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The gnostical theory of uncertain data is an alternative to statistics that is applicable to the
treatment of small samples of strongly disturbed data. Gnostical procedures are therefore efficient
toals which are suitahle for the analysis of economic data. The principal axioms of gnostics are briefly
exposed and simple examples nsing financial data from three industries are presenied to demonsirate

the efficiency of this new methodalogy.

Do Econometricians Need an Alternative
to Statistics?

Econometrics relies on statistics to collect data, but the use of mathematical statistics as the technol-
ogy of choice for extracting information from these data may be a questionable procedure. Reference to

*statistical methods” in this paper addresses only this latter function.

The historical achievements of statistics, especially in physics, warrant consideration of the method-
ology in the analysis of economic phenomena. Theories of statistical thermodynamics, chain fission
reaction, and neutron slow-down and diffusion yield precise engineering caleulations for nuclear reactors.
This constitutes one of the unchallenged successes of the statistical approach. However, is this sufficient
reason to expect that the application of the same principles will yield equally successful results when
applied to economics? Because economic processes are substantially different from from physical ones, it
is not likely. Benjamin Graham, the father of “fundamental” investment analysis stated [1]:

... The art of investment has one characteristic that is not generally appreciated. A cred-
itable, if unspecular, result can be achieved by the lay investor with a minimum of effort
and capability; but to improve this easily attainable standard requires much application and
more than a trace of wisdom. If you merely try to bring just a little (emphasis added) extra
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knowledge and cleverness to bear upon your investment program, instead of realizing a little
better than normal results, you may well find that you have done worse.

Since anyone — by just buying and holding a representative list - can equal the performance
of the market averages, it would seem a comparatively simple matter to “beat the averages”;
but as a matter of fact the proportion of smart people who try this and fail is surprisingly
large. Even the majority of investment funds, with all their experienced personnel, have not
performed so well over the years as has the general market ... there is a strong evidence that
their calculated forecasts have been somewhat less reliable than the simple tossing of a coin.

Although there is no reference to specific forecasting methods, it can be inferred that the word
“calculated” refers to the mathematical methodology of statistics that has almost exclusively dominated

econometrics for decades. Among others, pertinent critiques of the statistical approach to economic
problems include Los [2]:

...It is clear to most people that economic forecasting still amounts to little more than
educated guessing, despite the aura of precision created by computerized models of economy.

...Scientific economic analysis, in the true sense of these words, still does not exist.

...Since objective modeling has not been practiced, economics as a science has not pro-
gressed.

...Recently, simple cost—benefit analysis has ereated strong financial incentives to obtain
better and more accurate economic forecasts in the private sector. But, paradoxically, the
main obstacle to this progress in economics is the conventional psendo—scientific methodology
of econometrics adopted in the 1940's and 1950°%. The conclusion is clear: first the problem
of objective identification from noisy data has to be solved.

Professor R. E. Kalman, who made a substantial contribution to cybernetics with his famous filters,

expresses his view of the issue as follows [3]:

...Statistics is not science but a kind of prescience, a pseudoscience, a “gedankenscience” !
Perhaps it's best called an “ersatzscience”.*

...Uncertainty in nature cannot be modeled (and therefore must not be modeled) by con-
ventional, Kolmogorov? probability schemes, because no such scheme may be identified from
real data.

...The trouble is that probabilities are not identifiable.

We would not reject statistics becanse it is a “gedankenscience”™. The power of mathematics results
from that fact that it is a “gedankenscience,” due to its independence from the facts of real life. However,

!Der Gedanke... the thought (in German). Appears frequently in natural sciences in the word der Gedankenerperiment
- a thought experiment not really performed but oheying an a priori given system of laws. In use without translation
in many languages. The most popular application of such an approach was tk A.Einstein's cosmic elevator used in the
General Theory of Relativity.

*German word der Ersats means a not quite perfect substitote, an artificial Christmas tree or & “hamburger” made from
soy beans.

