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Minimum Penalty Estimate

PaviL Kovaxic

A new generalized discrete lincar estimate is introduced, called a minimum penafty estimate
from which not only the well-known discrete versions of linear estimates such as the Zadeh-
Ragazzini, Gauss-Markov and Semvyonov estimates but also some new and more general esti-
mators may be obtained. The usefulness of the gemeralized estimate consists especially in the
possibility of using a priori information to lower the estimating error,

1. MAIN TYPES OF KNOWN LINEAR ESTIMATORS
1.1. Zadeh-Ragarzini estimator

In 1950 Zadeh and Ragazzini published their generalization of Wiener's theory
of prediction. A few years later in papers by different authors this problem was for-
mulated and solved for discrete variables (see e.g. [1]). A generalization [2] extended
the field of applications. Numerous particular applications of unbiased minimum
variance estimators such as the optimum interpolation, extrapolation, analysis,
differentiation and integration as well as the generalized Neumann-David estimation
of linear forms are specifiad in [2].

The data vectors are
1) y = Xa + x; + xy
and the required result of transformation is
(2) Zo = pa + Lo{x] + Lylxy],

where the matrix X is an n ® g nonrandom matrix with a rank which is not neces-
sarily full, the vector ¢ is a given nonrandom vector, @ is an unknown nonrandom
vector, x; 15 a4 random vector carrying information and xy represents a corrupting
random component, Symbols %, and |, denote some linear operators.
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The actual result of estimation is
(3) z=wy,
where the n % 1 vector w is the estimator, The generalized discrete Zadeh-Ragazzini
estimator is the vector w minimizing the variance of the estimate z and satisfying
the constraint of unbiasedness
(4) wX = p.
Such an estimator exists if and only if

(5) pE— X*X)=0.

The symbol X denctes the Penirase pseudo-inverse of the matrix X,

1.2. Gauss-Markov estimate

The generalized Gauss-Markov estimator [3] published in 1966, may be considered
to be a special case of the Zadeh-Ragazzini estimator. In this case, all componaznts

a;(j = 1, ..., m) of the vector a (Eq. (1)) have to be estimated using vector estimators
with different vectors p; defined as

(6) py=1 for 1=},

0 for i=+j,

where the number p;; is the i-th component of the j-th vector ;.

Both operators, %, and %, in (2) are zero operators for this case. Some months
later another generalization [4] was published making it possible to use the previous
concept also for the case when the unbiased Gauss-Markov estimate does not exist.
The unbiased constraint is replaced by the more general constraint that a quadratic
errar norm is minimized.

1.3. Semyvonov estimate

For the continuous variable a linear estimation problem has been formulated and
solved by Semyonov differing from the Zadeh-Ragazzini one. For discrete automatic
control systems the analogy of this problem has been given in [5]. Data structure
is as in (1) but the vector a is a random vector having a known expected value {a>
and a known covariance matrix. Instead of the conditional, an unconditional mini-
mum of the variance of the estimate is sought. Systematic error of the Semyonov

estimate is zeroed by addition of a proper term determined by the mean data vectior
which is supposed to be known.



2. GENERALIZED LINEAR ESTIMATE
2.1. Definitions

Among the data vectors y, there exist vectors y, representing a useful component
containing information while the other represent noise, measuring errors and other
undesirable disturbances.

A subspace &, of an n-dimensional vector space & can be defined in the following
way

(7) (Y.¥z) = $;D,5],

where the n x n matrix {y,y.» is the mathematical expectation of the random
matrix y,y.. The columns of the n » m matrix §,, satisfying the orthonormal condi-
tion

{E} SIS. =Epum

and having the same rank m as the matrix {y,y.> form an orthonormal base of the
subspace % ,. The m = m diagonal matrix D, has positive diagonal terms d,

(9) &Sl Bda»,

Such decomposition is a special (symmetrical) case of the singular value decomposi-
tion [6] which exists for an arbitrary real nonzero matrix. It is unique.

Disturbing components of data vectors belonging to the same subspace §, will
be denoted y; and the factorization

(10) Aye + Y)Y + 7)) = 5(M, + D,) 5]

with a symmetrical matrix M, will be used.

