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GNOSTICAL THEORY OF INDIVIDUAL DATA

P. KovaNic
(Prague}

(Received May 2, 1983)

Theory of a new approach to the problem of data treatment is presented. In contrast to the
statistical approach the presented “gnostical” theory is based on 4 detsiled study of effects of
uncertaimty on individual dats. Creometrical features of the space mapping the real data are derived
from a simple axiom. Quantitative characteristics of the uncertainty are shown to satisfy an equation
of 4 diffusion type from which a formula of information borne by individus! datum 15 derived. Each
individual datum determines an ideal closed cvcle of gnostical transformations minimizing the
unavoidable loss of information caused by the unceriainty.

1. Introduoction

This paper deals with a mathematical model of randomness, applicable to
individual uncertain events and to small samples of real data. The aim is very practical:
to derive efficient and robust formulae and algorithms for data processing applicable
when a statistical model of the uncertainty is not known or not justified. The idea is:
“Let data speak for themselves!” But to achieve such a goal it would be necessary to
have a theory which would offer another insight under the surface of uncertain events
than statistics does. The author's belief is that this problem can be solved but not by
mathematical tools commonly used in statistics and probability theory. The
appropriate mathematics is very old, it is Riemannian geometry, developed already in
XIXth century and applied with a brilliant success in physics three quarters of a century
ago. This paper is an attempt to show that Riemannian-Einsteinian idea on necessary
dependence of metrics of spaces on some facts of real life is fully relevant also for
quantitative gnostical processes, i.e. for processes of quantitative cognition of the real
. world. An approach presented here is coherent with physics but it is not a physical
theory. To emphasize this, the author mostly presents only mathematical statements,
Explanations and interpretations as well as applications are postponed to later
publications.

A historical note is in order here. The first idea on possible connections between
cybernetics and relativistic mechanics belongs to Guy Jumarie, who has been
publishing a long series of papers on this subject since 1975. (See references in his book
[1].) The same author rose a hypothesis on Minkowskian nature of the space of

observation processes [2] but both his reasoning and results differ substantially from
| those presented below.
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2. Main results

The space representing data has a Minkowskian metric. The process of obtaining
real data {s.c. quantification) can be modelled by a group of pseudoenclidian rotations
of vectors on the Minkowskian plane. Transformations due to quantification
uncertainty are subjected to a variational principle. Invariant of these transformations
is the unknown true value of the quantity represented by uncertain data. A reasonable
model of estimation is a group of Euclidian rotations which is completely dual to the
quantifying group. Quantitative characteristics of uncertainty of data based on
dissimilarity of events are obtained from which the information borne by each
individual datum is derived. Each particular datum defines a gnostical cycle of
guantification-gstimation. For each closed gnostical cycle an ideal gnostical cycle
exists which minimizes an unavoidable loss of information due to uncertainty.

3. Mathematical model of quantification

Quantification is a (measuring or gounting) procedure which relates empirical
quantities with real pimbers.

Definitions. Let & be an empirical relational structure of empirical quantities g.
Then the ideal quantification is a mapping z,: §+R, where B, denotes the interval of
positive real numbers 2 {0<z<oo) The result z5ig,) of ideal guantfication of a
guantity g, € € will be denoted 2z, and called the ideal value.

For a full exposure of the theory of quantification see e.g. [3].

A result of an actual quantification of the quantity g, will not equal the ideal
value z, in practice because of the mfluence of an uncertainty. This may result from
imperfect realization of measuring or counting operations and/or from imperfect
knowledge of the state of the quantified object. 11 ts not necessary to describe the
uncertainty statistically. We only assume that all contributions of uncertainty to a
particular result of quantification may be characterized by a quantity g, which is an
clement of an empirical relational structure.

Definitions. Let 5 be an empirical relational structure of quantities g,, empirical
charactenistics of uncertainties. Then the practical quantification is a mapping
2 x F R, . A possible datum z(g,, g,) is a result of a possible practical quantification,
it will be denoted by a variable ziz € R | ). Data, results of practical quantification which
actually took place, would be denoted by z, (or by other indices j, k, ...). If F is an
arbitrary function defined on R, then the symbol F ; denotes the value of the function
F(z) at the point z=z;. |

AXIOM (Data model): Let z, be the ideal value. Let £(g,) be a result of the
mapping & #F <R, . Then the model of a possible datum is

