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Abstract, Some practical applications of metheds besed on the
gnostical theory are briefly deseribed. Gnostlcs is an
altarnative to statisties. It develops metheds not based on

statistical models. These methods may be applied also to =mmall
gsamples of bad dete and in nonstationary esituatlions. Examples
demaonstrate nonlinear filters of gnostiecal type, which are

- robust with respoet to disturbances of data

736

= sennitive to actual changea of the

data
- adaptive in 811 actions

process Tepregented by

= capable to derive reliable information on sudden changea of

data
Such a high intelligency

of pnostical
suitable especially for supervision systems,

algorithmas makes them
alarm monitoring,

fault detection and diagnosis, gquality contrel.
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i TRODUCTION

A new theory applicable to broad scale of
gontrol problems ineluding estimation =and
identification , prediction and filtering
wes developed (Kovanie 1984 a, b, e) and
briefly exposed at IFAC '85 Congress
(Kovanie 1985). A new eoxposition of +the
theory with examples of applications can be
found in (Kovanic 1986). This (“"gnostical")
theory does not uce any statistical
assumptions on uncertainty of data. It is
based on a couple of realistiec axioms. The
first &sxiom supposes the data to be
dipturbed either only eadditively or only
multiplicatively. This axiom wee shown in
Kovanie (1984 a) to determine fully the
following:

= the metrie (of & non - Buelidean,Rieman—
nian type) of erroras of uncertain data

= the formulas for evaluation of the in-
formation loss and entropy inoreases of eamch
individual datum due to uncertainty

= the idesl way of estimation of the true
value of a datum, which minimizes the
necessary information loss and entropy
ingrease.

The second axiom of the gnostieal theory ie
the data composition law determining the
way of uging = data sample for optimosl
egtimation of the common true valus of the
data. Hotivation of this axiom is the aim
to ensure consistency between the theory of
untsertain data and relativiastioc ophysios.
Such & requirement 4is not strange for
everybody who is aware of the motivation of
the data composition law of the olassical
statistics: the crithmetical mean, variance
end ecovariance matrix are statistical

analogies of the center of masses and of
the components of the inerciality tensor of
& aysiem of mass polints in oplassical
mechanics.

As shown in EKovanie (1984 b), the two
axioms result in an inherent robustness of
gnostical estimates. It is the aim of this
paper +to wshow by examples, that the
theoretical expectation of good applice—
bility of the gnostical theory oan
supported by results of already working
algorithms.

THEORETICAL BACKGHOUND
An i-th datum from a data sample

2z ,8,n) 1= {:1.....=n}

is aessumed to have the form

g =z _exp(s 2,) (2.5 R, Q1EH1} (1)

where H1 is the set of all real numbers,

R+ is the set of all poaitive reals,

£ is a "true" value of all data of

the sample 2,

Qi represents the effect of the
uncertainty of the i=th observation

8 is a scele parameter characterizing
the spread of data of the sample Z

The deta model (1) oen be easily trans-



formed inte the ordinary a&dditive {form
by logarithmization. The srror of the datum

=, was sroved in Kovanioc (1954 a) +to ba
given by the nonlinear function
h(g,) = (e7'- 5,0/ (&7 + &,) 2)
Ey By = &g/ NEy T By
where
= ges 2/m
gy = (2,72} (3)

A direct applicaticn-of (2) is a gnostical
estimate of the probability, L.e. of the
guantity

P {sus Eafzisu,ﬂ,n}}

Ite gnostical estimate has the form
n -
P={01+{"n [51})fn]HE (4)
i

where h(EiJ ig (2) with the argument Ey
intoe which an estimate Eu haes been sub-
stituted instead of unknown trus value E

Another applieation of (2) is the gnostical
variance

n
V¥ = (T a%E)Mn (53
i
which is oclosely connected with the dats
density of the sample 2 {Bu,a,n} H
aP/d(1n E,) = (1 - Vo)/s (6)

(If we would use Eninatund of 1n En in (6},
we would have the estimate dP!ﬁEu of the
probability density of the

quantities h (2) and ve {s)
analogical &8s mean and
claseicel statistica.

semple.) The

play roles
veriance in
For data disturbed

only slightly the gnostical error funciion
h turna to be preoportional to arithmetical
mean and the gnostical variance ‘fE to

ordinary variance. But for data with gross
errors their behaviour is guite different.
Az seen from the formulas the influenze of
the outliers (both 2, "2 and B, o g4) is

bounded in the case of gnostical quanti-—
ties.