Considering the set of all possible data vectors y and its characteristics {yy'>
having a rank s we may find that only a subspace % of the n-dimensional vector
space 4" contain some data vectors,

(11) s=n.

For the subspace %, a complementary subspace %, ean be defined in %, Data vector
component belonging to the subspace &, will be denoted y,,

(12) Y:€5;.

Such a vector 1s orthogonal to the both components y, and y,. A data vector of
general type is therefore represented as

(13) Y=Y+ Y1+ Y-
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The singular value decompaosition
(14) {ya¥1» = 5,D,5}

defines an (s — m) » (s — m) diagonal matrix D, and a semiorthonormal n x
% (s — m) matrix S, analogously with (7)—(9).
It follows from the definitions that

“5} s-{si = nmxis—m]
and
(16) {yy™s = SMST,
using the block matrix notation
(17) Suxs =51 ] 84
and
I |

_ M, + D, M,
£ M=lmp o
where
{ m=s=n,
(19) <

M, isan m x (5 — m) matrix and the rank of the s x s matrix M is full.
Required results of estimation are

(20) Ip = fufl"}
and
{2” Iy = 3_:{}":} ’

where 5, and &, are some given operators. For the estimator of the type (3), the
mean square of errors of estimation arz

(22)  (ed> = {fzo — wy)?> = wlyy™> wT — wlyzed — (zy™) wT + (23D
and '
(23)  <ely =z, — wy ) = wiyyD w' — wiy,z.) — {2yl w' + (zi).

Both errors are functions of the sought estimator w. By its variation one gets the
gradients

(24) go = wiyy'» — {zo¥")
and
(25) 2. = wiy.yiy — {2yl .

For a given gradient g, the last equation can be considered as a constraint.



To evaluate the quality of the results of an estimating procedure we introduce
some nonnegative weights ¢, and ¢, for the individual errors {eg‘} and {ei}, respective-
ly. The quantity

(26) ¢ = coleq) + cx{er)

will be called the penalty. The ratio

(27) r=-=
characterizes the relative weight of both penalty components.

It can be reasonable to represent the data vector component y, in the form
(28) Y. = Xa,
where X is an n » g nonrandom matrix having a rank m,
(29) m=n,q.

Both cases n > g and g = n are allowed. The g = 1 vector a is a random vector
normalized so that

(30) (aa™s = E,., .

This assumption represents no less of generality. such a normalization may be
achieved choosing properly the matrix X for which the singular value decompaosition is

(31) X=5D2Q,.

The m x g matrix Q, also satisfies the semiorthonormal conditions

[32} QiQTlr - Em:m
and the m x m diagonal matrix D, has positive elements for which we obtain from (7)
(33) D, = D,

For an operator _ (21) of the linear type we have

(34) I, = pa
with an 1 » g nonrandom vector p, and
(35) (¥ = pXT.

Using matrices 5, and 5, we may write

(36) (zoy™> = u,S] + u,S3.
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an 2.2, Main results
In the Appendices I—1X the proofs of following theorems are given:

Theorem 1. Among all linear estimates having the form (3), the best one mini-
mizing the penalty (26) is

(37) I, =wy,

where the best unconditional estimator w, equals
(38) w, = ((Zoy™> + r{z D) (YD + YD)

Theorem IL. Among all linear estimates having the form (3), the best one mini-
mizing the penalty (26) and satisfying the constraint (25) is

(39) 2, =wy,
where the best conditional estimator w, equals to

(40) w. = ({zy0> + B ({yyin)t +
+ [€za¥™y = ({zoym> + g ) (¥ <yy ] (KyayD))* .

Theorem TII. The best choice of the constraint (25) minimizing the error square
{ely is

(41) B = WYYy — {2y =0
or its equivalent

(42) wX = pX*X.

Theorem IV. The estimator having the form:

(43) w, = vKS",
where
(44) v, = [pQID(rM ") + u, M | by,
_ -1
145) Kr = E MOD?- |

—D;'MIM ' D;' + DI'MIM;'M,D;'|"
and

(46) M, =M, + (1 +r D, — M,D;'M] .



is identical with the best unconditional estimator (38) and it includes the best
conditional estimator (40) as a special case,

7 we = lim w, = pQD, (S| — M,D; 'S]) + u,D; 'S} .