Uqos @ =ZolgolSlgu). | )]
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The following parametrization of the effect of uncertainty is suitable:

z=zpe" (ReR )z R (2)
Lemma . Let
o= (x) (3
v
e x=z5ch £2 i4)
yi=zg8h L2 (5)
Let
=% (6)
= hi shid
= 0
K= (shﬂ uhﬂ)‘
Then
) u=K, (. i ®

A possible datum satisfies the equality
z=x+¥ 9)
For another u' =K, ({8, we obtain from (7) and (%)
' =K, (2 — Q. (10)
also

Changing places of components x and y in (5), we get from (10}
A=K (-2 (11)

= (D (12)

and u—su' (11) will be said to be
called the events of the first

where

Definitions. Transformations v (10) _
quantifying transfermations. Quantitics u of type (3} will be
kind and quantities . (12} together with

()
2 x

the events of the second kind. ‘ i

Theorem 1. Let G, and , G, be sets of quantifying transformations (10) ar};.! (1)
respectively. Then both sets are commutative groups with respect to the composition of
transformations. Let G be the additive group of real numbers. Then all three groups are

isomorphic. |
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Proof. By verification that K,(Q,)K(2:)=K(2,)K,(2,)= K (2, + 2,), K (0)=1
and K, (@2)=K,(—0). ]

Quantification is thus modelled by groups 1Ogand LG,

As it is known, a Riemann’s metric space is a variety on which a field of a metric
tensor is defined which is symmetrical and complete. The scalar product of two
arbitrary differentials du’ and du” written in the matrix notation is given by the formula

(ds)® =du'Tgdu", (14)

where g is a matrix representation of the metric tensor.
Theorem 2. The unique metric on the variety of events invariant under the groups
of quantifying transformations is the Minkowskian metric with the matrix

1o
g“:(a _1)' D

Proof. Consider two arbitrary events w'¥=(z,ch 2, zosh @) and (w")¥
={zy ch £, zosh ©”) of the first kind. Their transforms are K Q)" and K, (fu". The
metric is invariant if the equality

du'Tgdy” = du TKI(Q)gK (Q)du” (16)

holds identically for all pairs of events and for all K,. Denoting

(s 2)

the metric matrix and substituting it into (16) we obtain the identity conditions g=0
and ¢'= — 1. Considering the events .u’ and A" instead of events w’ and u” we come to
the same conclusion, only the sign of the scalar product changes,

du'gydu" = —du"gydu". I an

For w'=u"=u we obtain from (14) after integration

s=29=\ /"% (18)

and for u'=n"=u
S=izg l:]'=\/-:._” (19)

as invariants of quantifying transformations. The guantities z, and iz, are thus
pseudoeuclidian lengths of vectors u and _u, respectively. The effect of a practical
quantification of a given quantity is thus equivalent to pseudoeuclidian rotations of
vectors on Minkowskian plane. The events having the same len gth z, or iz, interpreted
as points are lying on a Minkowskian circle. But it is important to consider also a more
general case when variations of both variables © and 2, are possible.

263

KOVANIC: GNOSTICAL THEQORY OF iNDEVEDUAL DATA

Definitions. Let
v w:= Infz¢/2ga) {209

where z,q 15 @ positive constant. Let

b= [ g duTgn= /P @)
A AB

where the line integral is taken along a path AB between the points 4 and B PI’
Minkowskian plane. The quantity A 4 will be called the relative length of the path AB.

The same definition will be used for ‘ .l
Theorem 3. Let A and B are some points (z,, 2} and (25, 25), respectively. Then
= ., K ]
the relative length of the path AB for which vl 0 equals to
Aar=112—= Q. (i==1) (22)
Its modulus represents a local maximum of moduli of all relative lengths of paths AB
obtained by small differentiable variations. |

Proof. Substituting the events u and u as functions of the coordinates (x, {2) into
{21) we come for both kinds of events to the same formula

1 J=ian
A

i
where & = Ed% . This integral is a particular case of a more general one rf Fix, &, 12)40
A

(23)

dag =

which has a stationary value under small smooth variations of the path between fixed
points (@, F .} and (£, Fy) if
L (24)
dx A2\ 3k

This equation holds for a constant #. The stationary value is then
A=K 1|25~ 2,). (25
Its modulus really has a local maximum (22) for £ =0. Data thus correspond to points
of a geodesic, |
4. Mathematical model of ideal estimation

Estimation is a numerical procedure which maps a collection of data into a
quantity Z, € R, which is an estimate of the ideal value z,,. As shown above, the features
of quantifying transformations are a consequence of positivencss of l:Iata‘. !Elut
estimating transformations are not yet determined. We shall require for them similar
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basic features as the quantifying transformations have: homogenity, double symmetry
of the operator K, and its uniform regularity (Det {K,}=1).

