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On robust estimators worth to be applied to real data.

By P. Kovanic and J. Novovifova

Czechoslovak Academy of Sciences

Results of a well-known study comparing classical and robust
location estimators applied to real data have been re-evaluated.
A significant superiority of robust M- and L- estimators and of
an adaptive estimator over the classical ones /sample mean and
sample median/ has been shown by a comparison of performances
based on three criteria: The set of numerical values of esti-
mates has been obtained by application of twelve estimating
methods to 24 data samples originated in classical physical
experiments from 18-th and 19-th century. There have been eleven
statistical estimators and one entirely new-: /s.c. gnostical/
method under tests. The results obtained by the Latter algorithm
have been shown to be the best ones at Least when applied to

data samples under consideration.

1. Introduction

T ——

The performancesof a choice of eleven statistical estimators of
location parameters were compared by S.M., Stigler in /17 when
applied to 24 samples of real data. This comparison included
sample mean, median, trimmed means /10%, 15% and 25%/ and out-
mean, three types of M-estimators /Huber P15, Andrews AMT and
Tukey Biweight/, an old estimator of L-type /Edgeworth/ and an
adaptive estimator /Hogg T1/. The data were taken from classical
physical measurements: determinations of the parallax of the sun
/Short 1763/, measurements of the mean density of the Earth
/Cavendish 1798/ and measurements of the speed of Light /Newcomb
1882, Michelson 1879 and 1882/. Only a part /16/ of the data
samples were independent. The size of the samples was
17-100. The evaluation of the estimates in [7 were based

on the current knowledge of the "true'" values of the physical
quantities under consideretion: "The closer the realized value
of an estimator to the current "true" value of the estimated
quantity, the better the evaluation of the estimator". Such a
point of view resulted in a conclusion of [1/], that "modern esti-
mators are not worth the time necessary to compute them", "the

smallest nonzero trimming percentage included in the study



emerged as the recommended estimator” and "the mean jtself did
rather well"”, These conclusions were claimed in [1J as only
tentative because of small number of data sets employed and of
the narrow fields they were selected from. An extension of the
classical testing data using a collection of modern analytical-
-chemistry data were subjected to a similar comparative study

in f22. The main point of evaluation of the gquality of the esti-
mators in [27 was that the current "true" value of the classical
data is irrelevant to the task of summarizing the measurements
because of the possibility of a bias which may be larger then

the variations among data: "What is of importance is the variance
of the location estimator used since lower variance means that
the population location parameter is more precisely determined”.
The comparison of the variance of the estimators applied to both
classical physical data and modern analytical-chemistry data
resulted in the suggestion that either severely trimmed means

ar modern robust estimators are required for optimal performance.
There are two mﬁin objectives of present paper:

- To employ not only the variance of estimators for evaluation
of their efficiency in application to the classical real
data but two other measures: the range of estimators /charac-
terizing the ability of the estimator to prevent the worse/
and the mean estimating error based on a "collective" esti-

mation of the actual "true" wvalue of the classical data.

- To compare the statistical estimators tested in [1J with
2 new estimating method based on the gnostical theory
[37=-[57 of real data.

2. A new robust estimator of location
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The aim of robust statistics is to develop estimating methods
applicable successfully even in the case of behavior of data
deviating from the assumptions about the model. Insted of a
unique model a set or class of statistical models is used to be
considered as a basis for development of robust methods. But
practical situations may give rise to doubts of a foundamental
nature: is a statistical description of the real process actually
adequate? An example: Short’ s data used in [1) constitute 8
series of sizes 18, 17, 18, 21, 21, 21, 21, 21, altogether 158
data. They form a cluster of 157 data ranged from 6.96 to 10.80.



only one value /namely 5.76/ appeares to be outside this interval.
The mean of all data is 8.61 and the standard deviation 0.67.

For the normal distribution the probability of the appearance of
the value less or equal to 5.76 would be of the order 107>, It

is an outlier. But what we can say on the statistical model of
such an unique real event in terms of distributions? To avoid

the necessity of using ;;LL statistical models /"to let data

speak for themselves"/ an alternative approach has been developed

based on the gnostical theory [37-(%7.

2.1. Main points of the gnostical theory of uncertain data

There are two important problems in modelling the uncertainty
of data:
1/ How the amount of uncertainty of an individual datum is
to be evaluated

2/ How the data of a sample should be composed to suppress
influence of their individual uncertainties on a characte-

ristic of the whole sample.

