, because in the double point the equation D2(Z,) = 0
holds. There obviously exist two such double inflections, the lower
and upper ones. These points determine the bounds of a homogeneous
data sample and enable the idea of interval analysis to be further extended.

Definition 16A: Let Z) be a homogeneous data sample composed of
N data, which after transformation onto the infinite data support form
a vector ZI. Let W be the vector of a priori weights of these data. Let
S, LB and UB be optimum estimates of the scale parameter, lower and
upper bound of the sample Z) based on ZI and W. Let F' : (0,00) —
(0,1) be the estimating global distribution function obtained as

F:=F(ZI,W,S,LB,UB, Z,), (16.38)

where Z, € R, is an additional variable, which extends the sample Z1I.
Taking the above as F(Z,), while holding the function’s other argu-
ments fixed, then the values for Z;sp (0 < Zrsp < min(Z1)) and Zygsp
(max(Z1) < Zysp < o0), when equation

&EF PF
(S iz ' dmiz)y ’>Z !

holds, are correspondingly the lower (B = LSB) and upper (B = USB)
bounds of the sample Zy.

(16.39)

The sample bounds were defined over the infinite data support and are to
be calculated in this format. Users, who would work with the more natural
data form defined over a finite support should not forget to transform the
bounds onto the natural scale. It is useful to consider an example. Ten
normally distributed samples have been generated by the pseudo-random
generator of S-PLUS for mean of 0 and a standard deviation of 1. Each
sample consists of 10 data. Neither estimates (AVG) of the means nor
estimates of the standard deviations (ST'D) are equal to their theoretical
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values because of the randomness. The sample estimates are summarized
in Tab.16.6 along with the gnostic membership bounds LSB and USB.

It is seen, that the volatility of the estimates of both statistics is
significant. Statistical control of normally distributed samples is ordinarily
based on limits set as multiples of the standard deviations. Denote such
a control limit by M = ST'D. Multiplication factor M is a function of the
chosen significance of the statistical test, the limits being AVG — M % ST D
and AVG + M = STD.

Ser. | MEANS | St.Dev. | Gn. bounds
No. AVG STD | LSB \ USB
1 -0.245 0.806 | -3.79 3.68

2 -0.117 1.120 | -3.88 3.87

3 0.096 0.784 | -2.91 3.04

4 0.117 0.927 | -3.97 3.82

5 0.484 0.586 | -3.67 3.85

6 -0.120 0.889 | -3.19 3.09

7 -0.026 1.042 | -3.51 3.50

8 0.137 0.888 | -3.64 3.68

9 0.588 0.756 | -3.33 3.69

10 0.002 0.808 | -3.30 3.41
MIN -0.245 0.586 | -3.97 3.04
MED 0.049 0.848 | -3.58 3.68
MAX 0.588 1.120 | -2.91 3.87

Tab. 16.6 Statistics and gnostic sample bounds for 10 normally
distributed samples together with their minima (MIN), maxima (MAX)
and medians (MED)

In the case of the ten series from Tab. 16.6 the estimated statistical con-
trol limits vary between AVG+ M x0.586 and AV G+ M %1.120 depending
on the significance chosen. The relative range of the control limit defined
as (max{STD}-min{STD})/median{STD} is thus (1.120-0.586)/0.848 =
0.630 for an arbitrary M. The gnostic sample bounds LSB and USB in
Tab.16.6 do not depend on the significance level and they are relatively
stable in spite of strong random variations of the series. [| Their relative

9To estimate their values, it was assumed, that the given data cannot have values outside of the
interval (—4,4). For theoretical data distributed as N(7,00) the probability of appearing outside this
interval is 0.000063. This probability is even more negligible in practice, where data are always bounded,
“trimmed”. The assumption, on which the sample bounds are based is therefore realistic.
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range is 0.296 for the LSB and 0.226 for USB—Iess than a half of the
statistical case. (Note, that this comparison neglects the volatility of the
estimated mean, AVG).

It is seen from Tab. 16.6, that the volatility of the results is smaller if the
gnostic methodology is applied. This is remarkable, because many people
believe, that the application of pure Gaussian distributions raise the least
doubts on the validity of classical statistical concepts.

16.6 Summary

All the information necessary for computing gnostic distribution functions
is taken from the data. These functions are completely defined by the data
and by parameters, which also are specified by the data. Three (“primary”)
parameters—the scale parameter and bounds of data support—determine
the form of these distributions. Other (“secondary”) parameters derived
from the distributions provide numerical characteristics of the analyzed
data sample.

To estimate the unique (“global”) scale parameter, which provides the
best fit of data for the distributions EGDF, QGDF and QLDF, it is neces-
sary to solve the corresponding extremization problem. When the bounds
of the data support are not given, they are found by optimization together
with the optimum scale parameter. There are several methods, by which
the quality of the data fit can be evaluated. Three types of best global
scale parameters were examined based on the Kolmogorov-Smirnov mini-
max measure, the maximum entropy principle and on maximization of the

fidelity of the fit.

The choice of a scale parameter for estimating a local distribution
function ELDF depends on the task. The local scale parameter may be
useful in evaluating the local behavior of the distribution function, eg
within a cluster of data, to test the constancy of the scale parameter
over a whole data sample or to treat a data series. An alternative to the
local scale parameter is the scale parameter, which ensures a required
quality for the fidelity fit. In particular, it may be applied to make local
distribution functions of different samples comparable to each other, and
in order to set the resolution power in cluster analysis.
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The location parameters are important secondary parameters of dis-
tribution functions. While a quantile for an arbitrary probability can be
useful in analyzes, the most frequently used numerical parameters of the
sample’s location are the distribution’s median and mode. A sizable case
study using well known historical data showed, that the mode of the es-
timating global distribution function EGDF is an excellent location pa-
rameter and its robustness exceeds that of many estimators used in robust
statistics. The location parameter also plays an important role, when the
estimating local distribution function (ELDF) is used in interval analysis.
This technique allows the degree of association of individual data elements
within the sample to be determined with respect to the whole sample.
Another application is to evaluate the similarity between data samples.

The sensitivity of these operations depends on the choice of the scale
parameter. Its unique estimation along with the bounds of a data sample
with the EGDF provides an objective answer, as to whether a datum could
be of “member” of a given homogeneous sample.

The suitability of different scale parameters to specific tasks is summa-
rized in Tab. 16.7.

Task Scale Parameter Description
Kolmogorov-Smirnov’s Test Sa K5 16.3
Estimate Probability Sc.MF 16.6
Estimate Density Sc.MmF 16.6
Estimate a Quantile SG.MF 16.6
Est. Location Parameter Sa.MF 16.6
Est. Data Support Bounds Sc.MF 16.6
Est. Sample’s Boundaries Se.MmF 16.6
Test for Homogeneity Sa,MF 16.6
Interval Analysis Sa.MF 16.6
Comparison of Samples SG.RrF Subsection 16.2.3
Multivariable Modeling Sc.rr, Sc.mF or ST, Chapter 18
Cluster Analysis Chosen S Subsection 15.3.2
Heteroscedastic Analysis Variable S Subsection 16.2.4
Filtering of Time-Series St
Cross-section Filtering Sc.MmF 16.6

Tab.16.7 Recommended Scale Parameters



Chapter 17

Gnostic Regression

17.1 Basic Concept

The term, regression, was introduced by Francis Galton in connection with
his observation, that the average height of children tended to move or
“regress” toward the average height of the population as a whole. This idea
of “regression to mediocrity” (Galton’s words) found a broad application
in statistical modeling. As he defined the concept [26]:

Regression analysis is concerned with the study of the depen-
dence of one vartable, the dependent variable, on one or more
other variables, the explanatory variables, with a view to es-
timating and or predicting the (population) mean or average
value of the former in terms of the known or fixed (in repeated
sampling) values of the latter.

This description does not state explicitly, that the dependent variable is not
deterministic, but a stochastic function, nor that in advanced regression
models even the explanatory variables may be stochastic. Another impor-
tant unstated characteristic is, that the model’s structure (the mathemat-
ical description of the dependence based on some unknown parameters) is
assumed to be given. The statistical estimation or prediction of the de-
pendent variable is ordinarily completed by an analysis of variance of the
results. As is the usual practice in statistics, the behavior of the stochastic
components is assumed to be described by a priori given statistical mod-
els. In robust statistics, the a priori assumptions are weaker, but they still
exist.

A regression function corresponding to the classical definition will be
called an explicit regression, because it distinguishes between the explana-
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tory variables and at least one explicitly expressed dependent variable.

The gnostic notion of explicit regression differs from the statistical for-
mulation in following ways:

1. In statistics, data are viewed as random samples taken from a popula-
tion, the statistical model of which is assumed to be known. A gnostic
regression is based on the different gnostic definition of uncertain data
and data samples (see Chapters 5 and 14).