F =

Theorem V. The mean error of transformation arising in application of the
best unconditional estimator (43) to a vector of the type y, (28) equals

{43"' <fn> = <:: F wrxa} . Pr{:ql}
and the mean square value of this error is

(49) COES ¥ 8

where

(50)  p.=p(E - QID(rM ") D,Q,) — (u, — u;D; 'M{) M 'D.Q, .

the limit values for an increasing r (case (47)) being

(51) lim e,,> = p[E — X* X] <a)
and '
(52) lim {el) = plE — X*'J(] pr,

whereby the last value represents the minimum of the norm {el.},

(53) lim (el,» < (el)

rFevon

For all nonnegative r.

Thearem V1. The mean square of estimating error arising in application of the
best unconditional estimator (43) 1o a vector of the general type y € & equals

154} {'"l::r}f = <{ Zp = rr]2> - (:é} — err"T e I-IK_I'I’, T+ errMKIvI1
where L
(55) u=lu|u,

the special case for r = 0 being given as
{56) (eadran = (2o — UM T,
whereby the last value represents the minimum,

- L - |
{3?] “Colr=0 é ',\El:l>r

for all nonnegative r.
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Theorem VII. The conventional form of the best conditional estimator (40)
respecting the constraint (41) is

(58)  wo=[p(T'STX)" + u(TT)"H (E — (T7'STX) (T7I8™X) )] TS,

Theorem VIII. Among all linear estimates, the best one minimizing the penalty

(59) Elea = {z0 — 3)*) + r(z. — Z)P
1.
{Gﬂ} Ip=woy + b

o — when applied to the vector y, —

[ﬁl] Ex = Wu‘j’x -+ b

with the constant term

(62) b= [{ze> + rize> = woldyy + vy 2)]/[1 + 7]
and with the vector
(63) wo = ({27 + rE D) (Gpy™> + ringi)’t .
where
(64) Y=y — (> + ry)(1 + 1),
Fe =¥ — (¥ + r{yd)f(1 4 1),
(66) 2y = 2o — (20> + rlzD)J(1 + 1},
(67) 2. =z = (2> + iz )1 4 1),

which may be rewritien in the form identical with (43) if in all definitions instead
of the variables ¥, ¥.. =, and z,, the variables y, ¥,. 2, and 2, are substituted.

The estimate corresponding to Theorem VIII will be called the minimum penalty
estimare. ?

Theorem 1X. Mean errors of the minimum penalty estimares (60) and (61) are

(68) (2o — 2a> = [WolC¥y — D) + (L2a> — X)) rf(1 + 1)
and
(69) (2o = 2 = [wol<y> — ) + (Cz> = G + 1),

whereby the penalty (39) is

(70) Bleg = €233 4+ r(2dy — wo[{¥2e) + r(yr20].



3. DISCUSSION

Theorems T—VII are related to estimates having the form (3) without a constant
term. The conditional estimate according to Theorems 11 and VI1I represents a gene-
ralization of Zadeh-Ragazzini's estimate (or minimum variance unbiased estimate)
including the case of a rank deficiency and also the case when the condition (3) is
not satisfied. In the last case the unbiased constraint (4) is replaced in accordance
with Theorem I11 by a more general constraint (42) which results from the requirement
to minimize a quadratic error norm ¢e2%. The generalized Gauss-Markov estimate
{4] may be therefore also obtained as a special case of the conditional estimate.
However, the conditional estimate can be obtained according to Theorem IV as
a limit case of the unconditional estimate introduced in Theorem 1. Hence, the un-
conditional estimate is a most general one among estimates having the form (3).
Although it is the best one minimizing the penalty, it is not unbiased in some cases,
as shown by Theorem V. Comparing Theorem V and Theorem VI we may see, that
for an infinite penalty ratio r. the error norm e’} reaches its minimum, while for
zero r a minimum of the norm el is achieved. Thus, the choice of penalty ratio r
determines the relative importance of both mentioned error norms, The requirement
of unbiascdness or its generalized formulation (42) is equivalent to the statement
that the norm (e} is of prime importance. The penalty can be higher in this case
than in the case of the unconditional estimate.