The former problem is of geometric nature, it is closely connec-
ted with the metric. Uncertainty causes an error., To evaluate
the uncertainty we measure the error. But how the distance be-
tween the true and actual values can be measured? Within the
framework of Riemannian geometry the distance is an integral of
differentials of the path weighted by a positive weight generally
depending on the point coordinates. This weighting function -metric
tensor- is a constant only for simplest /uncurved/ spaces- the
Euclidean and pseudoeuclidean space. In robust statistics diffe=-
rent weights are given to data in dependence on their distance
from the true value., It may be also interpreted as using a
Riemannian metric. There exists a Lot of robust methods differing
by their "influence" functions /by metric of the particular
Riemannian space/ but what is the proper choice? Have we actually
such a free choice? As shown in [3), the metric for measuring
the uncertainty of data can be derived rigorously under a simple
and plausible assumption on an objective nature of data. If so
then such a metric should be prefered before another ones motiva-
ted heuristically and subjectively.

The problem of data composition law deserves also attention.
The additive composition of statistical moments may be felt as
an inheritance from Newtonian mechanics. In gnostical theory the



data composition law is subjected to the requirement of consis-
tency with the current physics. Neither Linear nor quadratic
functions of data but more complicated functions of data are to
be composed in the general case. Only in a special case of very
weak errors of data the gnostical formulae go over (2] to their
statistical equivalents.

It is worth mention that robustness appeares to be an
inherent and natural feature of gnostical estimating algorithms
and not an "extra" obtained only under some additional assump=-

tions, as a robust super-structure over the nonrobust basic theory.
£.2. Gnostical estimator of location

2.2.1. Problem

Given a sample of ordered data Xgr sesp X having the model

(2+1) Xe = X+ 582, (xn€R*,52;ER415EE+}
(o2 Xs.4)

where Xo is @ Location parameter, s is a scale parameter of the

sample and 521 characterizes an uncertainty of the particular

datum X . It is required to estimate both parameters Xo and s.

2.2.2. Algorithm

Step I - exponentialization:

(2-2) = exp((2x; = X, = X}/ (Xp = X4))
{2=4, ... k)
Step € = estimation of the scale parametr:
The estimate S of the scale parametr is obtained as

A "
$=arg min max max{Ip; = F(z;=0)],Ipg ~ Fz;l}

where F{ i
a) is the value of empirical distribution function

J': ’f}-rtjfi H
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hei= (@5 - 45/ (g + g)
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fis=2/(q3; + 9,
Gij= (Z;_;"Z&- )HS

Step 3 - estimation of Location parameter z0 of the
Eample 11' -8y zk H
The wvarijable zj in /2.2/ is viewed as an independent variable to
solve the equation

%JG = arg’ max {d_Pﬁ‘

S5tep 4 - back transformation of the result:

X, = (log (Z)(Xp—= X,) + X, + X )/2

2.2.3. Comments

ALL tested estimators are equivariant with respect to transla-
tion. Admissibility of translation is in a correspondence with
the model (2.1) of additively distributed data having values
Ni+E Ry. Data z, obtained by Step 1 are thus positive and multi-
plicatively disturbed as required by Axiom 1 of the gnostical
theory. The equivariance of location parameter of the additive
data will be thus warranted also for the gnostical estimator.
The quantity h_ij is called the irrelevance in gnostical

theory, it characterizes quantitatively the error resulting from
the substitution of z, instead of Z5. This error is measured in
the unique metric derived from the data model. The gquantity h
is the total irrelevancy of all data with respect to zj. The
quantity ch represents the gnostical estimate of the distribu-
tion function at the point zj. The estimate of the scale para-
meter is thus sought as the quantity minimizing the maximal

absolute difference between the gnostical and empirical distri-
bution functions.

cj

The gnostical estimate of Location parameter is determined
as the location of a maximum of the data density function which
is an estimate of density of probability. This problem has a
solution always but there may be more thgn one solution, say

L L

M Al
zn1' ceer 2o Then such solution zZ, is to be choosen for which
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The other maxima of the density characterize locations of some
individual outliers or even outlying clusters. An example of
this is the second series of Short s measurements where 15 of 17
data form the "main" cluster spread on interval from 7.71 to
3.71 with the maximal density at B.42. The other values 5.76
and 9,87 appeared to be outliers having "their own" maxima of
density located at their measured values, It may be of interest
that this was the unique case with a multimodal density from

>(é&j'—)z N~ (Vk k=1, m)

=Zo dz; 5= Zok

all 24 samples under consideration.

Two remarks are in order here: A/ ALL formulae given above
were derived rigorously from two gnostical axioms, the first
one being the multiplicative equivalent of the data model (2.2)
and the second one representing the gnostical composition Law.

B/ This estimator is reci-

procal-equivariant. Thus applied e.g. to Michelson s and
Newcomb's data it will give the same estimates of location for

velocities as for passage times,.