2. Instead of using the usual statistical criteria (eg minimum variance,
unbiasedness, etc.), gnostic regression procedures minimize one of the
six gnostic measures of uncertainty for the system being examined
(Chapter 10).

3. Classical regression models do not meet the requirements of robust-
ness. The robustness of regression models in robust statistics is due
to additional statistical assumptions, which have been made with re-
spect to the data models. In contrast, gnostic regression models are
naturally robust because of their inherent features, which result from
the application of the selected gnostic criterion function.

The gnostic approach to the regression problem is comprised of the follow-
ing steps:
A The selection of a model structure, which respects the available data
and the goal of the modeling.
B The choice of a gnostic criterion function to evaluate the quality of the
data explanation.
C Optimization of the model’s parameters by extremization of the criterion
function applied to an ex ante portion of the available data.
D An analysis of the residuals (modeling errors) by means of distribution
functions and drawing conclusions as to the
1. homogeneity of the data samples,
2. suitability of the model structure to explain the data,
3. need to separate the various data clusters,
4. evaluation of the quality of modeling,
5. need to carry out another iteration from step A.
E Validation of the quality of the model by testing the ex post portion of
the data and comparing the distribution function of the results with
the distribution function of the initial subsample.

The separation of the model identification phase (C and D) from the veri-
fication phase (E) by splitting the data into ex ante and ex post portions is
a routine procedure in time-series analysis. It is highly desirable to apply
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this process to cross-section regression analysis, because it provides to the
user an indication of the real efficiency of the modeling. The only obsta-
cle may be a critical lack of data, but this constraint can be frequently
overcome by using two similar data sets.

Gnostic methodology as it is applied to a broad and important class of
regression models will be discussed in the subsections to follow.

17.2 Robust regression models

The formulation and solution of this problem is general enough to include
both linear and nonlinear versions of cross-section models as well as dy-
namic models of interrelations between time series. Explanatory variables
may be interpreted as inputs and the dependent variable plays the role of
the output of the model.

17.2.1 Formulation of the Problem

The approach to the robust regression problem represents a generalization
of the method originally published in [60].

Problem: Let ' be a differentiable function of a known type,
F: RMxRM 5 R,. (17.1)

Let C € RM be a column vector of unknown but constant parameters. Let
z € RM denote an explanatory (or input) vector of a (generally nonlinear)
regression model

z=F(C, x), (17.2)

the variable z being the dependent variable (or the output). Suppose, that
neither the input nor the output is known precisely. Let the n-th true
values zg, and zy, be related by means of the equation

20 = F(C, 0., (17.3)

Let z,, and Z,, denote the uncertain observations of z, and 2, (data) for
n=1,...,N.
Given a twice differentiable function

D: R'— R,. (17.4)
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Let ¢ € {1,—1} and h,. be the irrelevance, either h; (quantifying, ¢* = 1)

or h; (estimating, ¢> = —1), so that at the n-th point relations
1/8
Zn
s 17.5
0= (2] (17.5)
hjn = (00 — d47°)/2 (17.6)
and ) )
Gy — 9y
hip = —2—"- 17.7
T gt (7-7)

hold for an estimate Zj, of the true value 2y, and for a positive scale
parameter S.

The objective is to find the estimate C of the unknown vector C of
parameters, so that the criterion function

N
O = Zl D(hep) (17.8)
is minimized, ie N
C = arg mcin(ap(S)). (17.9)

The scale parameter S is assumed to be given based on some other consid-
eration. Alternatively, the minimization task may include optimization of
the scale parameter’s value (Spy), so that

C = argmin(p(5))[s=s,,- (17.10)

When choosing between these alternatives, it must be taken into account,
that the scale parameter’s value determines the degree of robustness of the
results with respect to inliers (¢? = 1) or outliers (¢?> = —1). Expression
is to be interpreted as the minimization of ¢ constrained by the
condition, that S reaches its optimal value. This optimality should be
based on a criterion function other than ¢ to exclude the trivial minimum
© = 0, which is obtained as S — oo.

17.2.2 Iterative Solution

The optimization problems and [17.10| can be solved directly by nu-
merical methods. However, to obtain a theoretical insight to the solution

of at least the task represented by [17.9 an iterative solution is more useful.
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Theorem 18: Let the assumptions and definitions of hold.
Given a scale parameter S and given the k-th iteration C(k) of the esti-
mate of the parameter vector C' together with estimates

Zon = F(C(K), ;) (17.11)

of the ideal values forn=1,...,N.

Let h.,, be irrelevance ((17.6]) or (17.7)) using ¢, (17.5), where the estimates
Zo,n are substituted for the ideal values zp,,.

Establish the column-vector (relative value of the gradient of the function

F)
1 <0F OF )T
=« 17.12
i ZOM (901 8CM Q(k)vLL ( )
(n=1,...,N), and scalars
; dD
D, = 17.13
c,m dhc’n’ ( )
D, = <D (17.14)
T, '
dhen
Y =z : (17.15)

ZO,n — .
o dZ()m

Then the k+1-th iteration, which decreases the criterion function ¢ ((17.8))
can be approximated by the formula

N * N
Clk 1) = C+ (S D00 s a,0D)) x (-2 D, ). (1710

where all quantities on the right-hand side of [17.16| are estimated by
substitution of C(k) and Z, instead of C and zy,, respectively, and
where the symbol M denotes the pseudo-inverse of a matrix M.

Proof of Theorem 18: To take into account the uncertainty of the
criterion, the criterion will be analyzed together with its variation de.
Let the condition for minimization of the variated criterion be

dp + d*p = 0. (17.17)

Both differentials are functions of the irrelevance h. ,, hence

N I N ”
> D, (dhey + d*hey) + Y. D, (dhey)? = 0. (17.18)
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The second differential d2hc7n in the first sum can be neglected as a small
quantity with respect to dh.,. The irrelevances h.,, are functions or

of Z p, therefore

N / N 1)\2 dg()n 2
S DA+ 3 D (R | =) = 0. (17.19)

The following scalar product results from [17.11} and [17.12;

dzon
S gTdc. (17.20)

20,n

The scalar product commutes (g*dC = dC"g). Therefore, the equation

T (S ()
dC ZDnhc,n

N
+ ZDn * (hg}%)anggdC> =0 (17.21)

[

should hold identically, ie for all dCT. Taking approximately
dC=C(k) - C(k+1) (17.22)

and using the pseudo-inverse of the square matrix [L7.16[is obtained.

There are good reasons to apply pseudo-inversion to obtain the solution,
because it is possible, that the square matrix may be singular for several
reasons:

1. A larger number of parameters may have been chosen (the dimension
of the vector C) than is necessary to explain the data.

2. A linear dependence of the rows/columns of the square matrix may
result due to data uncertainty.

3. The limited precision of the numerical representation of vectors and
operations available in the computer software may reduce the rank of
the matrix.

The application of pseudo-inversion does not involve any additional prob-
lems and it offers some extra improvements:

1. When computing the pseudo-inverse by means of the SVD-technique
(Singular Value Decomposition), there is full control of the numerical
determination of the matrix by evaluation of the ratio of the smallest
to the largest of the singular numbers.



17.2. ROBUST REGRESSION MODELS 309

2. A suitable dimension for the parameter vector (and for the model
under consideration) can be established by using the information on
the singular numbers.

3. The SVD-technique substantially improves the precision of the re-
sults, because it applies only linear (not quadratic) operations to the
matrices.

4. This technique provides important (geometric) information (orthogo-
nal bases of both row- and column-subspaces) about the vector sub-
spaces occupied by the data matrices.

5. It can be shown, that an important advantage results from this or-
thogonality: the possibility of unifying the solution’s scales, which
simplifies numerical operations.

6. In the case of regularity, the pseudo-inverse matrix is identical to the
inverse matrix.

The use of pseudo-inversion is thus a way of obtaining extended generality
and better quality in the modeling.

