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Robust Identification of Reliability Models

Summary

A new technique for data-based modelling of reliability has been developed including sig-
nificant innovations. No a priori statistical model of random data components is assumed;
the distribution function estimate results from the analysis together with estimates of reli-
ability model parameters. All results are robust not only with respect to a priori statistical
model (since there is none) but also to outliers and peripheral data clusters. Both un-
censored and censored data are taken in account for estimation. The method has been
successfully implemented to testing reliability of truck components but its applicability
to another survival problems can be expected.

KEY WORDS: Robust modelling Distribution free reliability model Nonsta-
tistical uncertainty model Gnostical method

Introduction

Problems of quality closely connected with reliability and surviving have recently become
the object of top interest in many fields of science, health care and technology. Well-
known statistical software packages and systems (e.g. BMDP, S plus and others) keep
step with the development of new methodologies. As a rule, they incorporate new results
in data analysis with only a small delay. However, the contemporary survival analysis is
prevailingly devoted to the biostatistics, reflecting its needs and specific features (cf. the
series of procedures starting from the Cox’s regression model, development in the field
of intensity-based models, ete.). The progress is slower when it comes to new methods
penetrating into the field of reliability testing. Moreover, the rapidly expanding applica-
tion fields enable the practical verification of existing methods and the evaluation of both
their merits and drawbacks.

We wish to model (and to estimate) the distribution of time to failure (survival or life-
time) for some particular device. The analysis is based on statistical data, 1. e. on results
of repeated experiments. The aim of such a modelling is the evaluation and prediction
of the reliability of devices in dependence on various conditions or variables (covariates),
e.g. on the load, production technology ete. The task involves thus the estimation of
the model for this dependence. From the statistical point of view, the task is formulated
as a problem of nonlinear regression analysis. We suppose that our task possess some
standard features of nonlinear regression, namely:

1. It has the structure of a positively valued regression function (z,0), (z > 0,0 € Ray)
of a covariate = (load) and of an unknown (vector) parameter # that has to be
estimated.

2. The k—th observed value of the time to failure for the load Z; is supposed to have the
multiplicative model T} = t(Z, #)- px, where the pi (the residual) states for the k—th
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realization of the (scalar, positive) random variable modelling the data uncertainty.
The model may also be considered in its logarithmized form, i.e. Y, = y(Z,0) +&¢.

3. The analyst has also to consider the presence of censored data (characterized by an
indicator /). It means that some experiment has been interrupted before the failure
occurs. The k — th result then yields the information ‘time to failure is greater than
T}y' (I = 0) instead of ‘time to failure equals T." (I = 1.). Even such a limited
information is valuable and the method has to incorporate it adequately into the
computing procedure. Technically, we consider the scheme of random censoring
from the right side.

Simultaneously, our further assumptions try to reflect some nonstandard, but realistic
conditions:

4. The distribution law of the variable p is not specified, only the existence of its
continuous density function is assumed. We cannot expect any ‘popular’ form of
distribution function (d.f.), neither symmetry nor similar simplifying property.

(ol 1]

. The unknown distribution function is not necessarily defined on an infinite domain.
Unknown bounds of their support may also be object of the estimation.
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. There may be restrictions on values of some or all estimated parameters dictated by
the nature of the process under consideration.
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. The reliability experiments are often time-consuming and expensive. That is why the
number of data may be rather small. No asymptotical results of statistical theory
can thus be utilized for our inference.

8. Robustness with respect to a priori statistical assumptions is attained by not using
such assumptions at all. However, results of reliability experiments are as a rule

widely spread. It is therefore necessary to apply procedures robust also with respect
to outliers.

There exists large and developed methodology for the nonlinear regression analysis (as
an example, consider [2], or the works concerning the robust regression, e.g. [7]). The
geometric interpretation is presented, the possibilities of approximation are discussed.
Nevertheless, essentially the methods have a few sources: maximal likelihood, least squares
approach, or the minimalization of another divergence of results from regression curve.