Theorem 4, Let (M be the variety of events u (3). Let u":=(x'(x, y), ¥i{x, ¥)) be
a result of quantifying transformation (10). Then the group , G, is the unique group of
transformations | M, — M, which satisfies the following conditions:

1. Homaogenity:

dy
& oy, 27
X
11. Double symmetry:
ax' 8y
R @
oy '
;e (29)
II1. Uniform regularity;
dx' &y fx' dy
Progf. Transformation (10) clearly satishes 1. Tt follows further from (10) that
ix'  ay ax'  dy .
— EM = ch {2 and % ok i sh 12, Conditions 11 and I1T are thus satisfied, too.

Substitution of (28) and (29) into (30) gives the equations

-6 Q- o

Thare exist exactly two pairs of solutions satisfying the condition of homogenity, the
linear one coinciding with {10) and the quadratic one being equal to the following:

2

rmxioyl,  P=pP-a? (32)

But y? <0, therefore (¥, y) ¢ \M,. i
An analogous statement can be proved for the case of the events of the second

kind, for the group ,G,. We note that thanks to the double symmetry the
transformation (11) results from {10) and inversely.

Looking for an estimating transformation dual to the quantifying one, we modify
condition II:

. dx' 8y ax’ _ dy'
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The condition of symmetry thus formally coincides with the Cauchy-Riemann
conditions of analyticality of a complex function.

Theorem 5. Let R, be the 2-dimensional variety of events m'=(x, ) and
a7 =(y, x). Then the unique group of transformation R ,++ R, satisfying conditions I, I’
and 1T is the group G, of the transformations

=K fow o =K/ (ofe {33)
where
K./ (C'fm w —sin m) (4)
singy  cOS¢@
with a real parameter o. ]

Proof. The analogue of (31) resulting from 1" and 101 is

—_ e = e ST = |, 35
(ﬁx) * \-:3}') § (3}') "\ -

Homageneous lingar solutions are

C=Ax+8y  y=Cx+Dy (36)
where

A*+B*=1 C*4D¥=1. (27

It results from IT that 4% =D? and B*=C? Then A= +cos w and B= +sin w where
@ is a real parameter. The sign of B may be therefore chosen arbitrarily, we take
B— —sin w. From I' we have C=sin e The sign of A and D is + because of 126}, The
linear solution is thus really (33).

Homogeneous quadratic solutions of (35) have the form

xT=x1+y%  yi=xlayh (38)

This transformation has not an inverse for each event (x, y). It dges not constitufe a
group. The group properties of transformation (33) are easily verifyable. B
Definition: For cach — E < (< %1 relation (33} will be called the estimating
transformation. The group of these transformations will be denoted G, ]
The three groups ,G,, ,G, and G, are thus the only groups satisfying all
conditions I, I11 and a generalized condition of symmetry

- éx 8y |ax| &y
: ax oy dy| |éx|

An analogue to Theorem 2 can be easily oblained: the unique metric on the
variety R, invariant under the group G, is the Euclidian metric with the metric matrix
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basic features as the quantifying transformations have: homogenity, double sym metry
of the operator K, and its uniform regularity (Det {K_ } =1).

Theorem 4. Let | M; be the variety of events u (3). Let u":=(x(x, y), ¥ix »)) be
a result of quantifying transformation (10). Then the group 10, is the unique group of
transformations | M, , M, which satisfies the following conditions:

L. Homogenity:

X ik (26)
ay
Y o goyr=y. @)
ey
1l. Double symmetry:
ax dy
o By (28)
@
vl v (23}
L. Uniform regularity:
dx' dy' 8 &y
¥ o et i el i (30

Proof. Transformation (10) clearly satisfies L It follows further from | 10) that

ox _ gy ax'  dy .
e ;3—; =ch{ andE o sh £2. Conditions 11 and IIT are thus satisfied, too.