17.2.3 Interpretation of the Iterative Solution

The results obtained above may be interpreted in terms of the ordinary
least-squares method. This statement is neither obvious nor trivial. A
more detailed explanation is therefore desirable. Expression may be
interpreted as

N + /N
c<k+1>—0<k>=(ZGnGZ) (ZGnEn), (17.23)
n=1 n
where
G, :=|D,|hl)g (17.24)
and /
D
E, = ———2 (17.25)

VID,I

There are obviously N column vectors G,,. Let us compose an N x M
matrix X using vectors G as the rows of X, so that

Xom=Gnn n=1,...,N, m=1,..., M. (17.26)

It is well-known, that the singular value decomposition of the matrix X
(which has the rank R < min (N, M)) can be uniquely obtained as the
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product of three matrices

X =UuwvT, (17.27)

where U is an N x R-matrix, W is R X R and V is M x R. It is also well-
known, that matrix W is diagonal with ordered non-zero singular numbers
d, (r=1,...,R), and that both matrices U and V are semiorthonormal,
ie UTU = V'V = I(R), where I(R) is the R x R identity matrix. It is to
be emphasized, that in order to obtain the decomposition [17.27] only the
SVD-algorithm to matrix X needs to be applied. The semiorthonormality
of U allows the n-th row wu,, equation

R
> upu, = I(R) (17.28)
n=1
to hold. The n-th row of X is QT = u, WV?T. Therefore
Z GG =VIW?*v = XTX (17.29)

and
N
(X GG =VIW v = (X"X)*. (17.30)
=1

Using the matrix X and composing a column vector £ of the components
E,,, one may write

N
> G,E,=X"E. (17.31)

n=1

Solution may be thus written in the form
Clk+1)—Ck) = (X"X)" X"E, (17.32)
which actually is the least-squares solution of the equation system
X(C(k+1)—-C(k))=E. (17.33)

Returning to the original variables, the n-th equation of the system can be
rewritten as:

W(Zn/200) * g = E(Zn/200), (17.34)

where

FW(Z,/20.) = \|D \hcn (17.35)
results from [17.24) and E(Z,/z,) is E, (17.25). System [17.33] of these

equations is an iterative but linear substitute for the original, but more
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complex task of [I7.9 This substitution was made to examine the behavior
of the solution. Row-vectors of the matrix X (ie G'), which have the form
of the left-hand side of now play the role of the explanatory (input)
vector variables of the now linear model [17.33] with the scalars E,, as its
outputs.

Gradient g, does not depend on uncertainty (at least after itera-
tion), but the multiplier FW does, because the uncertainty causes
the ratio Z, /2y, to decline from 1. The multiplier amplifies or attenuates
the impact of the input vector g, depending on the uncertainty, potentially
suppressing its effect. The function FW may therefore be called
the filtering weight.

The difference between the observed value of the dependent variable and
its value as provided by the model represents the error of modeling (the
residual error) and it may be called an additive residual. To protect the
quality of the solution of the regression from data errors, robust statistics
creates residual functions known as influence functions, which are based on
some a priori accepted assumptions about the nature of the data. The effect
of these functions can be interpreted as nonlinear filters: instead of directly
using the (linear) residuals, they are transformed (in a nonlinear way) by
means of this influence function. The gnostic function E also plays the
role of an influence function, but with some differences: instead of additive
residuals, its argument is the multiplicative residual 7,/ Zo,wﬂ which instead
of being based on a priori statistical assumptions, is completely defined by
the gnostic criterion function D ([17.8)), that is based only on theory.

The multiplicative residuals Z,,/Z, determine the filtering effect ap-
plied both to the inputs (explanatory vectors, , and to the output
(dependent variable, . This effect is specific; it is different for each
equation represented by [17.34], because the error of each equation is differ-
ent. It will now be shown how this filtering affects the robustness of the
method.

17.2.4 Robustness of the Gnostic Regression

The results from [17.15| and are such, that
m_ _2
hin= —3

Tt is multiplicative, because it states how many times the observed value Z,, is larger/smaller than
the true model output 2, g.

fin (17.36)
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and 5
M = =i (17.37)

where f;, and f;, are Q- and E-weights (9.10]), which are bound to the
irrelevances by the relations

fin=\1+ 120 fin=\1- R, (17.38)

There are three pairs of gnostic characteristics, which are interesting as cri-
teria D(h.) (17.8]) associated with Q- and E-entropy, Q- and E-information,
and with the sources of the fields of these quantities. These are summa-
rized in Tab.17.1. A numerical multiplier in the definition of D does not
change the results of the optimization. The sign of D is chosen to provide
a positive first derivative D;l. Additive constants do not play a role in D,
they can be omitted, because only derivatives D’ and D” are needed for
the solution.
| Case | Gnostic characteristic | D(h.,) | References |

Q1 | Sources of the Q-entropy’s field h%n /2 10.47

E1 | Sources of the E-entropy’s field | A7, /2 10.48

Q2 | Q-information I, 10.58)), ((10.56])
10.48

E2 | E-information Iin 10.52)), (10.50)
10.42

Q3 | Q-entropy (Q-weight) fin 10.26]),(9.10

E3 | E-entropy (E-weight) -fin 10.26]),(9.10

Tab. 17.1 Gnostic characteristics usable as criterion functions for the regression
problem.

An examination of the particular formulae, which control the filtering ef-
fects derived from Tab.17.1 may be of interest.

Filtering Weight | Error Function
Case ||  FW (17.34 E ([17.25

Q1 fj hj

El f? h;

Q2 1 fjargtan(h;)
E2 f; fi arg tanh(h;)
Q3 1/\/f; fih;

B3 Vi vV fihi

Tab. 17.2 Filtering weights and error functions for different gnostic
criteria D used in Tab. 17.1.
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The above functions are depicted in Figs. 17.1 through 17.5. The vari-
able on the horizontal axis in Figs.17.1-17.4 (which show the three cate-
gories of Q- and E- weights and errors) is ®,, = In Z,,/Z,,—the uncertainty
measured as the additive residual error (the scale parameter equals 1 in
these examples). Figure 17.5 compares the behavior of the six error func-
tions. To provide a more comprehensive comparison, each of the error
graphs also plots the Euclidean error.

So as to properly understand the behavior of all the filtering functions,
it is useful to recall, that by equation [17.34] the filtering weight (FW)
amplifies or attenuates the left-hand side of the equation, while the error
function £ is on the right-hand side. Both of these functions are dependent
on the equation error (multiplicative residual) Z,/2p,, but in a different
way: Using a simple example of a linear regression, for which equation|17.3
reduces to

M
0,0 = Co + Z Ome,n,ma (1739)
m=1
the gradient [17.12]is
x
gy == (17.40)
o 20.n

with the row-vector xy, composed of elements x¢, ,,. The ordinary least-
squares regression (OLS) is based on the assumption, that the explanatory
vectors z,, are disturbed only by a “white noise,” ie that elements of the
explanatory Vectorﬂ are not correlated. Such an assumption is unrealistic
in many applications. So, eg, if the dependent variable were the profit of a
firm and the z,,s were other economic parameters such as financial leverage,
a liquidity ratio, total asset turnover etc., then there will be uncertainties
on both the input and the output sides of the regression equation and they
will surely be correlated. In the case of a “proper” choice for the criterion
function D, the filter weights (F'W) will suppress the input uncertainties
and the error function (F), the uncertainties of the output variable. The
resulting model will thus be robust with respect to both input and output
uncertainties. Different criteria D will result in different types of robustness
(inner /outer) with respect to the inputs and/or outputs.

Consider the case of Q-regressions (Q1, Q2 and Q3, in Tab. 17.1), where
the filtering weights have the form of Fig. 17.1. Three qualitatively different
behaviors of the F'W functions are documented:

3In statistics, there are generalizations of the OLS methodology for a more general case of disturbances,
but these assume knowledge of the correlation matrix of the disturbances, which is not always available.
If an estimate of this matrix is used instead, it is likely, that there will be problems with the traditional
method, which will result in unrobust estimates.
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Fig.17.1: FILTERING WEIGHTS FW
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D ... Criterion To extremize:
Q1..D=hj*2 Sources of the Q-entropy field
Q2..D=1Ii Q-information
Q3..D=fj  Q-entropy Q1 Q2 Q3

1. The F'W of criterion Q2 is neutral to input uncertainty: the filtering
weight is constant as in the case of the classical OLS (Ordinary Least
Squares) method,

2. Unlike OLS, a strong outer robustness is manifested in the case of Q1.

3. An inner robustness results in case Q3.

For E-type regressions, all three cases E1, E2 and E3 (Fig. 17.2) lead to the
same kind of (inner) robustness but with a different intensity. In all (Q-
and E-) cases, the FWs converge to 1, when the multiplicative residual
approaches 1 (zero value of the additive residual ®) which means, that
for very weak uncertainty, the differences between it and the OLS-method
vanish.

It can be shown, that—for very weak uncertainties—all (Q- and E-)

. . . Z. — .
error functions, E, converge to the linear function 2”2TZ°’”. This can be

called Euclidean relative error and it proves, that all six considered cases of
gnostic regression are consistent with the classical regression methodology,



17.2. ROBUST REGRESSION MODELS 315

Fig.17.2: FILTERING WEIGHTS FW
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if uncertainties are sufficiently weak. Moreover, the gnostic regressions
were derived without the usual statistical assumptions, they have their
own axiomatic justification, which makes them more generally applicable
and they yield robust results.