A general type of linear estimate should include a constant term as in (60) and (61},
It is shown by Theorem VIII how to find the best estimator of this type. lis penalty
can be lower than that of an unconditional estimate (37) for the same value of the
ratio r. As follows from Theorem IX, the estimate Z, (60) is asymptotically unbiased
in the case r = 0, while the estimate Z, (61) for r — oo. Moreover, both estimate
(60) and (61) are asymptotically unbiased for all values of the penalty ratio r if follow-
ing identities take place:

(71) (yy = (¥,
(72) {z.> = {zp).

As seen from (13), when the means (y, > and {y;» are zero or when they are included
into the component y,., the identity (71) holds. In the case that the operators (20)
and (21} are linear and

f?3} jﬂ{}rl} = '?_ﬂ{rl}

0,

we obtain from (13) also (72). Thus, if all parameters appearing in (62)—(67) are
known, the best solution of the linear estimation problem is given by Theorem VIIL

A generalized discrete version of Semyonov estimate can be obtained from sup-
posing zero penalty ratio r = 0. In this case the error norm {el} is fully ignored.
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The square error {e;> reaches the least possible value, but this advantage is paid by
information on statistical distribution of data vectors componenis within the sub-
space %, as characterized by the covariance matrice M, needed for (43)—(46).
As shown by (47), this matrice disappears in the opposite case r — oo, such
information is then not necessary but the penalty is larger. We are referring to the
formulae of Theorem IV as they can be used also for the general linear estimate
after substitutions corresponding to Theorem VIII.

APPENDICES
A. L. Existence and unigueness of the best unconditional estimator

It follows from the regularity of the symmetrical matrix M [18) that the matrix
M, + D, is also regular. The matrix

(.1} M,=D;'{M, + b,) D!
is therefore also symmetrical and regular and its characteristic equation
(1.2) Det{M, —(—rE) =0

has only positive roots { —r).

Thus, the matrix M_ + rE as well as the matrix M, + (1 + r) D, is not singular
for a positive value of the parameter r. Regularity for zero r follows from the defini-
tion,

Symmetrical matrix

M +(1l+rD, M,
M D,

(13) m=|

is regular because of regularity of matrices M, + (1 + r) D, and D,. One has there-
fore

(1.4) (<yy™> + rlyyo)” = (SMST)" = SM]'ST,
where the A" denotes the Penrose pseudo-inverse of the matrix A.

We have supposed that no data vectors y exist outside the subspace &,
(L.5) ySST =y

for an arbitrary data vector y. If an estimator w had a component lying outside the
subspace %, the product of such a component with a data vector would be zero.
Therefore, we are free to choose this component arbitrarily. We choose zero, assuming

(1.6) wSST = w.



Multiplying w, (38) by 5M,57 and taking into account (15), (24}, (25), (27), (1.4)and = 377
(I.5) and orthonormal properties of the matrices §, and §,, we obtain
(L.7) Coffo + €28 = 0 4.

Thus, the estimator w, (38) actually satisfies the necessary condition for the mini-
mization of the penalty (26).

The solution of (L.7) for the unknown vector w,$ is unique because of (L4). The
estimator w, can be determined from the expression w,S also uniquely because of
the assumption (1.6).

A. TI, Existence and uniqueness of the best conditional estimator

Using notation

(IL1) f = {200 + &
(11.2) F =<y,

(11.3) G = (yayi).

(11.4) Y =<yy",

(11.5) z = (zoy") + r{zyD .
one can write the constraint (23) as

(IL6) wF=f.

Denoting the vector of Lagrangian multipliers k, one gets the equation of minimiza-
tion of the penalty (26) respecting the condition (I1.6)

(IL7) wi(Y +rF)—z—kF=0,.,.

1t follows from (7) and (I1.2) that

(I1.8) 5,SF=F
and

(11.9) fFF=f,
where the pseudo-inverse F* is

(IL.10) Fr =8,D,5T.