From the claims and assumptions summarized above it follows immediately that the
commonly used and standard statistical approaches are not convenient for solution of the
formulated task. The maximum likelihood method (or the method of moments, as well
as the Bayesian approach) are too closely connected with assumptions about the type (or
a family) of fixed d.f.s of residuals (i.e. of the variable p). However, a theoretical basis

for the choice of a particular distribution function is not always available for reliability
studies.

Most of the standard procedures for regression analysis are based on the least squares
method. They result in atlases of families of regression functions and ensure the computing
ability of procedures and optimality of iterations. Unfortunately, a successful utilization of



these procedures needs at least the local symmetry of distribution of residuals. Moreover,
these methods are nonrobust to outlying data.

Some contemporary methods of robust statistical analysis can be now found in modern
software systems. However, even their usage is limited because the necessity to accept
some a priori assumptions is not removed completely and validity of results is conditioned
by the validity of these assumptions. Such methods are often based on the assumption of
a ‘main’ distribution having a given form that is contaminated by another one. Such a
model is ordinarly not applicable to reliability problems.

Main ideas of the new approach

To satisfy mentioned requirements, it was necessary to develop a new method. As a
nonstatistical alternative, the gnostical estimates of distribution functions (cf. [5] and [1])
have been applied. These d.f. are parametrized only by data (residuals R are data in our
case) and by a positive scale parameter s that is not necessarly constant. In the considered
case, it was supposed s = Sy * exp(S; * R) with some unknown constants Sy and S;. The
real domain of the d.f. is supposed to have a general form D := (R, Ry) with some
unknown — finite or infinite - bounds Ry and Ry;. The parameter vector to be estimated
was therefore © = (5o, 5y, By, Ry A, B,C, D, E, ), where A, .., E were parameters of the
regression curve. The process included following steps:

1. Setting or calculating initial conditions as first - rough - approximation to 6.
2. Evaluation of model residuals using uncensored data.

3. Calculating of point estimates of the empirical d.f. (PEDF) of residuals of these
data.

4. Correcting the PEDF with respect to censored data.
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Evaluation of next approximation to @ using an optimization procedure and the
condition of improving fit of the PEDF by the gnostical d.f. This step thus modifies
both surviving model and the d.f. of residuals.

6. Repetition from 2} till stabilization of results.

7. Substitution of resulting © into procedures for estimation of quantiles and of prob-
ability of life-times.

A natural question may arise why such a procedure should converge to a reasonable
solution. The explanation is connected with a unique feature of the gnostical d.f. of
global type: This d.f. is robust with respect to outlying data and even to peripheral data
subclusters. The better 6, the better fit, the lower value of the criterion function that
evaluates fitting errors with dominating weights of ‘central’ multiplicative residuals close
to unit.

Let us consider these points in more detail.



Steps of the solution

Initial estimation of parameters

As a first approximation, the experience from previous runs of programs can be used. If
there is no such experience, then the standard solution of the nonlinear regression analysis
problem is of help based on the minimization of the sum of least squares of residuals in
the additive form of the model. At first, all data are considered as uncensored and the
least squares estimate is obtained by iterations necessary because of the nonlinear form of
regression function y. To take into account the censored data, the EM algorithm can be
applied. This iterative procedure alters two steps. The E step reconstructs the censored

datum (i.e. for I; = 0) in the sense that Yi=E {}’ Y 2 Y &, é}, where the value ©
has been estimated in preceeding M step. The following M step computes new estimate

of © from just reconstructed data, again by least squares method. The repetion of E and
M steps leads to convergence (fixed point) of the iteration as shown rather generally in
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Point estimate of empirical d.f. of residuals

The empirical d.f. is a primary characteristic of a data sample having the form of an
irregular staircase. For our case of an N—couple R of ordered residuals Rj;; (where
Ry < Rjiyyp, 1 = 1,.., N — 1) it corresponds to the step function Fs having a jump of
height of 1/N at each Ry;, j =1,..,N. This d.f. can be used in Kolmogorov-Smirnov’s
goodness—of-fit test: the hypothesis that the population from which the data R were
sampled has a continuous d.f. F; is rejected on the significance level o if