The error functions £ may be interpreted not only as “influence func-
tions” (as already mentioned) but also as definitions of a Riemannian met-
ric: they determine how an (output) error should be measured. To compare
their behavior with that of the Euclidean case, Figs.17.3-17.5 also show
the Euclidean metric. For weak uncertainties one can again see the co-
incidence of the curves with the Euclidean one, however there are large
differences, when strong uncertainties are present.

In all three Q-cases, the E-function strongly amplifies the effect of un-
certainties thus ensuring outer robustness. It is worth noting, that there
are three different combinations of input (IR) and output (OR) robustness
for Q-regressions:
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Fig.17.3: ERROR FUNCTIONS (E)
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Q2..D=1Ii Q-information
Q3..D=fj Q-entropy Q1 Q2 Q3

1. Q1 - IR: outer, OR: mixed,
2. Q2 - IR: neutral, OR: outer,
3. Q3 - IR: inner, OR: strong outer.

The robustness OR for Q1 has been called ‘mixed’, because for some middle
intensity of uncertainty (® between roughly 0.25 and 0.85) the E function
rises more slowly than the Euclidean line (more like inner than outer ro-

bustness), but for large uncertainties it clearly manifests outer robustness
(see Figure 17.3).

These differences between the types of input and output robustness in
the Q-versions of D can be useful in applications, where the makeup and
intensities of the input and output disturbances are different.

In contrast, for E-regressions, all input (FW, Fig.17.2) and output
(E, Fig.17.4) filtering effects demonstrate an inner robustness, but with
different intensities. There are other effects to be noted with respect to the
error functions in Fig. 17.4:
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Fig.17.4: ERROR FUNCTIONS (E)
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1. Differences between the E2 and E3 cases are very small, when only
the error functions are considered: the type and the effect of output
robustness is nearly the same although the criterion functions differ.
This, of course, does not mean, that there is complete equivalence,
because as shown in Fig. 17.2, the intensity of inner robustness is dif-
ferent.

2. There is a qualitative difference between the error function of E1 and
the other two functions: the former behaves in a “saturating” way,
while the form of the E2 and E3 error functions is “redescent”fl The
saturating filter takes all uncertainties beyond a certain limit as “the
same”, while the redescent filter completely attenuates very large un-
certainties.

All six E-functions are shown in Fig. 17.5 plotted against a horizontal axis
of multiplicative residuals zZO—" so as to compare their deviations from those

4To apply the term used in robust statistics to describe such influence functions.
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of the Euclidean function (which shows its true linear nature).

Fig.17.5: ERROR FUNCTIONS (E)
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A natural question at this point relates to the choice to be made between
the six types and intensities of robustness: “Which one is the best?” Each
serves its own purpose and a choice may be alternatively based on

e the prior experience of an analyst with particular types of input and
output data,

e the data ‘speaking for themselves:” that is, to run procedures using all
six versions of the gnostic criterion functions sequentially or in parallel
and to measure the quality of the results of such a ‘pilot’ analysis so
as to determine the best D, which can be subsequently applied to
analogous situations.

Recall, that all six approaches are optimal, each in its own strictly defined
and theoretically justified sense. An important observation should be made
as to the geometrical aspects of the measuring errors connected to the re-
gression problems. Euclidean geometry is not curved, it measures errors
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linearly. However, each of the gnostic error functions shown in Fig. 17.5
represents a nonlinear measuring method, which corresponds to a certain
Riemannian (curved) geometry. This curvature is what provides robust-
ness to the measurement process: the smaller the local radius of curvature,
the stronger the effect of robustness. As Fig.17.5 shows, the curvature
is different at different points along the line. The slope at each of these
points is determined separately, by the value of the individual datum. An-
other factor also influences the curvature at all the data points, the scale
parameter (5), the value of which is estimated through optimization of the
quality of the model’s results (see Chapter 16). All this again manifests
the gnostic credo: “Let the data speak for themselves.”

The local curvature is determined by the gnostic functions D, which
result from the fundamental features of real data as elements of the com-
mutative group. The metric of uncertain data space is thus determined by
the nature of data as mapped real quantities, by “some objectively existing
regularities” as specified by Riemann a long time ago.

17.2.5 Example of a Gnostic Filter

To demonstrate the power of the approach, consider a gnostic regression,

which applies the technique to a univariate case: time series robust filtering.
The criterion for case E1 (see Tab. 17.1 and Tab. 17.2) has been chosen. The
model in this case has the form

Zow = C % Zy, (17.41)

where Z, is the estimate of an unknown ideal data value, which should
represent all uncertain data Z,. This quantity thus plays the role of the
filtered value. Parameter C' is unknown. The k + 1-th iteration to the

solution reduces to
N 2
S anl fi,nhi,n:ﬁn
1 9 ;
2fi,nxn

Ciop1 = Ch + (17.42)

where h; , is the n-th estimating irrelevance and f;,, the estimating weight.
Multiplying by x,, and using [17.41| one arrives at

= o S ZN_I f2 h’L n
Zy o = Zom neliin in
o = Son T g,

If the data sample is a regular time series, a recursive filtering formula
may be desirable to track possible changes of the current “mean” value.

(17.43)
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A suitable method is “exponential forgetting”, which can be achieved by
using a factor § < 1, so that instead of [17.43] the recursive formula

SNN_l * ﬁ + SfZNhi,N/Q

Zon = Zon- 17.44
0,N 0,N—1 SDn_, *5+ffN (17.44)

is applied for N = 1,2,..., while
SNy = S5Dy=0. (17.45)

To demonstrate the function of such a filter, a simulated time series
has been prepared, the elements of which were generated as additive data
a = D0+ N (1,0.05), ie a constant D0 and a normally distributed pseudo-
random variable with mean of 1 and standard deviation of 0.05. At random
times, 20% of these data were additively contaminated by Cauchyan dis-
turbances d = C(0,10). Data to be filtered were transformed onto R, by
exponentiation (Z = exp(a + d)). The length of the series was 200, but it
was composed of 4 portions of 50 elements. The quantity D0 was given
values 0, 3, 0, 3 within the partial intervals to demonstrate the filter’s
transients.

The result of this simulated experiment is shown in Fig. 17.6, where the
output of the linear recursive filter

(N-1)xp+1

with 8 = 0.6 is shown. It is obvious, that a linear filter is unsuitable with
these gross disturbances.

Zon = (17.46)

Next a statistical robust filter of the L-type (known from the literature
[104]), which is based on moving medians having for an odd degree V' the
form

M(V, K) = median(ZK,U, ceey ZK, ceey ZK+U)7 (1747)
where U = (V' — 1) /2. The recursive formula of filter 53H is

_ M(BN-2) MGB,N-1) M®GB,N

Zon = ( ) ¢ M ) ¢ MG.N) (17.48)

4 2 4

When it is applied to the data used in Fig. 17.6, this filter suppresses the
outlying data in most cases as shown in Fig.17.7. However, it fails when
there are strong disturbances following each other over short time intervals.

On the other hand, the gnostic filter (shown in Fig.,17.8) using formula
17.44] performs well even under these difficult conditions.
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Fig.17.6: LINEAR FILTER
Noisy Signal & Cauchyan Disturbances

100 -

X

Observed data

(S
(=}

True value

Filter's output
A

Upper Outliers

v

Data & Filter's output

[y
!

Lower outliers

0.1 - : : ; :
0 50 100 150 200

17.3 Non-traditional Regression Models

17.3.1 Implicit versus Explicit Regression

Returning to the definition of regression analysis cited at the beginning of
the chapter, it was noted, that the separation of one of the variables as
the ‘dependent’ one from the other (‘explanatory’) variables is based on
knowing the nature of the dependence. There is also another important
assumption: that the dependent variable to be modeled is only one-way. In
other words, the ‘dependent’ variable has no influence on the ‘explanatory’
variables, there is no ‘feed-back.” Regression models of this type can be
called explicit, because they are based on explicit equations. There are at
least three problems with respect to explicit regression models:

1. In the real world strictly one-way dependencies are the exception
rather than the norm.
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Fig.17.7: ROBUST FILTER S3H
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2. It is not always possible to solve the model’s equations with respect
to the ‘dependent’ variable, even if such a variable exists.

3. Solutions of overdetermined systems of equations—such as explicit
regression equations—can be only approximate. This results in in-
consistencies if one attempts to exchange the roles of ‘dependent’ and
‘explanatory’ variables.