Therefore, the projection of the estimator w_ on the subspace 5, can be obtained
in the form

(IL.11) w.S ST = fF*
satisfying (11.6).
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Taking into account (1.6), (15) and (17) and substituting (IL.11) into the projection
of {II,?} on the subspace %', one gets

(11.12) w.S,8] = 2G* — fF'YG" ,
where
(I1.13) G* = §.D;'sT.

Sum of (IL11) and (11.12) together with (1.6) gives (40). The necessary condition for
a conditional extremum is satisfied.

The penalty (26) corresponding to the estimator w, (40) equals to
(IL14)  &leg = rfF T + fFT[E — YG*] Y[E — G'Y]F'f" — 2627 —
— fFT[E=YG"]z" — z[E — GTY]FTfT + (=2 + riz2>.

Any other linear estimator w (a vector of the same dimension as w,) satisfying the
same constraint

(1L.15) wF = f
would have the form
(11.16) w=fF" 4 qG*

with a certain vector q. Denoting & the penalty which corresponds to the estimator w
we may get from (I1.14) and (I1.15) using the identity

(11.17) G'YG* = G*

and defining

(IL.18) d=[q+fFY—-2z]S§,.
where

(11.19) S, =§,D;\?
the relation

(11.20) dleg — Bleg = ddT = 0.

For the case

(11.21) gq=q=—fFY+z

the difference & — & is zero, but this is the case when

(11.22) w={fF"+[z-fFY]C* =w,

is identical with (40). Zero difference will occur also in the case

(11.23) 9=q,+4q,5,



where q, is any 1 % m vector. But the addition of the term q,5] does not change
the estimator w (I1.16),

(11.24) SIG* = 0.

Therefore, there exists only one estimator satisfying the constraint and minimizing
the penalty.

A. I1I. Choice of the constraint of the best conditional estimator

For an arbitrary estimator w, the error square (el equals (23). For the estimator
satisfying (41) this value is

(ITL.1) {e2do = 22> = (2D vy’ {¥ezad -
Using factorization

(111.2) Lyt = RRT

and a row veclor

(11L.3) e = [wiyyr — yo]R,

we obtain

(111.4) (edy — (el =T Z 0.

Thus, the error ¢e2% reaches the minimum (II1.1) for the estimator satisfving the
constraint (42).

Substituting (7), (34) and (35) into (41) and (I11.1) and taking into account (33) we
obtain (42), where

(1IL.5) W e QD TST

A. 1V, On the formula of minimum penalty estimator

The inverse of the matrix M, (1.3) is

-M'M, D]’ '
D;' + Dy'MIM M DI

| M_I
=1 = | r
(IV.1) M :|_D£,M;Mr_,

]

where the m x m matrix M, is defined by (46). After substitution of (L.4), (IV.1),
(31), (35) and (36) into (38) using notation (45) and (46) one obtains (43). As shown
in AL, the matrix M, is regular for all positive values of the parameter r. This
implies the nonsingularity of the matrix M, for the same condition. Limits for an
increasing r are

(Iv.2) lim M = 0,

Fr—an
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and
(1v.3) lim(rM ') = D',
(1V.4) limv, = [pQID; " | uy/,
P4

and

'E —M,D;!
V.5 lim K, = | ot
[ ) "__m 0, D; i

Direct substitution of (7), (14), (16), (31), (35), (36) and (41) into (40) results in the
same as (43) with (IV.4) and (IV.5).

A. V. The error of transformation of a useful component of data

The errors (48) and (49) can be obtained from (43)—(46) using (15), (17), (31) and
(34). Substituting (IV.2). (IV.3), (33) and (31) into (48) and (49) one gets (51) and (52).
The difference of values (49) and (52) can be shown by substitution to have the form

(V.1) ey — lim (et = kkT,
where
(V-2) k = pQI(E — D,(rM, ') D,) — (u, — w.DI'M]) M ",

from which (53) follows.

A. V1. The error of the estimation

The estimation error defined in (54) follows from (43) when using (15)—(18) and
(36). For the limit case r = 0 we obtain from (44)—(46), (18) and (54)

(VL1) (v.K ) op = uM™!

which substituted into (54) gives (56). '
Denoting

(V1.2) h=(vK, —uM )T

and

(VL.3) TT" =M,

we get from (54) - (56)
(V14) {€5)y — {€3Pemo = BAT 2 0.