*A.N. Kolmogorov - Russian mathematician, who developed in the 1930% the most commonly accepted version of
probability theory.



the practical applicability of mathematical or statistical models goes outside the borders of a “gedanken-
science”. Many processes studied in physics are modelable by “gedanken—experiments”™ because useful
models of their behavior are simple enough to be formulated by humans. We can accurately deseribe
the orbit of the earth relative to the sun using only Newton's gravitational principle and the masses and
distances of the earth, sun, and moon. For most purposes, we can ignore the effects of other planets,
other stars, and air disturbances due to (say) the flight of butterflies. However, in economics, it is not
simple to distinguish the perturbations of the data resulting from influences that (if we knew what they
were) could be ignored, and the essential ones. It is impossible to discriminate from the flapping wings
of a butterfly and the mass of the sun. Moreover, we have not yet identified anything that remotely
corresponds to Newton's laws, Such principles, invariant for all time, may not even exist. Nothing is
stationary and replicable in economics. One of the major issues is the independence of events; the col-
lision of two gas particles at a specific point can be considered completely independent of a collision of
particles at a distant point. Economic events not only are influenced by economic transactions but also

by seemingly unrelated activities across the globe which may even cause a strong synchronous reaction
throughout the world.

The inpropriety of statistical applications to many economic propositions is reflected by the man-
ner in which many problems are stated. They begin with the assumption: Let zy,.., x5 be the N —
tuple of i.i.d. random variables. The idea of independence, as noted above, is probably unsuitable for
economic events. Tdentical distribution refers to stationarity and repeatability which is also a doubiful
characteristic of economic data. However, the most discordant is the notion of randomness. This is
pure agnosticism, a complete abdication of the notion that the human mind has the ability to discern,
confirm, and establish the cause of events.

Mathematical statistics have evolved as new approaches to problem solving have been developed:
maore robust statistical methods, Bayesian and recursive procedures, etc. These and similar innovations
provide a little extra knowledge and sometimes a good bit of cleverness, but taken as a whole they do not
go a very long way in solving the dilemma noted by Graham. There may exist a more radical solution:
to leave the statistical environment completely, and to try something entirely new.

The Gnostical Paradigm

Introduction

The gnostical theory of uncertain data, exposed in more detail in [4], is proposed as an alternative to
statistics. The theory is general, and was developed without relation to a particular field of application.
It is a mathematical theory which originated at the intersection of several abstract scientific disciplines
and, therefore, it is not very easily explainable (particularly with a limited reference to mathematics).
(We recall A. Einstein’s requirement that, an explanation should be as simple as possible but not simpler).
However, the good results obtained with the application of gnostics to economic problems motivates this
attempt to call the attention of economists to this useful new tool.



Commutativity: e = ¢; = ¢; * ¢; holds for all e's. (The impacts of individual factors do not depend of
their order.)

Neutral element: The “observed” value Z; = 1 (100%) is also a possible element of the structure (e.g.
as an accurate observation of the true value Zy which equals 1).

Invertibility: We also accept 1/e as a possible contaminating factor for each e. (The information
channel can “amplify” as well as “attenuate”, we accept the existence not only of profit but also of
losses.).

Using mathematical language we can summarize these natural assumptions as the first gnostical axiom:
The structure of contaminated data 15 isomorphic with the multiplicative group.

Effect of Individual Uncertainty

There are two components, e.g. Zy and ¢; in (1), which together determine the value of the “observed”
datum. A report from the agency C to its client B on Mr. A's balance should also consist of two
components, the estimate of the balance and an estimate of the error of the report. The theoretical
data model must then also have two components. To get a second equation dual to (1) we apply the
assumption of invertibility: There exists Z] for each Z; in (1) such that

Z; = Zofei (2)

holds. We have created the second component by multiplying by the inverse of the contamination factor.
Now an important coordinate transformation is applied to demonstrate one of the most striking results
of gnostical theory. Introducing the notation

e; = exp (1) (3)
and using standard hyperbolic functions cosh (2) and sinh (), we define

z; = &g * cosh (), (4)
v = Zgp + sinh ({1;). (5)

We can now find the relationship between the al.t.empif quantify A's bank balance by C and D:

z; = z; v cosh () + yi +sinh (%), (6)
¥; = z; +sinh () + i » cosh (), (7)

where
H} — ﬂ,‘ - fl. {E}

It can be easily verified that

Y < e O e ©)
The startling result is that in spite of the errors induced in the quantification processes of agencies C
and D, a simple two coordinate function provides not only the same result, but also an outcome which