Indeed, the mathematical definition of a dependence as a function easily
introduces a strictly one-way action: ‘arguments — dependent variable.’
Modeling real processes is frequently far from easy, because each of the
variables being considered is dependent on others. Vivid examples can be
found in financial statement analysis:

Profitability is a frequent object of interest to analysts and financial
managers, who are interested in discovering, how it depends on other fac-
tors such as financial leverage, various turnover relationships, working cap-
ital, etc. A regression with profitability as the dependent variable is ex-
pected to estimate these effects:

Rpry = Cy+ Cy * Rrwey + Co * Rraror +Cs x Rpp . (B=1,...,K)
(17.49)
Each of the variables R, are financial ratios of individual firms: PR is
profitability, RW C' the relative value of working capital, T'TAT'O total asset
turnover and F'L financial leverage. All of these financial parameters are
mutually dependent. When there is a good profit margin, a manager may
decide to decrease financial leverage, to improve liquidity, to accelerate
the total asset turnover by additional investment (if the demand exists) as
well as to take other positive measures, because there are sufficient financial
resources. This illustrates the multidimensional “feed-backs”, which cause
the explanatory ratios to be dependent on the profitability as well as on
each other. There are methods in control theory to solve such problems,
but their application could be even more complex than the initial problem.

The solution of an explicit regression task suffers from another
serious drawback: Since the firm’s growth is also dependent on the level of
the working capital, why not evaluate the dependence of working capital
on the other financial parameters using a regression such as with
working capital as the dependent variable?

Rrwer = co+c1x Rprji + c2 % Rraro + c3 x Rpr . (17.50)
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Once the parameters have been estimated, the profitability can be ex-
pressed as

Rpri = (Rrwor — co — ca*x Rraror — c3 * Rppi)/c1 (17.51)

The problem here is, that the coefficients 1/c1, —co/c1, —co/cq, and —c3/ ¢
are not the same as those of the regression [17.49,

This unpleasant inconsistency is easily explained. A system of regression
equations ordinarily contains more equations than unknown coefficients
(K > 3 in this case) so as to minimize the uncertainty of the solution.
The solution will then depend on using an optimization method and the
result is, that the uncertainty of the observed values of the variables in
equations and is suppressed differently in each regression even
if the same optimization method is applied. Obviously, when different
results are obtained by the same method from the same data, deciding,
which of the two solutions is the true one, is difficult.

The conclusion to be drawn here is, that dividing the variables of an ex-
plicit regression into categories of ‘dependent’ and ‘explanatory’ is seldom
theoretically consistent, because any of them can be either ‘dependent’ or
‘explanatory’ depending on how the problem is set out. Such an analysis
introduces an asymmetry into the solution, which leads to inconsistencies
in many practical cases.

The desired symmetry in the roles of all the variables can be achieved by

using the implicit form of a regression. Note, that if Cy # 0, then equation
can be rewritten in the form

N-1

Rk’N/C()— Z Ck/CO*Rk,nzl (kZl,...,K) (1752)
n=1
or—in a new notation—
N
S C % Rpp=1 (k=1,...,K). (17.53)
n=1

Here, all the variables play the same role. Once a solution for coefficients C',
is obtained, can be used to express any desired variable as an explicit
function of the others without any danger of inconsistency. Further, a
single ‘universal’ solution is preferable, rather than a different one for each
“dependent” variable.

The problems associated with explicit regressions in economic analyzes
are due to the fact, that the inner interactions of the variables of an eco-
nomic system are nearly as complex as those of a living organism. Indeed,
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it is impossible to state, that any one single parameter (such as eg temper-
ature, blood pressure, pulse rate, electric potential, number of blood cells,
or the composition of fluids) of a living creature is “only dependent” on
other variables and does not also influence them. These same problems also
exist in other application fields. The above example using financial state-
ment analysis was linear; however, the same difficulties are also present
in the more usual non-linear cases. Problems of the same nature also ex-
ist in other application fields. It would seem, that some important Laws
of Nature are formulated in an implicit form, and that there are similar
non-linear interdependencies in economics and in the other social sciences.
Returning to the gnostic approach to the regression problem, it is evident,
that the discussed formulation can include both explicit and implicit forms.
The explicit case was considered in detail, but to undertake an implicit re-
gression, it is only necessary to substitute a vector of “1’s” for the observed
‘output’ values, 2.

Calculations of an implicit regression can require modifications of algo-
rithms ordinarily used in variance analysis, because they assume a non-zero
variance of the ‘dependent’ variable.

17.3.2 Regression in Probabilities

It was shown in subsection 14.3.6, that a univariate regression is closely
connected with the idea of the (linear) similarity of samples measured by
the cross-covariance of the ‘dependent’ with the ’explanatory’ variables
normalized by the variance of the latter. This interpretation can also be
applied to the multidimensional linear regression:

Explicit regression: A linear combination of explanatory variables
should be similar to the dependent variable.

Implicit regression: A linear combination of explanatory variables
should be similar to a constant (eg to 1).

The OLS (Ordinary Least Squares) solution of the regression problem is a
matrix composed of the cross-covariances and variances of all the variables.
Using the reasoning of subsection 14.3.6, it can be concluded, that the OLS
method resulting from the ordinarily defined covariances and variances is
based on the Euclidean measure of 1D (one-dimensional) errors and MD
(multidimensional) lengths. The application of Riemannian geometry of
the gnostic type leads to a linear relation between irrelevances. The
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MD extension of this relation is
M
he(yn) = 32 Cm x he(Tnm), (17.54)
m=1

where the index m identifies each of M explanatory variables and n =
1,..., N denotes the number of the equation. For N > M, the equation
system is overdetermined and its OLS solution applies gnostic covariances
and variances such as those in [I4.46], but this time in the matrix form. As
shown in 14.3.6, the linear dependence of irrelevance on probability
in the estimating case enables the equations to be rewritten in the
form

M
P(yn) = Co+ > Cpx P(zym), (17.55)
m=1
where P(«a) is the probability of the value «, and where Cj is the constant
M
Co=1—3 Cp. (17.56)
m=1

Regression [17.55| will be called a regression in probabilities in both linear
and nonlinear applications.

The relation [10.42| also establishes the linear dependence of improba-
bility on the quantifying irrelevance. An analog to equation can
therefore be used for improbability in the quantifying case. The differ-
ence between the estimating and quantifying version will lie in the type of
robustness:

estimating irrelevances: probabilities, variances and covariances are ro-
bust with respect to outliers.

quantifying irrelevances: improbabilities and other quantifying character-
istics are robust with respect to inliers.

Variables in regression models may frequently have a different range of
values. Financial leverage % can take on values in the interval [0, 1],
while the price-earnings ratio PE = Price/EPS could theoretically reach
any value in the interval (—oo, 00). Not only do these different ranges make
the interpretation of model coefficients difficult, but the magnitude of their
values is not comparable, the scales are different. Other problems arise
from the physical dimensions and the measurement units of the variables:
some (eg financial leverage) are dimensionless, some may be expressed
in percentage form (eg profitability), while others are generally given in

physical units (a turnover dependent on a time unit, book value of equity
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on a monetary unit). All of these effects contribute to difficulty in making
valid comparisons between the coefficients of the regression model, in which
variables are quantified using different physical units. Further, the use
of “natural” measurement units for variables prevents an easy survey of
dependencies. It is therefore desirable to unify the measuring scales. All
of these desirable effects can be obtained by using the probabilities instead
of ‘natural’ variables:

1. The range of values of all the transformed variables is the same: [0, 1].

2. All transformed variables are dimensionless.

3. All the coefficients of a (linear, implicit) regression are directly ex-
pressed as the weights of the transformed variables (probabilities),
they are comparable.

4. The probabilistic transformation made by means of the EGDF (Esti-
mating Global Distribution Function)— due to its inner robustness—
efficiently filters the data, so that the effect of outliers is suppressed.

5. Important by-products of the application of EGDF's are:

(a) Estimates of the bounds of the values of all variables are obtained.
(b) Possible data inhomogeneity is revealed and eliminated.
(c) Data censoring can be accounted for (see Chapter 19).

The effect of robustness due to the EGDF differs from the effects of
the filtering weights F'W and the error function E (described in 17.2.3)
in an important aspect. Both latter functions are dependent on the mul-
tiplicative residual Z,,/29,, ie on “inner” relations, ‘input/output’ of the
n-th equation. One can therefore speak of row-wise filtering. Note, that
the F'W gives the same weight to all of the components of the gradient g
[[7.34] but the robustness of the EGDF affects each element of this gradi-
ent in a different way, because it redistributes the weights within a column,
thus realizing column-wise filtering. In the case of an explicit regression
in probabilities, the values of the error function E are also substituted
by their probabilities; they are therefore also filtered column-wise. This
means, that a gnostic regression in probabilities ensures the double fil-
tering of the uncertainty of data. The effect of double filtering can be
expected to contribute to the robustness of the method.