Substitution of (28) and (29) into (30} gives the equations

XN fax'\? oy fay\?
(a_) “EYwt (ZY AZY - @)
x } Ay ox
Thare exist exactly two pairs of solutions satisfying the condition of homogenity, the
linear one coinciding with (10) and the quadratic one being equal to the following:

x-'l:xﬂ __!'?31' yr2=yl_x1 {32}

But <0, therefore (x', ) & | M,. B

1 An gnalogous statement can be proved for the case of the events of the second

kind, for the group ,G,. We note that thanks to the double symmetry the
transformation (11) results from (10) and inversely.

Looking for an estimating transformation dual to the quantifying one, we modify

condition II:
| § Ex; = {—af: E = — ﬁ_y
8 gy’ dy éx

i
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The condition of symmetry thus formally coincides with the Cauchy-Riemann
conditions of analyticality of a complex function.

Theorem 5. L&t R, be the 2-dimensional variety of events a¥=(x,y) and
.a" ={y, x). Then the unjque group of transformation R,«+R ; satisfying conditions L I
and IT1 is the group G, of the transformations

w=K we =Kol (33)
where
Ky (ce_}s W —§in m) (34
sin ¢ Cos (9
with a real parameter w. E

Proof. The analogue of (31) resulting from 11' and 111 is

ax, 2 Ay’ 1 5}; 2 (ﬁ}l*)]
—— —— = = T = ], 35
(ﬁx) ”‘"(a}-) 1, (a}-) +{ 3 (35)

Homogeneous linear solutions are

¥=dx+ 8By ¥=Cx+Dy {36)

where

A+ Br=1 C*+D*=1. (37}

It results from I1' that 4*=D? and B*=C* Then A= +cos w and B= +sin & where
@ is a real parameter. The sign of B may be therefore chosen arbitrarily, we take
B=—sinw. From I' we have € =sin ¢ The sign of A and 2 is + because of (26). The
linear solution is thus really (33).

Homogeneous quadratic selutions of (35) have the form

xP=xt4yt yi=xI4 (38)

This transformation has not an inverse for each event (x, y). It does not constitute a
group. The group properties of transformation (33) are easily verifyable. B
Definition: For each — g < W< E. relation (33} will be called the estimating
transformation. The group of these transformations will be denoted G,. ]
The three groups ,G,, ,G, and G, are thus the only groups salisfying all
conditions I, 111 and a generalized condition of symmetry
dx' oy x'
- %
An analogue to Theorem 2 can be easily obtained: the unique metric on the
variety R, invariant under the group G, is the Euclidian metric with the metric matrix

ﬂi

I_I"., et
dx
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1 0 .
Br = (“ I)' The invarjant of the group G, 18

F= xRy (39)

It equals to the radius of an Euclidian circle, to Euclidian length of events u rotated
orthogonally by estimating transformations. The relative length of a path AB between
some points 4 and B defined analogously as in (21) with g, instead of g is minimal if
r=const, i.¢. il the path corresponds to the estimating transformation. This minimal

length is
ehap= |0 — g, (40)

This statement can be verified in an analogous way as Theorem 3.
Lemma 2. Let uf =(x,, y)={z, ch £, z, sh {2)) be an event corresponding to a
datum z;. Let

tan w,= —th Q, (41)
and
w = (:;) (42)
Then '
llr;r = HE {wf:lu,«. I {43}
Proof. By substitution of (34), (41), (39) and (18) into (43). ]

An analogous statement on the events of the second kind can be shown to have
the form
o = K (oo fm, (44)
where u is {13).
If (41} holds for both kinds of events, then

X;=T,CO5 Y, ¥y = —r;sin @y, (45)

5, Dissimilarities of events and their characteristics

Definitions. Two events v and o' are o, s-similar if

[
E=1t|r(£) where o=+1, e=+1. i {46)
¥ ¥

If a couple of events, » and ', does not satisfy (46), then the events are dissimilar to an
extent which is measurable by the difference of the quantities appearing on the left- and
right-hand sides of (46) or by a quantity proportional to this difference. Using (4), (5)
and {45) v-e obtain thus the normalized measures of dissimilarity of events summarized
in Table 1.
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Table 1. Measures of dissimilarity of events n and o’

Types of similanty Measure of dissimilacity

o . Minkowskian Euclidian

+1 +1 sh ({¥ — &) Fn o = 0)
+1 —1 ch ¥ —i2) oirs {0’ + o)
—1 +1 shify + 1) sin oy + )
—~1 —1 ch (& + ) i e’ — )

Such characteristics appear with composed transformations due to products
K (2K, (£2), KK, (), K (oK (@)} and K. (K, ‘{m}_. Special cases Kl{ow)
=K, (2w) and Kiw)=K_(2w) are worth to be analysed in more details. They
characterize the quality of a possible datum.