In gnostics, data error bears no relationship to a random process. Each change in the value of a data
value has its cause, and it could be rationally explained, if only there were sufficient information. Dafa
uncertainty is thus a lack of information and it is therefore highly subjective. Mr. A’s bank balance is
exact from his perspective, and he can explain all its changes. From the point of view of Mr. B, who has
no information concerning Mr. A, the status of the account is uncertain. Since Mr. B has no knowledge
of the true value of Mr. A's bank balance, any attempt to estimate it will be inaccurate (contaminated).
The amount of contamination can be decreased by hiring an agency, C, which has collected information
about Mr. A's professional and commercial activities,

Two terms are introduced here which have a special meaning in gnostical theory. Quantification is the
(contaminating, error producing) process of measuring a real quantity. Estimation is the reverse process
over which the true value of the quantity is extracted from the measured (contaminated) data.

One objective of gnostics is to provide a realistic theory applicable to small data samples. It therefore
treats finite samples not by using rules valid for samples of infinite size but by considering small samples
as a composition of individual contaminated data with their highly developed theory.

Structure of Uncertain Economic Data

It will be shown that, under plausible conditions, each individual contamination is influenced by important
regularities. This is the subject of the gnostical theory of individual wncertain data. Returning to the
bank account of Mr, A, whose balance is denoted by Zy, Mr. B obtains from agency C an “information
channel” producing an (inexact) image, Z, of the state of A's account. (Z is thus the “observed” value
of the true value Zy). By treating asseis and liabilities separately, both Z; and Z are always strictly
positive, The errar introduced through the information channel is evaluated as a proportional change to
Zq (therefore multiplicative by application of the positive quantity e.) This is a natural approach since it
parallel’s the periodic changes to the value of assets which are exposed to interest rates, a profit margin,
inflation, taxes, etc. Thus for an i—th contaminated “observation™:

Zi=Zp*e. (1)

To further increase the accuracy of his estimate, Mr. B could also have approached another agency, D,
which would quantify the account Zy as Z;. Moreover, there can be more than one source of error affecting
each agency’s observations, each one having a multiplicative effect: e.g. &; = ;; + e43. Therefore a whole
set of N factors, ¢;, could exist. We can thus consider not only one, but a set of possible “observed” data
— each datum representing a possible value for the asset. Each of the Z;'s is an element of this set. So
also are all the contaminating factors e;, because they can be interpreted as “observed” values Z; of the
asset Zp which itself equals 1 (100%). We accept the operation of arithmetical multiplication as defined
over this set. A portion of these multiplicative changes can be explained (and are certain), the rest are
unexplained. For this simple structure other mathematical properties can be assumed:

Closedness: Each “observed” value of the asset is the asset, each product of contaminating factors e is
the contaminating factor.

Associativity: (e; =e;) e = €, #(g; » £;) holds for all e's.



equals the unknown true value Zy which is seen to be invariant to the quantification procedure. This is
true because both agencies attempted to quantify the same unknown Zg. It might appear that equation
(9) is not very useful, because e.g. agency C knows only the sum

Ti+yi=Zgeexp(fl) = 2; (10)

but is not able to decompose it into Zy and £;; it will be shown how to resolve this problem approximately
by using a data sample. There is an unexpected theoretical significance in (4), (5),(6) and (9): The
quantification process can be modelled using the rules of Minkowskian geometry. Formula (9) evaluates
the norm of the vectors (z;, ) and (z;, y;) and states that this value is invariant, independent of the data
contamination. Under Minkowskian geometry then, formulae (6) and (7) can be interpreted geometrically
as an orthogonal rotation of the vector (z;,1). These types of rotation have their own famous name,
Lorentz transformations. This is the same transformation law that & used in relativistic mechanics to
characterize the (nonlinear) dependence of observations on the velocity of the coordinate system.

From this, we conclude that there exists a close geometrical similarity between two apparently very
different processes: the contamination of economic data, and the laws of movement of relativistic particles.
As shown below, this similarity is of an even more profound nature.