It follows from (6), that an estimate &
of the true value By oy which minimizes
the gnostical variance, corresponds to the

loecation of the maximum of the data den—
glty. This estimate can be obviousaly
obtained by solving the egquation

a®p/a(1n 3 0% = 0 (7

with respect to the variable En. This non—

linear equatien has a molution alwaye, but
it may have more than one solution i1in the
cane of more than one single "cluster" of
data of the sample ¥. If we rapeat thae
solution process using different starting
points, we can determine subseguently the
locations af all moxime of the data density
function.

. Equation (B)

To apply all mentioned formulse, we need &an
estimate % of the seals parameter. For many
practical purposes such eatimate T gave
good results, whioch was obtsined by solving
the egquation

'f'151nnp - E - hzfsi} (&)
i

where

p = xE/2 (9)

ean be interpreted inm the
framework af the gnostical theory as a
condition of equivalence of the entropy in
both diserete and continuous modele of data

uncertainty. Another approsch to scale
estimation is exposed in (Hovaniec 1986):
the "best"™ value of the scale parameter
gshould minimige the maximum distance

between the empirical distribution function
of +the data sample &and the gnosticel
distribution function. Such scele parameter
is useful eppecislly for important applica-
tiona of estimates of wvaluss of the
probability distribution or of quantiles of
this function. Unfortunately, this scsale
eatimating 15 connected with extremali-
zation of & non-smooth funetion and
requires tedious ealeulations. For many
on-line applications such &8 filtering a
fast algorithm solving (B) isa a good
compromise between guality eof results and
caleulation effort.

It is interesting to rewrite (7) inte =&
more readable form of the squation

n n
. 3 _2/8 3 _=2/8+8/%
g, = (( E £y =777 )/(C Ei £ =550 (10

where

2 2
£, = 20y /e )Y + @Y 1)

IT all By deviate only slightly

{the case of very small errors), then the
estimate in gatisfying the f105 epproaches

-u
rom =
2 o

the arithmetical mean ﬁi 2y
1

different is the case of strong errors: the

weight fi (called the fidelity in gnostical

theory) decreases rapidly for wvalues of
ratio :1Iaa deviating from 1. The outlying

datn have thus & negligible effeet on the
solution ED of (10). This 4ie why the

estimate ;o is very robust with respect +to
outliers.

/n. Quite

ROBUST PILTER OF A GNOSTICAL TYPE

We are repdy to consider now some fedtures
of gnostical algorithme ueing practical
exapples. There ip & real process depleted
in Pig. 1 by points a3 a time series L(t) .
The guantity Z is an important parameter of
guality of a chemiogpl product, +the 5% of
wiaater content. The gnostical filter will he
an algorithm treating an n—tuple of last
cbserved values of the time series as &
data sample % to find on estimntae E; of its

location parameter z, a8 a solution of the
equation (7) using the eotimate & of the
acale parameter © obtained from (B). Then
the sample 7 13 actualized by substituting

a new oboerved value of the serles instead
of the eldest one. The estimate Eu is thus



the output of the filter being actuaslired
after each step of observation. Ths full
line in Fig. 1 conneocts the output wvalues
of such & filter. The size n of the treated
sample & sguals to 10. This means that the
time response of the [ilter does not execeed
time of 10 observations.
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Pig. 1. Hobust filtering of a +time series
and reciprocal expectation of the
newa st datum

The high robustness of the filter manifests
€. E. in Fig. 1 by ita insensitivity +to
outlying observationa av time 15, 16, 37.
The robustness of the gnostieal [filter 1s
not paid by a slow response with respect to
actual changes of process level. To show
thias, the same data as in Fig. 1 have been
used and modified starting st time 32 by
multiplication by 1.2 to0 produce & otep
funcetion. Ao gseen 1In Fig.2, the filter
neede only 7 observations to go over to the
new process level,
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Fig. 2. Step responee of a gnostical filter

High robustness of the solution of (10) ean
be demonstrated by another examples. Data
sample Z.ﬁ. in Pig,3 consists of actusl

values of soms real data. Sample ZE is
obtained from the sample Eh by multipli-

cation of all data by 1.2. "Hixed" sample
ZB differs from the sampla Z& enly by the

first detum which 1is increased by 20%.
The last sample ZH differs from the in-

ereased data of the sample Zc by the last

datum which has the ariginal value.
Gnostical scale parametr 8 estimated from
the samples E'A and E.c i8 Ekn Eﬂ = 0.06338.