The notion of gnostic covariances was introduced with the modulus
of a data sample (Definition 14, and Corollary 15.3, [14.21)). The
usefulness of these notions is emphasized by their connections to the mea-
surement of dissimilarity analyzed in 14.3.6 and by their application to
regression in probabilities.
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17.4 Summary

The gnostic approach to modeling interdependencies between variables dif-
fers substantially from statistical methods:

1. no a priori statistical assumptions on data are applied,

2. all variables are represented by data samples, which are the only in-
formation given on the variables,

3. both dependent and explanatory variables may contain unknown un-
certainties,

4. instead of a mean or average value for the dependent variable, its
distribution function is estimated or predicted,

5. the use of a very practical and advantageous regression in probabilities
is theoretically justified,

6. the implicit regression model extends the application field of the or-
dinary (explicit) versions,

7. the gnostic characteristics used as criterion functions ensure, that the
model will possess the unusual qualities of inner/outer robustness, and
the minimization of losses of information.

The problem formulation is general enough to cover not only linear, but also
nonlinear multivariate regression functions applied both to cross-section
and time-series models. The influence functions of errors were examined
for six types of gnostic criteria by using an iterative solution for the equa-
tions resulting from a variated model function. It was shown, that this
approach provides several useful kinds of influence functions, which ensure
a saturating, redescent or expanding reaction to data uncertainties. The
nonlinearity of gnostic criteria leads thus to effects, that are comparable to
those of nonlinear filters resulting in the protection of the estimated model
parameters in both explanatory and dependent variables against the in-
fluence of uncertain components. The characteristics of these filters are
optimized, because they extremize the chosen gnostic optimality criterion.
This choice determines the type of robustness of the model.

Classical covariances can be interpreted as “by-products” of the solu-
tion of the regression task. Their drawback is the sensitivity to outliers,
especially when they are estimated from small data samples. Gnostic re-
gression models use robust covariances originally introduced in connection
with the modulus of a data sample (see chapter 14).



Chapter 18

Optimal Numerical Operators

18.1 A Side-step to Statistics?

The formulation of the regression problem in the previous chapter was
general enough to cover not only static (cross-section) problems, but also
dynamic problems such as uni- and multivariable time-series processing. In
practice, there are a broad spectrum of problems to be solved, therefore it
is useful to accept as broad a definition of “processing” as possible. From
the previous chapter, it might appear, that there were only three classes
of tasks to be considered, the explicit as well as the implicit regression,
and the regression in probabilities. The “dependent” or “output” variable
was z in the former and a constant (1) in the two latter cases. To show,
that the concept set out in really covers a more extensive range of
problems, the more detailed analysis which follows will demonstrate, that
special numerical operators are needed, and that an appeal to statistics
will be useful.

18.1.1 Diversity of Modeling Problems

An explanatory vector z can take on a different character depending on
the nature of the problem. Consider three examples of an “input” vector
of length M:
1.
LOSnt — <513'n,1(t), $n72<t), ce ,CIJn’M(t» (TL = 1, ce N) (181)

The set of M different input values of the n-th variable describes the
vector’s instantaneous state at time t. The N x M matrix composed of
these rows characterizes the state of the N objects, the cross-section
of the group.

329
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zrsy = (z(t),z(t —1),...,2(t — M + 1)). (18.2)

This vector describes the “history” of a certain input variable, its
value at time t along with the M — 1 lagged values. If there are T
such vectors (¢t = 1,...,T), then the T'x M matrix composed of these
rows characterizes the dynamsics of the variable.

1(t=1),...,2(t = M+ 1),
ot — 1), ... ot — M+ 1),

8

zosrsmng = (T1(t),
L2 (t)7

8

xN(t),xN(t—1),...,:{:N(t—M+1)>. (183)
This vector describes the “history” of a group of N objects, their
values at time ¢ and their M — 1 lagged values. If there are T' such
vectors (t = 1,...,T) then the T'x (N x M) matrix composed of these
rows describes the dynamics of the cross-section.

The “historical” vectors [18.2] and [18.3| apply a moving window strategy,
which assigns to all M — 1 lagged components the same a priori weight as
the index value (equal to 1), while the higher lags receive a zero weight; they
are “completely forgotten.” While this concept has some merit, it is not
completely satisfying since there easily arise questions such as, “What is the
difference in significance between the values of z(t — M + 1) and x(t — M),
which justify the inclusion of the former, while excluding the latter?” A
useful method for overcoming this problem is exponential forgetting, which
was introduced in the example of the gnostic filter (Section 17.3). The
concept is to apply a forgetting factor 8 (0 < 5 < 1), such that eg the sum
of the vectors’ zrg; of the exponentially “forgotten” components has the
form

M-1
Soo= 3 Bk a(t —m), (18.4)
m=0

This technique and its modifications result in a smoothing of the forgetting
effects. Another advantage is the recursive character:

Zm,t—i—l — x(t + 1) + 6 * Ex,t- (185)
The model (17.2)) can be thus interpreted as
%= F(C,z.), (18.6)
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where z, is(18.1}, {18.2{or|18.3], and where z, denotes one of the many possible
forms. The simplest representation of the dependent variable z, is related
to a cross-section analysis using an explicit regression with explanatory
vectors having the form of [18.1] while the dependent variable is another
parameter of the same (n-th) object at the same time ¢. (Example: The
dependence of the return on assets (ROA) on other financial ratios for the
same year.) However, there are a variety of alternatives:

1. The explanatory vector is and the dependent variable is z, = Z(t),
ie the best estimate of the last value of the time series. This is the
case of filtering. Example: given a series of volatile observed share
prices, estimate a recent “true” value.

2. The same explanatory vector, but the dependent variable is now rep-
resented by 2z, = Z(t+7), where 7 > 0. This is the case of time-series
prediction. Example: given a series of sales of a product, predict a
future value of sales.

3. The explanatory vector is now [18.1] and the dependent variable is
Ze = Tpa+1(t + 7), where x, pr+1 is another parameter of the n-th
object and the task is the prediction of the object’s parameter based
on a given cross-section. Example: given sets of financial ratios of an
industry for a year Y, predict industry sales for the year Y + 7.

4. The explanatory vector is [18.3] and the dependent variable is z, =
Tpar+1(t + 7), where x, 41 is another parameter of the n-th object
and the task is to predict an object’s parameter based on the given
time series of cross-sections. Example: given sets of financial ratios
of an industry for years Y, Y —1,...,Y — M + 1, predict the share
price of the n-th firm for the year Y + 7.

In all the above examples, the data are directly observable. There may
be an objection, that the datum z(t + 7) has not yet occurred at time
t, however, there are ordinarily three time intervals associated with the
treatment of time series([27]):

1. the model estimation period,
2. the ex post forecast period,
3. the ex ante forecast period.

Over the first period, the initial portion of the “historical” time series
of explanatory and dependent variables is used to estimate the model’s
parameters. The rest of the historical time series is used for verification of
the model’s applicability and for the estimation of its errors. The values of
the dependent variable are thus known for both of these phases. The model
is not really “used” until the third period, when a forecast of future values
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is desired: given the input, predict the (unknown) output. Information
on the model’s errors can be purged from the third period, but only after
the true value of the output becomes known, however these techniques are
usable only when the data are directly observable.

There are tasks, when either the variables’ input or output values are
not directly observable; these must be mathematically derived from data.
Let us confine ourselves to linear operations on continuous variables and
to their discrete (numerical) representations, to linear numerical opera-
tors. Although constrained, the playground for this game is still large. An
example is in order: it is well-known, that investments in science, research
and development, in technology, know-how, skill of employees, marketing
expenses and other factors accelerate sales after a time interval. However,
this acceleration is not directly observable, it must be mathematically de-
rived from the time series of sales. In the continuous case, acceleration is
proportional to the second time derivative of the state function. In the
case of discrete function values (which are given at regularly distributed
time intervals), the acceleration is proportional to the second difference of
this function. However—as it is well known—differentiation amplifies noise
(or data errors). In order to minimize this effect, in a statistical analysis
redundant formulae are developed, ie formulae, which make use of more
data than is necessary for a purely analytical minimum.

There are cases, when neither the dependent variable nor the explana-
tory variables are directly observable. Example: the short-term financial
situation of a firm is dependent on the rate of cash inflow and outflow.
These events are discrete (and perhaps highly variable), so that to obtain
reliable estimates of these flows, they must be smoothed. Such a model can
eg evaluate the current need for short-term financial requirements based on
smoothed cash flows and their rates of change. The smoothing instruments
(filters) are numerical operators, which treat the time series of cash flow.
In other fields of application a need for directly unobservable quantities
can also exist. An example might be that of a feedback control system,
which uses velocity, acceleration and /or integral signals for its stabilization
and optimization.