The Estimation Process and the Ideal Gnostical Cycle

In the following development, it is important to accept the notion of an arbitrary “observed” output, Z,,
of the quantification process represented by the point (Z; » cosh(€,). Zp +sinh(£2;)) on the plane (z,y)
“moving” (being driven by the changing contamination {2,.) Its starting point is the unknown errorless
point (Zy,0) and the endpoint is the point (z;,1%) which in our example corresponds to the report of
agency C. The form of the path is identified as an arc of the Minkowskian circle having the radius Z.
This arc will be called the quantification path.

The quantification process thus has its path and the invariant Zg is the true value. We can imagine
that we are playing a game against Nature: we want to get her secret (Zp), but she is not willing to
give it up free of charge and is penalizing us by contaminating the data, rotating it along a Minkowskian
circle. The guantification is the move of Nature; we are given its result, e.g. the value Z;, theoretically
represented by the point (z;,1). We now have to choose our move against Nature to minimize the
penalty. It is therefore necessary to find the best possible eslimating path by which we can return to the
starting point Zy. It is natural, hence, to choose that path which will cause this value to become the
invariant quantity of the transformation. Any arbitrary point (z.,y.) on the estimating path satisfies

the relation
Vit =2 (11)

We thus choose the equation of an “ordinary” (Euclidian) circle as the model of the estimating process.

The goal is to reach the true value Zy by the end of the estimation process, closing the quantification
loop through estimation. This is possible - at least theoretically - as shown in Figure 1. Nature “moves”
the point of interest from (Z;,0) to (z;, i) along the path of a Minkowskian circle: this is the quantifi-
cation process. Our response, estimation, consists of two parts: starting with the endpoint (z;, ) which
represents the observation to ils mirror image (2;, —y) along the Euclidian circle path, and then from
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Figure 1: The Ideal Gnostical Cydle.

there to (Zp,0), the true value. This transformation can never be achieved because we never know pre-
cisely how to decompose the “observed™ datum Z into its components z and y. This is not the only reason
why this cycle is “ideal”: it is also the theoretical model of the best possible manner by which to process
the data. As proved by gnostical theory, the quantifying “move of Nature,” using the Minkowskian path
mazimizes the contamination measured both by the entropy increase and the information loss. Using the
Euclidian estimating path, we minimize the overall entropy increase and information loss of the whole
gnostical cycle. Both these fundamental measures of uncertainty are functions of the Minkowskian angle
2« §); which corresponds in Figure 1 to the rotation of the radius-vector necessary to trace the movement
between the two related points (z;, —y) and (z;, ). Its Euclidian equivalent 2 # w; can be determined

using the obvious relation
tanh (Q1) = tan (w) (12)

holding for all points of the Minkowskian path. The idea of the entropy of an individual datum is intro-
duced in gnostical theory using a Gedankenezperiment and thermodynamic notions. Applying consistent
mathematical operations to entropy, we then derive not only the information but also the distribution
function of the individual datum. As a result of fundamental importance, the entropy <= information
conversion law is derived nsing these principles.

Principal Results: Gnostical Theory of Individual Uncertainty

The relationships which permit the definition of uncertainty in terms of the data will now be defined.
In order to apply the theory to the data, we introduce the scale paraméter, a positive number, s, which
is related to the choice of measurement units for the rotation angles. The choice of value for the scale
parameter is closely connected to the dispersion of the data in the sample. The following relations are
discussed in more detail in [4].

Define an auxilliary quantity
9i(Zo, 8) = (Z:/Z0)** (13)



for use in the calculation of the fidelity
cos (2 #wi) = fi(Z0.5) = 2/(1/4i( 20, 5) + (20, 8)) (14)
and the srrelevance
sin (2 + w;) = hi(Zo, 8) = (1/4i(Z0, 8) — 4:( 2o, 5))/(1/9:( 20, 5) + 9i(Z0, 8))- (15)

Within the framework of the gnostical theory, irrelevance plays the role of the distance between Zp and
Z; (the “observation error”) and the fidelity is the weight (or “trustworthiness”) of the datum Z;. The
distribution function which describes the uncertainty of the individual datum Z; is then

pi(Zo,5) = (14 hi( 20, 5))/2 (16)
having the density
di(Zp,5) = ﬁjg:‘—'*'ﬂl = [1(Z0,8)/(Z3 + 8). (17)
Now for a real p (0 < p < 1) define the following real funetions:
H(p) = —p+In(p) - (1 - p) s In(1 - p) (18)
I(p) = H(1/2) - H(p)- (19)