Kks = HI?K{IFr{R{;]} - lI:_"Tl].,1JF:{J'?[,-]]|I - %H > Ky ([B=1,.,N) (1)

holds, where k,, is the critical value of the Kolmogorov-Smirnov statistics for the signifi-
cance a. In principle, it would be possible to estimate some unknown parameters ¢ using
the relation

¢ =argmin {Kgs(9)} (2)
to get the best fit of data. However, this is a non-smooth problem involving difficulties

especially when ¢ is not a scalar. This is why a simple point estimate of empirical d.f.
(PEDF) was choosen having the form

Fo(Ryy) := i‘;‘s, (i=1,.,N) (3)

for uncensored data. To support this choice one should notice that |Fi(Ry) — Fo( Ryl
differs from the Kys determined by (1) only by the constant 5. (There is no place
here to discuss other motivations for this choice.) Using a procedure similar to the EM
algorithm, censored data were then used to get the modification F;, representing the whole
set R of residuals.



Gnostical estimates

The gnostical theory of uncertain data (Kovanic 1986) is an alternative to statistics de-
veloped for practical applications which do not have a statistical model or for which such
a model would be an inadequate instrument. Data may be strongly disturbed, observed
objects far from steady-state and there may be insufficient data to develop a statistical
model. Gnostical programs have an inherent robustness with respect to outlying data.
The range of possible applications includes "heavy-duty” technological systems as well as
economical and other analyses.

Consider the i-th real-valued observation A; (an ‘additive’ datum) together with its
‘multiplicative’ equivalent

Z; = exp(A) (4)

having a strictly positive value. For a positive real scale parameter s, a real variable z > 0
and for a sample of N data, define the auxiliary quantities

gz, 8) = (Zi/2)"* (5)
for use in the calculation of N ‘fidelities’
f:"[zaﬂ}=2f{1f‘i’i[3=-51+¢i{-‘=33]} {ﬁ]

and ‘irrelevancies’

hi(z,8) = (1/qi(z,5) — qi(2,8))/(1/qi(z, s) + qi(z, 5))- (7)

Within the frame-work of the gnostical theory, irrelevance plays the role of the distance
between z and Z;, the fidelity being the weight of the datum Z;.
Introduce the arithmetical mean

N
f(z.8) =) filz.8)/N (8)
=1

of the fidelities and define the symbol h(z, s) for the irrelevances analogously. Let w(z, s)
be the weighting function defined by the relation

w(z,8) = /(F(z,8))% + (Rlz,5)). (9)
The distribution function generated by the individual datum Z; is then
Li(,8) = (1+ hi(z,))/2 (10)
having the density
(z,9) = 2D = 2 6)() (i)

There are two kinds of distribution functions (d.f.) supported by the gnostical theory:
‘local’ and ‘global’. The local d.f. L(z,s) is simply the arithmetical mean of the d.f.’s
(10) of individual data:

N
L(z,s) =) Lizs)/N. (12)
=1
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The global d.f. GG(z,s) is obtained using the weighting function w (9),

N
Glz.8) =Y Li(z,8)/w(z,s). (13)

=1

Under the condition of a weak influence of uncertainty (small errors of data, a small value
of the scale parameter s), the two functions differ only slightly. However, their behaviour
is quite different under gross errors.

In the sense of being a monotonous function for an arbitrary data sample, the local
d.f. always exists. In a special case of admissibility of the statistical view on data, the
d.f. L(z,s) (12) can be interpreted as a nonparametric estimate of the probability d.f.
and the function li(z,s) (11) as a proper kernel of Parzen's type (Parzen 1962). In this
case, the gnostical theory is used only as a background motivating the choice of the special
kernel (11). For this purpose, this approach generates remarkably nice and smooth density
curves even in the case of small data samples. If it is of interest, the asymptotic features
of the estimate can then be studied by established statistical methods. But in the more
general case of data not having a statistical model, formula (11) still has significance as a
continuous model of the data sample’s distribution and as an estimate of the expectation
of an another datum of the same origin. The steep descent of the gnostical kernel (11) has
an important consequence: the individual subclusters of data influence each other only
weakly. This enables the characterization of local details of the data sample and opens
an efficient method of cluster analysis,