This need for numerical operators can also be met, when implicit models
are used. Regularities with respect to relations between variables can be
sometimes expressed by an equation, which has zero on its right-hand side.
(This “dependent” variable becomes z, = 1 after exponentiation of the
equation transforming the task onto the infinite data support R..) These
situations occur in the case of certain balancing statements. Some of the
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elements to be balanced may not be directly observable, in which case they
must be drawn out from the time series by numerical operators.

Because gnostics has been presented as a method, which surpasses statis-
tics in yielding information from small samples of strongly dispersed data,
one may wonder, whether it is consistent to apply statistical instruments
such as (statistically) best numerical operators in combination with gnostic
methods. The answer is positive:

1. data series can be subjected to robust filtering by gnostic methods
before numerical operators are applied so as to minimize the effects of
possible gross data errors,

2. this robust filtering of data reduces data uncertainty to such a low
level, that statistical methods—as shown by gnostics—yield results,
which approach the best possible quality,

3. gnostic methods allow the reliable estimation of covariances needed
for some numerical operators.

It will be seen from the material that follows, that the most effective
analysis of this type will result from the joint use of both statistical and
gnostic procedures, because the advantages of each methodology can be
exploited. There are, then, good reasons to consider in more detail the
problem of optimal numerical operators, by which the directly unobservable
quantities can be derived from data. This will not only provide instruments
useful to the extension of the application field of the gnostic methods, but
also offer a better insight into the eternal battle of man versus uncertainty.

18.1.2 A Short History of the Problem

An important contribution to the solution of the problem of filtering ran-
dom sequences was made by A.N. Kolmogorov in 1941 ([46]). This class
of problems was also secretly studied during World War II in connection
with the development of radar. Some of the results of this work were pub-
lished in the famous post-war book of Norbert Wiener ([116]). Wiener’s
filtering problem assumed a random signal, which had the form of a sta-
tionary continuous function. This concept was extended by L.A. Zadeh
and J. Ragazzini, who added a non-random component to the continuous
signal ([119]). The optimality of the linear forms of least-squares estimates
was proved by the Neumann-David theorem [20]. The rapid development
of digital computers then turned attention back to discrete time series and
R.E. Kalman’s recursive filter ([41]) opened a new line of development to
the state-space approach, which was later shown by P. Swerling ([107])
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to be a version of the known recursive solution of the least-squares prob-
lem. A discrete version of the Zadeh-Ragazzini problem was considered by
M. Blum ([10]) and generalized by P. Kovanic ([47]). Different aspects of
treating discrete signals composed of a stationary random component and
a non-random non-stationary component were analyzed in [68], [38], [10]
and [50]. A generalization of the Gauss-Markov theorem [69] subsequently
extended the application field to the estimation of correlated signals.

In 1954, V.M. Semyonov ([98]) made a substantial contribution by con-
sidering a mixture of a “useful” random signal (represented by a poly-
nomial, which had random coefficients) and a stationary random noise.
Unlike the traditional concept of BLUE (the Best Linear Unbiased Es-
timate), Semyonov’s approach dealt with unconstrained minimum vari-
ance estimates. Such estimates are ordinarily biased, but their variance
can be lower than the well-known Cramer-Rao low bound of BLUE. The
minimum-penalty concept [52] and [53] allowed the integration of all non-
recursive least-squares methods into one generalized estimate. This method
permitted both unconstrained and unbiased estimates to be obtained as ex-
treme cases of a generalized estimate by choosing the value of the penalty,
which determined the weights of both types of estimates. The universality
of this approach makes it useful as a base for considering the theory of
optimal linear operators.

18.2 The Minimum Penalty Estimate

18.2.1 Definitions and Notation

The matrix form will be used to represent the data samples for cases of
both time series and data sets, which are not regularly distributed in time
or space. As usual, M7 is the transposed matrix M and M is the Moore-
Penrose pseudo-inverse ([89]) of M.

Definition 17: Let S; be a set of N real numbers ¢, (n = 1,..., N),
such that tg < t, < tg. Let Z; be the interval [tp,tg| of real numbers.
Consider a function £(t) : Z; — R!. The vector z = (£(t1),...,E(tn))
will then be called the wvector representation of the function & over the
support S;.

Consider a set S, of M functions &,,(t) m = 1,..., M of the afore-
mentioned type. Let £ be a linear functional £ : S, — R'. Then the
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row-vector L := (L(&(t)), ..., L(Em(t))) will be called the numerical op-
erator. Let the data model be a real column vector

Y =Y, +Y,. (18.7)

where Y, is the vector representation of the true and Y, of the error
component of a function represented by data, which may be made up of
both random and non-random elements. Let the means of the random
components be zero.

=~
Denote the mathematical expectation of a random matrix ) by Q.

It is assumed, that all the first and second statistical moments of the
——

variables under consideration are known and constant. Let Y,Y.' = 0.
Let A be a zero-mean random column-vector, for which relation

—
AAT =1 (18.8)

(with the identity matrix I) holds, so that the covariance matrix of the
information component Y, = XA (for a non-random N x M matrix X)
18

——
VYT = XX (18.9)
Let the covariance matrix of the noise component be
——

B.=Y.Y,. (18.10)

and let the required result of the estimation be
Z, = LA. (18.11)

Let a scalar

QI = tracefy/ T} 18.12)

be a measure of a random matrix (). Let a constant (row-vector) operator
W be applied to perform the estimation by means of the linear form

Z=WY~+C (18.13)

with a constant vector C'. Let the estimation error of the first kind and
of the second kind be respectively

e, = WY, +C - Z,| (18.14)
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and
ey 1= IWY + C||. (18.15)

Let the penalty p be a scalar
P = pee: + pyei, (18.16)
where p, and p, are non-negative weights. Let

r:=py/(Dz +Dy). (18.17)

A centralized random vector is then denoted by Vi=V- /K\
Using centralized variables simplifies ((18.13]) to

Z=WY. (18.18)

The decomposition in is not unique, but applies to all X, which satisfy
[18.9. Columns of the matrix X can be considered as vector representations
of the already mentioned functions &, (t). Matrix X defines a subspace of
the vector space RY x RY by its columns: it may be called the basis of
this subspace.

The rank of the covariance matrix B can be full (equaling N) or less,
depending on the features of the noisy data component Y, which contami-
nates the data. The errors of treatment of both data components are given
a weight by the penalty to express the preference of one kind of error over
the other.

18.2.2 The Main Result

Theorem 19: Let the definitions and notation introduced above hold.
Then the minimum penalty estimator has the form

W =L(rl+X"B*X)"X"B". (18.19)

More detail on this theorem and on its more general versions as well
as its proof can be found in [52] and [53]. The most important types of
the vector L are given in [50]. To more fully understand its role, interpret
the elements of the matrix X (numbers zy,,) as values of the set S, of
M differentiable functions &, defined above, so that xy,, = &.,(t;) for
k=1,..,N and m = 1,.., M. Cases of special interest are determined by
the following components of the numerical operators L:
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Analysis: Ly;=1form =1, Ly;=0form#1, (m,l=1,..,M). The
results of estimation are weights A, of functions &,,(t).

Smoothing: Lg,,(t.) = &n(t) (m=1,...,M, M < N). This operation
includes filtering (¢, = ty), smooth interpolation (t; <, < ty)
and smooth extrapolation (¢, < t; or ty < t.). (There would be
no smoothing effect for N = M. Such a case would correspond to
ordinary Lagrange’s interpolation or extrapolation.) The quantity ¢,
will be called the target point.

Smoothing differentiation:

d"€,,(t
Lpnm(te) = fit”( )\tzt*-

The resulting derivatives can be interpolated or extrapolated depend-
ing on the chosen value of t,.

(18.20)

Smoothing integration:

Lin(t) = [ €u(t)dt (18.21)

Smoothing convolution: Given a kernel function f : Ry — R;. Then

Le(t.) = /tt F(6)em(t. — t)dt. (18.22)

It is well-known, that such convoluted integrals simulate the reaction
of a dynamic object (the impulse response function of which is f(¢))
to the input &,,.

18.2.3 On Signal-to-Noise Ratios

An important role is played in the formula for optimal linear operators
by the term X” B" X, which can be interpreted as a matriz signal-
to-noise ratio of the data being considered. Indeed, the matrix B is the
covariance matrix of noise [I8.18, while X is the square-root of the co-
variance matrix of the “signal” (informative, true) component. For some
square matrices M, and M, both expressions M ;M5 and M3 M, have
some of the features of a matrix ratio. However, these expressions may be
asymmetric even in cases, when both matrices are symmetric.

In contrast, by definition, expression X” BT X is always symmetric. It
also has the important feature of a matrix ratio, that multiplication of
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both the “numerator” (X’ X) and “denominator” B by a full-rank matrix
does not change the expression’s value. The impact of the matrix signal-
to-noise on the optimal linear operator increases with rising covariances
of the signal components and decreases with increasing noise. The weaker
the noise, the better the quality of the results obtained by the operators.
This statement can also be supported by consideration of the estimate’s
errors as discussed in [52] and [53].