Let us wume an algorithm solving the
equation (10) with respect to ED to find

the loecation parameters of the samples.
Resulte are summarized in Table 1 together
with arithmetical meana £ of samples.

TABLE 1, Estimated loeatieon
oL j
(example in Fig. 3)

parameters

! ! | Gnostical parameter !
! lata ! Arith. ! of leocatlion !
| sample | mean ¥ | = =

} i i a1 ! Lgn 1
i Z* 1 9. 4568 ] 49,3598 } - I
| ZB } g.68%4% I 9,520 ; 11.158 I
| Ec ] 11.362 ; = ; 11.277 !
I ZD i 11. 7114 ; 9.5105 i 11.250 i

For "elean" samples ﬂﬁ and EG the gnostieal

differ only alightly
from arithmetical means. Small change of
one single datum of Eh caunes a change of

the arithmetical mean by 285 while the
gnostical location parameter inereases only
by about 0.2%, Another important feature ia
that there are twoe solutions af the
equation (10) in the case BB . The second

parameter EuE locates nearly exsctly at the
changed value of the first datum of EE .
S8imilar situatieon ocecurs in the case of ED'

lopation paramsters

But let us compare the locations Tfor both
peirs of samples. It is not surprising that
the ratio EuECKEn1A of locetion parameters

of elean samples equals to 1.2 because of
proportlonality of &ll data. However, it is
not trivial that the ratio £, /2,5 1=

1.194. These estimates were obtained by
pnonlinear oparations applied to nonpropar—
tional samples and therefores such a small
change of the ratic of location parameters
sneaks on the robustness of egtimates,
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Fig. 3. Pour examples of data samples and
thelr data density curves



On the other hand, the appearance of becond
lacation parameters resulting from the
glight medification of a single datum
demonmtrates high resolution power of the
method, It can be explained simply by
having & loock =at Fig., 3 showing data
denaities of all four samples.

These examples demonstrate a guite unueuall
feature of the gnostical filter: It can be
applied to data having a bimodal (or even
multimodal) density function, In the bi-
modal caee it is sufficient to start the
iterations solving the eguation (11) twice
= from the minimal and maximal data values.
Such a filter has two outputs characteriz—
ing the levels (the locationz of moximal
density) of both "mixed" processes. It can
Be also used as an indieator of the
"homogenity" of the process: A process is

homogenious (its density is unimodal) when
both outputs coincide.

DTAGNOSTIC FUNCTIONS OF THE GHOSTICAL
FILTER

Expectation of & Datum

Hawving some n last observations £y

process we can make uee of (&) to estimete
the probability P (the "expectation") of an
arbitrary value of a new datum. We may thus
confront the npewly obtained measurement
with itas expectation to pguess 1in which
degree it may be & "“proper" continuation of
the previous n values. If the expectation
appears to be too low, & diagnostic signal
may be automatically dinitiated. To show
this, the values of reciprocal expectations
are depicted by vertical bars in Fig.1. The
horizantal dotted line corresponde to the
recliprocal expectation 1/0.1 whieh is
expeoted to be exceeded only in 10% casesn,
As shown in PFig.1, the reciprocal expec-—
tation reliably marks the outlying data. It
is important, that this function of the
gnestical algorithm ia fully ndaptive with
reapect to changes of both process level
and Aintensity of disturbances. This is
demonstrated by Fig. 2 vhersa the reciprocal
expectation ia 2 useful information even
during a transient.