Unlike the local d.i., the global function G(z,s) has a theoretical support only for
homogeneous data samples, i.e. for data with a unimodal density function. When applied
to the multimodal case, this function may lose the fundamental feature of a d.f., its
monotony. (For an example, see [1]). This allows the hypothesis on the homogeneity of the
data sample to be tested. The global d.f. has no known statistical analogy. Its practical
importance is connected with its remarkable robustness with respect both to outlying
data and outlying subclusters of data: in estimation of probability for extremal quantiles,
the ‘central’, *main’ part of the data sample plays the dominating role. The global d.f.
thus characterizes the overall distribution law of the data. Practical consequences of this
mclude the d.f.’s good performance in application to small samples and its applicability
to samples generated by different distribution laws (documented in [1]).

The local and global d.f.s differ substantially in their dependence on the scale param-
eter (s). Let F, be the point estimate PEDF of the d.f. of the data sample. The local
d.f. L(z,s) of the same sample can be made to approach F, as close as required choosing
a sufficiently small positive value for the scale parameter. By contrast, the maximum
distance of the global d.f. G(z,s) has a minimum for a ‘best’ 5, which can be taken as a
robust estimate of the scale parameter. In this case, the d.f. (G(z§) is as close as possible
to the empirical distribution function Fj, it represents its best fit.

Both gnostical estimate of d.f.’s are applied to survival modelling: Using the global d.f.
(i, the best estimate of the parameter © is determined. The resulting function G(z,s) is
then tested for monotonicity. Positive result - end of procedure. Negative result - further
processing using the local d.f. L(z, s) to analyse inhomogeneities (subclusters) of the data
causing multimodality of distribution of residuals.
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Finiteness of the data support

Many ‘popular’ theoretical distribution functions are defined over an infinite interval.
Within the frame-work of the gnostical theory, the variable z can also acquire an arbitrary
value from the open interval (0, oo). In contrast to this, real data are always finite.
Moreover, the bounds of the data support may sometimes represent the most valuable
information on observed process. For example, this is the case of reliability where the
extremely interesting point is the largest value of the life-time (or of a covariate) beneath
that the probability of defect is still zero. Naturally, such a point is not known a prior
and its estimate is a desirable result of data treatment.

To include the finiteness of the interval D = (2., Zi) into the estimating process and
to enable the estimation of the bounds, one introduces the transformation v := D —
R4 (where the H; is the interval of strictly positive reals) between data and gnostical
formulae. For data { € D and z € R, the applied transformation had the form

_ -4
Sl ey /7 (14)

Optimization procedure

To evaluate the quality of fitting the PEDF of model residuals by the gnostical d.f. of
global type, the quadratic penalty function ) was introduced:

N
Q =) _(F(Rw) — G(Rg, s(Ri)))*. (15)

Each residual is a function of the unknown parameters; the penalty @ is therefore depen-
dent on the vector ©. Values of parameters as well as values of their functions may be in
a general case subjected to some given constraints having the form of both equations and
inequalities, The task can be thus formulated as a nonlinear constrained minimization
problem

© = argmin(Q) (16)

solution of which ensures finding such a surviving model t, such a data transformation 7
and such a global distribution function (¢ that the mean—square fitting error reaches its
minimum whereby the constraints are respected. Several optimization methods have been
tested to solve solve this problem using the user—friendly optimization program OPTIA
[4]. As a most suitable, the fast and reliable Schittkowski's algorithm [6] was applied
vielding a local minimum. Repeating runs with different initial conditions were used to
verify the global optimality.

Example

We give an example using real data (shown in Tab.1) taken from life-time tests of truck
components.