3. Results and the methods of their evaluation

3.1. Standardization of results

The standardization of results of estimating different physical
quantities ysed in [1/7 will be also accepted here:

Let ité be the value of ith estimator for the jth data
set and ai the current "true" value for the jth data set. Let
n be the number of data sets and m the number of estimators.
Then the quantity

m
sk A
=g, O~ 6y
may be used to introduce a new varijable
=185-04l /s

having interesting features:



1/ The set of Eij represents the results of the whole
test.

2/ The quantity

/the "index of relative error”/ characterizes the set of
results obtained by ith estimator. The mean of RE(i)
over all estimators equalling to the mean of Eij over
all its realizations equals to 1,

3/ Their distribution is close to normal N (1, D.13)
ALL values of Eij given in Table 9 of /1/ are summarized
by the frequency distribution shown in Fig. 1 for

m =11 and n = 24,

3.2. Three criteria for evaluation of estimators.

The transformation {Eké}'_*'{eié} enabled to unify measure-
ments of different physical quantities in such a way as they
would be m series of measurements of a single quantity. A good
method applied to these m series of measurements of the same
quantity should give estimates spread on a small interval. Thus
the first measure of performance of the ith e;timatur should be

SE(i) = ,,_,Z(RE(:J e'-)
4=
which has been also given in Table 1 in /1] but which seems not
to have been used for final conclusions on the performance of
individual estimators.

In discussion [17 P. Huber expressed his view that the
main purpose of robust procedures is "to prevent the worst",
i.e. to prevent a catastrophe due to an occasional bad sample.
We shall apply this criterion not in the way as /1] depending
critically on the knowledge of the “true"” value of the samples
but by means of the range

) —min(e;.)

r(i) -—-m?}({e i ' i

characterizing the distance between the couple of worst cases
and not depending on a "true" value,



But we cannot avoid the discussion on what should be accep-
ted as the "true" value of the unified variable eij because the
mean estimating error must be taken into account. If not then
a trivial estimate Eij = constant would be t?e best one ?Ecause
of its zero variance and zero range. Stigler s and Huber s point
of view in f17 is that the "true" values for the old measurements
are the same as for today and that a good estimator should find
these current true values in the old data inspite of undoubtful
/see discussants Eisenhart, Hoaglin, Pratt in [1]/ bias of data.
Hence, their criterion is

e"{ek_']=> the ith estimator is better than
3 &
the kth one for jth sample
because they accept zero to be the "true" value for jth sample
of standardized data set {311} . But we suggest instead to use
the unit to be the "true" value of this set and to evaluate
the estimators in the following way:

)e y '—’fl < I.ek&""” —=> the ith estimator is better than
*3 the kth one for jth sample

Our reasoning /motivated by the Table of Eisenhart in [17/
is based on the idea of an "expert board" including m members:
Professor Mean, Professor Median, Professor Edgeworth and others.
They all were given the same data sets and asked to give their
judgements on the "true" values of these data. What they judged is
summarized in Table 9 of /17 and in Figure 1 here., Assume that we
did our best to collect the most distinguished, experienced and
qualified experts who are unbiased /fat least in the sense of
"unprejudiced"”/ and objective /working only with data/. Then we
should believe in their collective wisdom. We are glad to see that
this expert board worked "normally" - the distribution of their
estimates is close to normal. And with the mean equalling to 1.
We therefore take the estimate of mean estimating error of ith
estimator equalling to ME(i) = RE(i) = 1.

4. Comparison of estimators

The gnostical estimator described in 2.2 was applied to the same

24 data sets as the 11 estimators in [1J. The values Eij and Ej



for 11 estimatnc& taken from Table 9 in [17 were used to get

corresponding 'E’ii-’@il /1 =1, eeap, 11/ which together
A ;
with values Jﬂﬂ -'-CEI /where i = 12 denotes the gnosti-
&

cal estimator/ enabled to get new {*sz and {sj} shown in

Table 1. Using this Table and the three criteria discussed above

we may obtain a comparison of all 12 estimators for various

choices of data sets. In Table 2 there are results for 16 small
independent sets,all from N°1 to N®16 contained in Table 4,5

and 6 in [17. The rows of our Table 2 are ordered according

to the values of sE{i}. For other choices of data samples /all

20 small samples N®1 - N°20 or all 24 small and Large samples N°71 -
N°24 f where Large samples N°21 - N°24 are unions of small ones/
the gnostical estimator would hold the first place with the

smallest variance and the order of other estimators would change
only slightly.

Following statements seem to be supported by our Table 2:

1/ The three suggested criteria yielded roughly the same
order of estimators.