The quantity I{p;(Zg,s)), in gnostical theory is used to evaluate the information loss due to the con-
tamination that caused the datum value 2; be observed instead of the true value Z;. Noting the formal
coincidence of (18) with Shannon’s formula of classical information theory, we surprisingly find that the
quantity p(Zp,s) plays the role analogous to the probability of Z; given the observed datum 2Z;. How-
ever we have nof assumed a probabilistic model. We are considering only one datum and the possible
values which it could assume on observation. We shall therefore speak of the expectation instead of the
probability of a particular value 2. Having observed Z;, we evaluate our expectation of the event “the
true value is Zp" by pi(Zo, 8). (The unkoown parameter, s, is estimated by gnostical procedures for each
data sample).

Using the classification of error magnitudes as set out in Table 1, some of the principal features of
individual uncertainty are illustrated in Table 2 and explained as follows:

Error magnitude | Symbol Condition
Very small VS 000 < Z, /2, <1.01
Small 5 0.97 < Z; /2, <1.03
Bis B 0< zifzn < 00
Limit L zifzn—«ﬂurz,-f.?n—-m_

o

Table 1: Classification of Relative Data Errors.

# The first column shows that under conditions of very small errors, the observation error is evaluated
by the linear function of the difference between true and observed data and all data are given the



same weight (1.0). Having observed Z; we expect that 50% of the future observations of 2y will be
less than and that 50% will be greater than Z; and that the distxribution will be the step function.
Neither the entropy nor the information is affected by the data contamination. The result is that
in the case of very small relative contamination of data, the outcome of gnostical procedures will
approach those obtained by statistical methodology.

Quantity Error Magnitude

name Vs S B L
Error 2+ Z=Za | guZizBa | hy(Zo,8) (15) | — =1
Weight 1 1-24 (gé:z Y | fi(Zo,8) (14) — 04
Entropy ch. 0 —2s (£iz8a) | fi(Zp,8)— 1 — =1
Expectation 1/2 mﬁnﬁ pi(Zo,8) (16) | — 04 or 1
Inform. loss 0 2+ (Szhay I{p:) (19) —1n2

Table 2: Error Dependence, Main Gnostical Characteristics of Data Uncertainty,

» The second column, describing conditions where small errors exast, presents a linear approximation
to the distribution function of expectation and a quadratic dependence of the data weight on the
data error. There are non-zero, quadratic approximations for the entropy change and information
loss, but their sum is zero. This means that the two changes are offsetting. (An analogy exists in
information theory, where the change of Shannon’s informatiom differs from the change in Boltz-
mann’s entropy only by the sign. However, the gnostical formmla of entropy evaluates the change
of thermodynamc entropy, not of the statistical but of the Clansius type.) This column shows why
the least squares method frequently yields good results: by mininizing squared errors, we minimize
information losses. On the other hand, this is useful, but it holds only for small errors.

® The third column displays the general gnostical formulae which are valid for the estimation of
arbitrarily contaminated data.

o The lessom resulting from the fourth column has also both theoretical and practical importance,
Unlike the statistical characteristics of data errors, all gnostical characteristics are bounded with
respect to limit changes of the data error. This is why gnostical procedures are remarkably robust
with respect to outliers.

The formulae which have been presented are not ‘ad hoc’ definitions. They were derived by consistent
mathematical reasoning based on the two algebraic gnostical axioms. The theoretical results of individual
data contamination can be summarized in the following way. They present:

* New formulae for evaluation of data error, entropy increase, and for information loss caused by
contamination,

® A new formula for computing data weight,

* An entropy <= information conversion law according to which the compensation of changes in
both quantities takes place on the level of their second derivatives,



# A special form for the distribution function of individual uncertainty,

& Variation theorems for geodesic lines (circular paths constituting the ideal gnostical cycle) proving
its optimality.