Itemn | Amplitude | Survival | Censoring

1 30 64300 1
30 29130 1

3 30 105220 1
1 30 108672 1
5 25 209675 1
i 20 203255 1
T 20 324887 1
8 20 309062 1
9 20 353372 1
10 15 625956 1
11 15 1041291 1
12 15 2000000 0
13 15 5000000 0

Table 1. Data

Each component was subjected to periodical load with a chosen amplitude z. The model
of the life-time was t(2,0) = B-(z+C)~*+ D where t is the survival (number of cycles till
the breakdown of the component or till the end of the experiment — in the case of censored
datum)., Parameters A, B as well as the values of z + C' are supposed to be positive. The
first stage estimation of parameters A, B, C (supposing D = 0) has been done in log,,
form of the model, which is near to linear, namely y(z,0) = By, — A -log,,(z + C), where
By = log,, B. After some EM iterations the values A= 2.146, By, = 7.622, C = —10.575
have been obtained. Then the value of parameter D has been found maximizing product
of “fidelities” of the data fit. It yielded D = 1881. The estimate of regression curve (after
this preliminar estimation) is displayed in Figure 1.

The multiplicative residuals from this approximation of this regression curve have
been then computed to iterate the parameters Sg, 5;, A, Ay by means of the optimiza-
tion procedure minimizing the distance between the gnostical and empirical distribution
functions of the residuals. Resulting estimates of parameters were

Sp= 1415, § = —0.0155, Ry =0.194, Ry = 0.708,

A=1815, B, =17.201, ( =-10.493, D =87T7.

The resulting model function t(z*;i, B,C, f.i'} now describes the dependence of median
of multiplicative residuals’ distribution on z. The final fit of the PEDF by the gnostical
distribution function of multiplicative residuals is characterized by Table 2.



Ordered
residuals | GDF PEDF | Abs. difference | Item
1 0.01034 | 0.03846 0.02812 2
2 D.07132 | 0.11538 0.04407 10
3 0.17218 | 0.19231 0.02013 1
4 0.31645 | 0.26923 0.04722 11
3 0.38294 | 0.34615 0.03679 (i}
[§] 0.43582 | 0.42308 0.01274 8
T 0.48812 | 0.50000 0.01188 T
8 0.57743 | 0.57692 0.00051 0
9 0.68513 | 0.65385 0.03128 3
10 0.71916 | 0.73077 0.01161 4
11 0.81513 | 0.80769 0.00744 5
12 0.87233 | 0.88462 0.01229 12
13 0.99693 | 0.95857 0.03836 13

Table 2. Comparison of global gnostical distribution function (GDF) with the point
emperical distribution function (PEDF).

Figure 2 shows the curve of median and selected quantiles of (global) gnostical distri-
bution of residuals. The curves denoted by Ky and Ry correspond to bounds of the data
support, i.e. to the bounds of region where Ry < R < Ry holds. Figures 3 and 4 display
graphically the form of gnostical density and distribution function (the global and the
local versions) of the multiplicative residuals, under the load amplitude z = 25. It is seen
how the local density function is able to reveal the outlying results and how the global
one suppresses their influence.

Conclusions

The method presented based on the new nonstatistical (gnostical) theoretical background
has been proved to be useful in the identification of reliability models under hard practical
conditions such as small sets of strongly dispersed data. Only the structure of the for-
mula characterizing the dependence of the life-time on the covariates has to be supposed.
The parameters of this model together with a nonparametric estimate of the distribution
function of residnals and even the bounds of data support result from the procedure.
The method exhibited its remarkable robustness and efficiency in practical applications
to reliability of vehicles.
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Fig. 1. First estimates of regression curve: dashed line — initial loglinear approxima-
tion, full line — least squares approximation, o — censored data, + — recon-
structed censored data.

Fig. 2. Resulting curve of medians, of lower and upper 5 %, 10 %, 20 % quantiles and
boundary Ry and Hpr curves.

Fig. 3. Global distribution function and density, + — noncensored residuals, o - cen-
sored residuals, x — values of PEDF.

Fig. 4. Local distribution function and density, + — noncensored residuals, o — cen-
sored residuals, x — values of PEDF.
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