A. VII. The conventional form of the best conditional estimator

Substituting (55) into (47) one obtains

(VIL1) w_—= (pQ]D.'] + uS"S,D;'5]5) 57
where
(VIL2) J=|E| -Mm,DI'|.

It can be proved by substitution that

(VIL3) JT=(T7')"
and
(VIL4) ST8.D15%8 = (AT HE~ T 7T
where
[1\"[]’5} ’ = 5T5| =| Em:lrﬂ
10 i

and where the matrix
{VILG) TTT =M

is the same as in (18), the matrix T being upper triangular. It follows from (VIL3),
(VIL5) and from the definition of Penrose pseudo-inverse that

(VILT) QDI Y = QDT T~ = (T-'s™X)* T
and
(VILE) STSID; 15;5 — {T"} 1 {E T lsrx}“-— 'STX}+} T 1.

After substitution of (VIL7) and (VIL8) into (VIL1) one obtains (58).
A, VIII. The best linear estimate

The penalty for an arbitrary estimate of the type
(VIIL1) z=wy+ b
obtained after substitution of (VIILI1) into (59) is

(VIIL2)  efeq = c'fop + [2o)> + r{z,> — wi{y) + r{yd) = (1 + r) b]*:

1+ r)
where

IVIIL3) 'leg = {250 + r(z + wlyy™ + r{y,y) w' —
— 2wiyzo) + r{¥.zo) — [{zo) + vz — w(y> + vy ) /(1 4 1)

381
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15 the penalty value for the case

(VIIL4) {zop + 1z = w{y> + 1y, ) = (L + 1) B = 0.

This equation characterizes the optimum choice of the constant b for an arbitrary
vector w, as follows from (VIIL2),

(VIILS) eleg = ¢'fey

But from {VII1.4) we obtain {62). Substituting (62) into (VIIL3) and using (64)—(67)
one gots the equation

(VIIL6) eleg = (20 — WYPD + 12, — Wi,

which is formally the same as the penalty (26) with the square errors (22) and (23)
minimization of which gave the best unconditional estimator w, (38), Therefore, the
best choice w,, of the vector w minimizing (VIIL6) is also given by (38) after substi-
tutions corresponding to (63)—(67).

A. IX. Errors of the best linear estimate

Mean errors (68) and (69) follow by the substitution of (62) into (60) and (61).
Eq. (70) may be obtained from the definitions (59)—(61) using the linear estimator
(63) with the constant term (62). '

{Received December 18, 1970.)
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VYTAH

Odhad s nejmensim penale

PaveL KovaNic

¥V &lanku se zavadi zobecnény 1yp linearniho odhadu, minimalizujici vaZeny soudet
stfednich Etverctt celkové chyby odhadu a chyby zpracovani uZiteéné sloiky dat.
Minimalizovand velifina se nazyvA penfle; jeji prvni slofka odrafi vliv ruSivych
nahodnych sloZek dat a druhd sloZka charakterizuje nepfesnosti, s nimiZ by byla
poZadovand transformace realisovina pfi vymizeni rusivych sloZek, Ukazuje se, Ze
odhad s nejmeniim pendle zahrnuje jako zvldstni pfipady jak tzv. nestranny odhad
s minimalni disperzi (odhad Zadeha a Ragazziniho), tak i nepodminény edhad s mi-
nimélni disperzi (odhad Semjonova), jakoZ i dalii znimé typy linedrnich odhadi.
Zobecnény odhad dovoluje vyuiit apriorni informaci (znalost korela&nich funkci)
ke sniZeni chyby odhadu. Vybér pomérnych vah obou sloZek pendle umoZiiuje pfi-
zplisobit vlasinosti odhadu pfadpoklidané aplikaci.

Ing. Pavel Kovanic, CSc., Ustar teorie informace a auromatizace CSAV { Institure of Information
Theory and Automation — Czechoslovak Academy of Sciences), Vyiehradskd 49, Praha 2.
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