Composition Law for Contaminated Data

In addition to the already noted similarity between gnostical and relativistic events, another important
(Lorentz-invariant) relationship exists: a linear mapping between the structure of vectors of the type
(cosh (2 + ©2),sinh (2 + Q)) and the structure of vectors (energy, momentum) of free relativistic particles.
This mapping motivates a composition law in the following way: the energy-momentum conservation law
of relativistic mechanics states that the total energy (total momentum) of a system of particles is given by
the sum of the energies (momenta) of all particles. This law has been accepted as experimentally verified.
Each contaminated datum has its “relativistic partner,” a particle, and this mapping associates its quan-
tifying weight cosh (£1) with the particle’s energy and its guaniifying trrelevance sinh (12) with its momen-
tum. It is therefore natural to require the same mapping for the vectors (total weight, total irrelevance)
{(of the data sample) and (total energy, total momentum) (of the particle's system). This is the idea
behind the third gnostical axiom. It assumes that the quantifying weight and the irrelevance are to be
composed additively and extends this requirement to the estimating weight and irrelevance of the vectors
{cos (2 + w),sin(2+w)). This composition law (which is nonlinear with respect to either the data or to
the squares of their linear errors) leads to another striking property of gnostical procedures, their high
robustness.

Economics and Relativistic Mechanics ... a Connection?

The implication given by gnostics that there exist commonalities between economics and relativistic
mechanics may confuse and frustrate some practitioners. However, they do apply without hesitation or
confusion the operations of the arithmetical mean and standard deviation and use least squares regression
models inherently based on covariance matrices. These fundamental notions of classical statistics were
brought from Newtonian mechanics. The arithmetical mean of data is the analogue of the coordinate
of the center of gravity; the sum of data square errors are calculated in the same way as are diagonal
components of the energy-momentum tensor of a system of mass points. Covariances are the images of
nondiagonal components of this tensor. The additive composition law adopted in statistics both for data
and square errors is thus motivated by the Newtonian version of the energy-momentum conservation law.
As noted in Table 2, this is also valid from the gnostical point of view; but only under the condition of
small relative data errors. Newtonian mechanies viewed by relativistic eves is a special case of relativistic
mechanics under the conditions of small {with respect to light speed) relative velocities. This velocity
corresponds to relative data errors in gnostics. Gnostics has developed formulae valid for relative errors
of any arbitrary size. These formulae are akin to recent developments in physics as classical statistical
formulae are to the medieval mechanics. Economic data are often highly contaminated. The message for
economists is therefore clear: do not use medieval statistical formulae when ireating highly contaminated
data! These cannot provide reliable results. Instead, apply modern gnostical data treatment technology!
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Examples of Gnostics using Financial Statement Relationships

Body temperature is one of basic indicators of human health; there is no argument as to what a
“normal” value should be. No comparable measure exists to judge the economic health of a firm. It is
necessary to rely on data analysis, and to make comparisons with values oﬁtﬁn’éd" from similar economic
entities. The set of specifically comparable units is usually very small; this situation is well suited to
the application of gnostics: small samples of highly dispersed data which have no theoretically justified
statistical model. Two approaches will be illustrated.

Robust Regression Analysis
A profit model was tested using 1989 data for companies in the food, beverage, and tobacco industries.
Both classical and gnostic methodology was employed to examine the following relationship:

Profit = TA+CL + LTD + NW + Sales (20)

The estimated parameters are available from the authors, however, of primary interest here is a
comparison of the effectiveness of the two techniques. These results are presented in Table 3.

Industry Modeling Statistics
Method RS | ME | MAE | WMAE | WMSQE
Food Least Squares | 0.B03 | 0.0 | 34.7 M7 60.6
Gnostical 0953 | 89 | 33.0 12.7 22.5
Beverages | Least Squares | 0.934 | 0.0 | 81.2 81.2 87.7
Gnostical 0.975 | -16.3 | 7T0.4 32.2 4.7
Tobacco | Least Squares | 0.996 | 0.0 39.2 39.2 56.1
Gnostical 0.999 | 18.8 | 26.2 6.5 178

Table 3: Effectiveness Measures: Least Squares vs Gnostical Regressions.