What has been discussed thus far in this chapter as well as what
follows in the next several sections represents the application of statistical
principles. Even so, this approach provides a clue, which leads to a better
understanding of the gnostic method. The matrix operator W attaches
weights, which are dependent on the matrix signal-to-noise ratio of the
data: bad ratio—small weights—low confidence in the data. Covariance
matrices represent estimates of the volatility of the whole population,
from which the data originate. The matrix signal-to-noise ratio evaluated
from covariances is therefore a collective characteristic of the relationship
between two populations. The weights given to individual data by W
do not distinguish between good and bad data. But since some good
individual data invariably must be present, if the collective signal-to-noise
(matrix) ratio is bad, then the confidence ascribed to all the data is low
regardless of their individual quality. Therefore some of the information
borne by good data cannot be used.

A bad collective behavior is not the “fault” of the good individual com-
ponents, but all members of the sample are “punished” to the same degree
by the low weights because of the “collective fault.” It seems logical, that
if individual weights could be attached, more information could be ex-
tracted from the data. This idea was one of the important starting points
of gnostics many years ago. Indeed, gnostic weights are attached to data
depending on the value of the ratio Z/Zj, ie on the ratio, which includes
both the “useful signal” Z; as well as the uncertainty—noise component of
the observed value Z. Z/Z is therefore also a version of the signal-to-noise
ratio, but a strongly individual one, which reflects the particular datum’s
specific quality with respect to the “collective” quantity Z.
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18.3 Special Cases of the Minimum Penalty Estimate

18.3.1 Constrained (Unbiased) Estimates

Limiting the preference of the error e, to e, corresponding to p, = 0 (ie
r = 0) reduces [18.19| to

W =L(X"B"X)"'X"B*. (18.23)

When this operator is applied to data in accordance to [18.18] it is known
to yield asymptotically unbiased minimum variance estimates. The most
important special cases are:

Ordinary Least Squares: Let
B =<’ (18.24)

with ¢2 > 0. Let the result of the estimation be the vector A of weights
of X’s columns in decomposition Y, = X A. This can be achieved by
using the numerical operators of analysis L4, for [ = 1,..., M. The

required estimate will then result from [18.19in the form
A=(X"X)"'X"Y, (18.25)

ie it will be the ordinary least squares estimate (OLS).
Neumann-David Estimate of Linear Forms: Let L be an arbitrary
real vector of dimension M. Let A be the OLS estimate [18.25| and let

z =

=
S

(18.26)

Then—according to the Neumann-David theorem ([20])—the estimate
Z will be BLUE (the best linear unbiased estimate) of the linear form
LA.

Gauss-Markov estimate: The substitution of L4 into [18.26] for k =
1,..., L enables the set of L operators W to be obtained in the form
of the L x N matrix

Wa=X"B*X)'X"'B", (18.27)

which can be called the analyzer. Applying the analyzer to data in ac-
cordance with [18.18| provides the generalized Gauss-Markov estimate

([691)-
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Generalized Discrete Zadeh-Ragazzini Estimate: Let the covari-
ance matrix B be regular and the data be of the form

M
Ye = > e + s+, (k=1,..,N), (18.28)

m=1

where ., are values of some given independent functions & ,,, and
a,, are non-random but unknown coefficients. Numbers s;, are values
of a useful, informative random function s(¢) and ny is noise. The
required result of the estimation is the numerical representation of
the function £(SM_ | a,,&m + s(t)) at a given point ¢t = ¢,. The a
priori information is given by

e the covariance matrix B of the noise,

e the V x M full-rank basis matrix X composed of vectors &, ,,,

e the operator L.
This task implicitly assumes that the vector composed of s;s belongs
to the subspace, which has the basis X. The estimator derived in [47]
therefore reduces to [18.19] into which r = 0 is substituted.

18.3.2 Unconstrained Estimates

It is well-known, that the BLUEs (Best Linear Unbiased Estimates) are
efficient, ie they reach the lower bound of Cramer-Rao inequality for vari-
ance. However, this is true only among unbiased estimates. Biased esti-
mates may be better than BLUESs in the sense of having smaller variances.
Estimators, which reach an unconstrained minimum of variance were re-
viewed in [I07]. Such an estimator was first presented and published in
1954 by V.M. Semyonov in [98]. A generalized version of the unconstrained
estimates can be obtained from by the substitution » = 1. This value
of the penalty means, that the error component e, is completely ignored:
an absolute priority is given to the error e,.

An interesting modification of the unconstrained estimate represents the
ridge regression ([4]), which provides an estimate of the weighting vector
A in the following way:

A= (KI+X"X)'X"Y. (18.29)

This method did not result from a theoretical notion, but from the ex-
perience, that introducing the term K[ with a positive K decreases the
estimate’s variance. However, by using formula [18.19|instead a theoretical
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justification for this type of estimator can be obtained: it will be optimal
(in the sense of minimizing the penalty) in the case of uncorrelated noise
(B = I) and for K interpreted as the relative penalty r. It is useful to
note, that the variance of the minimum penalty estimate depends on the
matrix signal-to-noise ratio X TBtXx.

By choosing a penalty ratio of » # 0 and r» < oo one can reach a
compromise between the conflicting requirements of minimum variance and
zero bias. The best choice depends on the characteristics of the data being
considered and it can be made by the evaluation of errors e, and e,, when
a particular data set is being used.

18.4 Applications of Numerical Operators

18.4.1 The Method of Static Programing

The formula for optimal numerical operators depends on the data
values in a complex way, because the data determine covariances, from
which the operator is calculated. However, the situation changes signifi-
cantly, when it is possible to assume stationarity of the object or process
under consideration. In such a case, all variances and covariances converge
to constants with increasing data volume. The operators then become
fixed matrices/vectors, which can be estimated “once forever” (valid until
the occurrence of large scale changes in the data structures). If the “new”
data entering the formula [I8.18| can be assumed to originate from the same
population as the “old” ones (from which the operator was determined),
operation is linear with respect to the “new” data. It reduces to the
ordinary scalar product of vectors or to the matrix product of matrices.
The operator is constant and repeatedly multiplies the new operands—data
vectors.

In this manner, the repeated application of numerical operators can be
separated from the “design” of operators. A typical flow of data treatment
then comprises two stages:

Calculation of optimal numerical operators:
e estimation of the mean values needed for the centralization of
vectors,

e estimation of the covariance matrix B (18.9) of the noise,
——

e estimation of the covariance matrix X X7 (18.9)) of the useful data
components and calculation of its “square-root” matrix X,
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e calculation of the vector L according to Definition 17,

e calculation of all elements of the formula [I8.19 with the relative
penalty r as a variable,

e optimization of the operator by finding the most suitable value
of the relative penalty r with respect to the particular data and
both of the errors e, and e,,

e calculation and storing the operator W.

Application of operators: Repeated operation of on new data
vectors/matrices.

This approach (called static programing [48]) was developed some
decades ago and was motivated by the necessity to minimize the time and
memory requirements of computers, when these were rising much faster
than the computers’ capacity. In spite of the enormous progress in com-
puting technology, these constraints still persist as an economic problem.
The execution of an operation on a computer or the storage of a byte is
incomparably cheaper now than in the early days, but it still costs money.
On the other hand, the demand for an increasing volume of computations
to be performed has risen so fast, that the product of their cost and the re-
quired number of operations surely has not fallen. Therefore, ideas, which
lead to economical programs do not lose their value. “Old ideas” do not
always mean “bad ideas.”

The scheme of static programing is easily extended with the use of robust
gnostic filters (see Chapter 17):

First, static phase: calculation of optimal numerical operators.
Repeated phase:

1. Robust cross-section or time-series filtering.

2. Application of operators to filtered data.

Robust filtering suppresses gross data errors thus making the data suitable
for optimal linear operations.

18.4.2 Main Classes of Applications

There are several classes of applications, which differ by the structure of
the data samples to be treated. Samples can consist of numerical repre-
sentations of smooth functions of a non-periodical or periodical character
as well as non-smooth functions or functions defined only by covariance
matrices. The choice of the basis of the informative data subspace (of the
matrix X) must reflect the nature of the data. The following important
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cases are set out in more detail.

A Polynomial Basis

Smooth and differentiable continuous functions can be approximated by
polynomials of a sufficient order. A typical example is the Taylor’s expan-
sion. If the informative component of the signal has no special features
(such as periodicity) and if the signal can be assumed to be sufficiently
smooth, then the polynomial approximation is suitable. The tasks consid-
ered above relate to discrete representations of continuous functions. In
the case of a polynomial approximation of the 