2/ The gnostical estimator worked with these data well

3/ The higher percentage of:trimming, the better the
result of trimmed means. This is in a ful agreement
with the results of /2/.

4/ The role of outmean as a "planned outlier"” was
confirmed.

5/ Both median and mean worked badly with these data.

il “-f:,f",f fes g o ey

6/ Mean and 10% ‘gave approximately the same quality of
results.

7/ The robust estimators are worth not only the time
necessary to compute them. It is worth to get the stan-
dard error of estimates about 4 or 6 % as in the
gnostical case and in the case of Hogg s estimator
then above 20% as in the case of the mean and 10%
trimmed mean.
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The realized values of the estimates '1j

Mean

-80
1.05
-29
- 73
.92
77
.99
96
1.35
.98
97
« 94
1.02
.92
1.01
1.06
- 94
.87
1.09
«93
-82
« 71
1.15
1.01

for twelve estimates and twenty-four

Median

1.43
1-.10
1.78
« 94
1.76
1.07
1.00
.98
.90
1.10
1.12
1.10
-93
1.00
.95
.82
131
147
.90
1.27
1.33
1.25
1.01

.99

Edgeworth

1.08
.93
1.09
1.16
- 91
1.18
.98
«95
.90
1.03
1.01
1.02
.93
1.03
- 96
1.01
1.03
1.07
«95
1.10
.83
.99
.96

.99

TABLE 1

s T
w =
& s
3 2
46 .96
1.16 .93
1.68 .56
3. .97
2.92 .19
.42 .98
1.00 1.01
.92 1.00
1.82 .90
.90 .98
.89 .99
.81 1.00
1.09 .99
.82 :98
1.03 1.00
1.14 1.01
.75 .90
.56 1.00
1.24 .93
.83 .99
.50 .86
.24 .95
1.32 .95
1.04 1.00

154 Trim
25% Trim

1.01 1.13
95 .96
.88 1.09

1.06 1.14
.60 1.09

1.06 1.11

1.00 .98

1.01 1.00
-89 .87
«99 1.06
.99 1.04

1.03 1.06
.98 .95

1.03 1.02

1.00 .99

1.00 .97
-99 1.13

111 1.17
94 .94

1.08 1.04
95 1.13

1.04 1.19
-95 .97

1.00 .98

Huber P15

«93
64
1.04
-18
.99
1.01
1.01
.90
-7
99
«99
1.01
1.03
1.01
1.01
-99
-85
- 98
.90
- 94
1.03
.95
1.00

Andrews AMT

.98
.98
1.01
1.07
45
1.05
1.01
1.11
.83
1.00
1.00
1.00
1.01
1.09
1.01
1.00
-87
-90
=99
«95
1.15
1.10
-85
1.00

Tukey Biweight

1.02
.99
1.04
1.41
1.04
1.28
1.02
1.04
77
1.00
- 99
1.02
1.00
1.09
1.01
.98
.89
«-95
-93
96
1.17
1.28
« 91
1.00

data sets

Hogg T1

1.06
1.02
1.01
1.15
.92
1.09
- 99
1.01
.88
.98
1.00
1.04
1.09
1.00
1.03
1.00
1.07
.87
1.09
.93
1.24
1. 11
.97
.79

Gnostical

1.06
95
.92

1.04
.99

1.02
.99

1.00
« 94

1.04

1.03

1.04
.98

1.01

1.00

1.00

1.08

1.19
.99

1.02

1.06

1.11
.98
« 99

and their average s,

]

-208

- 397
094
.320
.078
456
«.238
222
8.355
4.576
5.373
187.050
118.950
120.369
85.118
91.898
48.350
.039
063
.037
.223
.238
5.917
116.984



TABLE 2

Estimating errors for twelve estimators applied to sixteen inde-

Mean square error

ESTIMATOR

i Name

12 Gnostical
11 Hogg T1

7 25% Trim

3 Edgeworth

é 15% Trim
10 Tukey Biweight
g Andrews AMT
B Huber P15

5 10% Trim

1 Mean

2 Median

4 CQutmean

to the measure of spread SE(i).

SE¢i)Y

0.038
0.061
0.070
0.079
0.104
0.131
0.147
0.210
0.211
0.212
0.278
0.610

ERRORS

Mean error

ME (i)

-0.001
-0.017
-0.02%9
-0.011
0.032
-0.043
0.025
0.083
0.097
0.078
-0.124%
-0.086

pendent data sets.Estimators are ordered according

Range

I'I'ng E_]]

- mjn eij

0.139
0.261
0.261
0.273
0.447
0.631
0.660
0.856
0.821
1.055
D.962
2.603
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