Each of the statistics shown, even the “method neutral® measure of Mean Absolute Error (MAE),
using fized weights that equal 1 in both cases, indicate an improvement in the information content of the
gnostical model. When the variable (gnostical) weights are applied, the statistical quality measures RS,
WMAE, and WMSQE all significantly improve, but at a small sacrifice to the unbiasness of the LS
formulation (where M E = 0) by construction).

In order to visually demonstrate the effect of using the gnostical weights, a simple bivariate model,
regressing profit on net worth, is shown in Figure 2.

In particular, the gnostical model has suppressed the influence of Seagram Co. and the line passes
closer to the more “average” performers, Molson, Brown Ferris, Anheuser-Busch, etc.; (might one be
tempted to throw Seagram out of the LS regression as an atypical outlier?). The validity of these results
is of course constrained by the hypothesis of the linearity of the regression function. A more detailed
gnostical analysis shows that a nonlinear model is in much better correspondence with the data. Such a

11



F BEVERAGE INDUSTRY, 1989
1200

000 = ]
1 -
..-*“"::-""'#
& 800 S i
i -
£ 1 1
= o
E 400 T
-
;- 200 - =
0
-200 +—
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
NET WORTH (miL$)
F Actudl profits  —— Least sqrs. modsl —— Gnostical madel J
—_— ———

Figure 2: Net Profit va. Net Worth.

model suggests that Seagram does not belong to the relatively homogenous cluster formed by the other
members of the data set. These examples clearly demonstrate the superiority of gnostical models in an
economic framework.

Gnostical Distribution Functions
Preliminaries

There are iwo kinds of distribution functions (d.f.) supported by gnostical theory: ‘local’ and ‘global’.
Both are obtained by further development of the idea underlying the composition law. The local function
is not constrained while the global function assumes that the data sample contains only one homogeneous
cluster. To describe both d.f.'s we use the functions previously defined and the notation

N
flz.6) =Y fi(z,8)/N (21)

=l

applies to N fidelities. The data sample weight is introduced as

w(z,8) = \/(F(z,8)) + (h(z, ). (22)

The local d.f. L(z, 5) is simply the arithmetical mean of the d.f.’s of individual data:

N
L(z,s) =Y Li(z,5)/N. (23)
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The global d.f. G(z,s) is obtained by applying the weight w, to the same sum:
N
Glz,8) = Y Li(z,8)/w(, 3). (24)
i=1

With weak contamination (small data errors), the two functions differ only slightly. However, their
behavior is quite different under gross errors.

In the sense of being a monotonic function of an arbitrary data sample, the local d.f. always exists.
Were a statistical model of the data to exist, the d.f. L(z,s) could be interpreted as a nonparametric
estimate of the probability d.f. and the function di(z,s) (17) as a proper kernel of the Parzen’s type [5].
In such a case, gnostical theory is used only as a background which motivates the choice of the special
kernel (17). Under these circumstances (but not necessarily limited to these), gnostical theory generates
remarkably smooth density curves even with small data samples. The asymptotic features of the estimate
can then be examined by established statistical methods.

In the more general case of not having a statistical model for the data, equation (23) is still useful as
a continuous model of the data sample’s distribution function and as an estimate of the expectation of an
another datum having the same origin, Zg. The steep descent of the gnostical kernel (17), manifested by
the peakedness of the curve, has an important consequence: the individual subclusters of data influence
each other only weakly. This enables the local details of the data sample to be characterized and provides
an efficient method for cluster analysis.

Unlike the local d.f., the global function G(z, ) only has theoretical support for homogenous data
samples, i.e. for data with a unimodal density function. When applied to multimodal cases, this function
may lose the fundamental feature of a d.f., its monotonic nature. This permits the hypothesis of homo-
geneity of the data sample to be tested. The global d.f. has no known statistical analogy. Its practical
importance is related to its remarkable robustness with respect both to outlying data and to outlying
subclusters of data. When estimating an expectation ( “probability™) for extremal quantiles, the ‘central’,
or ‘main’ part of the data sample plays the dominant role. The global d.f. thus establishes the overall
distribution law for the data. The utility of this methodology includes the d.f.'s excellent performance
when applied to small samples and its applicability to samples generated by different distribution laws
(logistic, normal, Weibull, etc.) as documented in [6].