of a

Automatic Classification of Dats

Thie function deserves to be dsscribed dn
maore detalle. We consider again a part of a
real datz series to form & deta sample @
having ten elements. Mine of them are £.95,
9.44, 9.30, 9.86, 9.30, 9.58, 9.4%, 10.1%,
9.09 and the tenth datum 240 will be taken

as a vwvariable going through +the whole
interval from O to infinity. We ostimate
the parameter of looation of the samplas 2

for various values of 2yp Yo show 1ta Ben-
sltivity with respect 4o +values of 240
given Zy reeea By This sensitivity is de-—
monstrated by Fig.4. YWe eee that one single

value can never change the location
arameter of the osample more than about
= 0.6%. The loecations By and 2y of the
maximum and minimum of the sensitivity
curve are takem to be the bounds of
"typleal" value=z of the data, while the

values En(zLJ and En{zu} are bounds of the
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Fig. 4. The dependence 2, of the location
parameter of a sample Zqaeeealyg o0

the changing valus of the 31ﬂ(gi?en
fixed 21.....29}

"talerance intervael" of the location
parameter. Data &4 may be now classified &s
typiecl (zLi £ qul, subtypical (g ¢ zL)

and supertypical (z ¢ %). The ratios aof
i}

numbers of data of different classes may be
used as disgnostic indicators of stationa—
rity of the obeserved process. The behaviour
of the bounds of typical data can be
demonstrated in Fig. 5 ueing the same data
68 in Pig. 1.
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Fig, 5. Intervals of typical dats and scale

parameter of the same data serles
as in Fig. 1
The evaluatien of these bounds oan be
eganily performed using relatiuﬂa
2= EQKK gy = B, /K (12}
where
K = ((f3 + 1)//2)5/2 (13)
Proof of (12) and (13) will be published
elsewhere.,



The stabilization of the process at right
hand part of Fig. 5 rvesults in & narrowing
of the interval of typleal data because of
the decreased scale parameter E,

Scale Parameter an g DMMagnostic Indicator

There is alsoc the scole parameter 3 shown
by the full line in Fig. 5.It characteriszes
reliably the spread of the data as well as
the zppearance of individual outliers and
sharp changes of the obeerved procesa as a
whole. It may be therefore also used as an
indieator of undesirable changes of the
obeerved data series for diagnostic
PUrpOSEE.

THE IDEA OF A GHOSTICAL HOWITOR

¥We have shown above that gnostical algo-
rithms oan be used not only ae efficient
robust filters but alsc as sensitive and
reliable diagnostic means. 4 natural ddea
appears ta integrate all such funetions
into a new type of real-time program. Such
a program is called the pgnostical monitor.
It has been already developed and applied
in industry for supervision of processes,
in emergency systems and in a technological
gontrol aystem for gquality control af
production.

OTHER TYPES OF ONOSTICAL HONITORS

The gnostical momitor working according to
this paper has been marked as GH1. Ancother
one, GHZ uses another gnostical formulae
for the filtering procedure based on gno—
stical 3ddentification of ' & linasar re=
gression model., This procedure is aof a
recursive type. Therefore the monitor GEKZ2

can he used especially for real-time
application requiring minimal computing
time end memory. It applies exponential

forgetting of old data. Its robustness with
respect to outliers 13 even better then
with the GH1 because an outlying valusz
disturbs the output only once. Disturbances
are here graduatally forgetted wunlike +the
ease of "window" memory of the monitor GH1,
where each disturbance affects the output
two times.

The third type of gnostical monitors (GH3I)
has been developed for monitoring the
probability of random events. The specifie
requirement of this application was the
unbilasedness of the estimate ensuring the
gonvergency of the nonlinear robust
egtimate to the clasaical linear one 4in a
limit ocmase, This problem has been alsoc
successfully solved by gnostical algorithma

Both monitors OH2 and GH3 perform the same
diagnostiec funetions as the type GH1. Other
gnostical monitors under development are
= a monitor of the process trend
= a monitor of a aorrelation coefficient
of & couple of proceases
= a monitor working as an on-line identi-
fier of parameters of a process model
They all should also integrate robust
filtering with dizgnostie funotions.

CONCLUSION
New types of real-time programs for osuper—
vizion of processes, gnostical monitors

bazed on gnostical theory of uncertain data
integrates robust and efficlent filtering
with sensitive and reliable diagnostic
funections. They are suitable for process
control as wall as for emergency systems.
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