The local and global d.f.'s differ substantially in their dependence on the scale parameter (s). Let
F(N) be the ‘empirical’ distribution function of the data sample. F(N) then has the known form of an
irregular staircase. The local d.. L{z, #) of the same sample can be made to approach F(N) as closely
as required by choosing a sufficiently small positive value for the scale parameter. In contrast, for the
global function, there is a value of § which minimizes the maximum distance between d.[.'s G(z, §) and
F(N}). This value of 5 is a robust estimate of the scale parameter which then causes the d.f. G(z,3) to
approach the empirical distribution function F(N), as closesly as is possible.

—

Gnostical Distribution Functions of the Return on Equity

There were B large firms in the Tobacco Industry queted on U.S. stock Exchanges in 1989. The local
d.f. (23) and density distribution (17) for the ROE were both computed using an estimate of the scale
parameter set at s = (.8, The left hand graph in Figure 3 displays these data and reveals a large main
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Figure 3: Examples of Local and Global Distribution Functions.

cluster and two smaller ones which represent two outliers: Culbro Corp. (ROE = 0.00318) and Std.
Commercial (ROE = 0.0374). The principal cluster is comprised of 6 firms, the ROE of which ranges
from 0.140 (Universal Corp.) to 0.395 (UST Inc.). The maximal density of the outlying clusters coincides
with their ROE values. The most frequently expected value within the firms in the main cluster is the
maximum at ROE = 0.180. (The closest firm to this “typical” value is Dibrell Bros. at 0.194). The
graph implies that an erronecus conclusion would be drawn by taking a “normal” approach, using the
arithmetical mean of ROE's of the group, to rank or estimate the performance of one of its members.
The arithmetical mean of all 8 tobacco firms is 0.176. This single number does not speak to the actual
structure of data, which is very far from being of Gaussian form. If one were to exclude the two outliers
(have we the right not to take them into account at all?), and calculate the arithmetical mean of the
firms in the main cluster, the result is 0.227. Is this better information? The maximal density of this
cluster is at 0.180. The high value of the arithmetical mean is due to the asymetry of the cluster. Its
falling branch is less steep than the rising one. Were one concerned with evaluating a firm in the group,
the ranking provided by Figure 3a would provide more useful information than that gained from only
using a point estimate.

Now returning Lo the beverage companies, and applying the same gnostical technique, Figure 3b is
obtained. Note however that there is an important difference between the sample of tobacco firms and
that composed of beverage companies. No global distribution function exists for the former because of
the non-homogeniety of the data group. In the latter case we can compute and apply (as shown) both
d.f.’s. The global function is the best possible representation of all 10 ROEs formed by viewing the data
sample as a whole. The maximum density is at 0.151. The advantage of this global representation is that
it enables one to reliably estimate the expectation of extreme ROE values.

With respect to the local d.f., there again appear three clusters but with a different composition.
The lowest cluster (max. density, 0.0529) represents two firms (Coors) and Coca-Cola Enterprises), at
0.0416 and 0.0602 respectively. The central clusters correspond to, on the ieft, the RGEs of 4 firms
(Seagram, Labatt, Molson and A&W Brands) which ranged from 0.119 to 0.152. The maximum density
is at ROE = 0.133. The right hand cluster contains the 4 best performers (Brown-Forman, Anheuser-
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Busch, Pepsico Inc. and Coca-Cola) whose ROE range between 0.229 to 0.312. The maximum density
here is found at ROE = (.235.

The additional information provided by the local distribution function resolves the conflict as to
whether Seagram’s extreme outlier status justifies its retention in the regression. The two points of view
are complementary speaking to different aspects of the data. The regression is influenced by the extreme
value of Seagram’s net worth, while the distribution function demonstrates that the firm’s performance
falls within one of the major clusters. This once again cautions agamst reliance on “simple” analyses.

Conclusions

Size limitations have prevented a more detailed explanation of the mathematical origins of gnostical
theory, and the interested reader is referred to [4] for a more complete exposition. The simple examples
used to illustrate the theory, however, clearly demonstrate the better insight that can be obtained on
the structure of data, and the attendant advantages which can accrue to economic analysis by utilizing
gnostic procedures.
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