Theorem 6. Let o be such that th 2= —tan w. Let

E=z/lzy, (47)
and f &, be such that
Jr '"'hn
) = : 48
o =(}, ") @
Let
hy=sh 2Q, (49)
Then ,
F 50
f_'x2+yznafz+§': =155 = 20 (50
Wy P& _ ke
h!=x2_}r2 =1 = sh 2= —tan 2w= — 7 (51)
—2xy g2 :
R < - R ==k b
1/f h
e LN 53
K2(Q) (11,, Uf) i 63
Proof. Using (2, (4), (5),(7), (35, the assumptions of Theorem 6 and the formulae
of the elementary functiops. i

6. Information of a datum

Let f= f(x ¥) be given by (50). Consider scalar fields of 1/f(x, ») over the

Minkowskian plane M, and of f(x, y) over the Euclidian plane E,. Laplace’s operators
; 2 &) &) 2. ) E0)

P3(-)=div grad (- )are,as known, Fi{):= i and Pi(+):= 55 + PR

4
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Theorem 7. Let (x, ¥) be an arbitrary peint of the variety K., for which x| y/.

Then
el 4 1
P,{,(/)+ o ma il (54)
and
VEL) + 1 B (55
Ty {33)
Proaf. By application of Laplace’s operators to (50). ]
Definitions: For each complex p+£0, p#1 let
Hip)=—plnipi—{l —piln{l —p) (56)
where the main value of In (+) is considered.
Let
pe=(1+ih)2  (i=.,/"1) (57)
p.=(1+h)2. (58)
Then the gquantities
1 =H{1/2)~H{p,) {59
1,=H(l/2)—Hip,) {601

will be called the quantifving and estimating change of information, respectively.

Both quantities 1, and /, are functions only of the argument z/z,, as seen from .

(57),(58),(47),(51) and (52). They should characterize the changes of information on the
tdeal value z, borne by the datuym =,
Theorem 8, Let th 2= —tan w. Then
L]
I,=2 t["mdh, (61)
and
0
I=2 £f Qdh,. B (62

Proaf. Using equalities 2w = —arctan (h,) and 20 = — arcth {h,) {see (51) and {52),
respectively) we obtain from (61) and (62) the integrals

fani
Io=—hgarct (h)+In /14 h] (63)
and F: *":r
I,=h, arcté@ (h,) +In /T—h? (64)
which after substitution from (56)-58) equal to (59) and (60). E
We note that for £2:£0
I,<0 and 1.>0. (65)
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Theorem 9. Let x', ¥ € R, be such that x* + y'* =r* =const. Then

1 a*,
[Vi{(?)]xu'.:r“y' e [‘mf]XH’iFr‘t [ﬁﬂ

where ¢, is a constant.
Let ', ' & R; be such that x"

. d’f,
[Filfi. Xl [iﬂl ]x-ﬂr'.r'f. “

where ¢, i a constant. 0
Proof, The second term in (54) may be rewritten as 4/~ it + ) Usmg the

identity f%=1—h? (see (50) and {52)) together with (62) we come to ¢; = —4/r”.

proof of (67) is analogous. |
Both changes of information are thus dependent on the dissimilarity character-

istic [ of the event,

— y? =z =const. Then

7. Relation between two changes of information

Theorem 10. Let th ;= —tan w, and let £,#0. Then

Ly+1,<0. I (68
Proof. From (51), (52), (61) and (62) using (L47)
dl, dh,| 5 |dl. dh, 8¢ !
- === 2|ol({+¢7 }dh 0 zmumw_ 7
Consider intf:gral
by
2'““=” Ucucfe
which taken per partes gives
¢
,,,,, % (€—¢{)ing
\é’ﬂi sIné+8 ifl P df}.

with a

4
The latter term is positive for all ¢ e R, , therefore 2|w| = |m—i~ In&+¢?
¢* =0, Then the ratio is

%%1/ e | = (e 4Pl 42 4 E P16 )




Forall £ =1 is thus d—{"l = % . Taking into account (65) we obtain (68), But both Ty
and 1, are symmetrical funcli(;ns of £ and ¢ ', therefore the same relation holds for
¢<l i

Theorem 1/, Let z;=z,¢" be a datum. Let us consider a path 4B between the
points A:={z,.0) and B:=(zoch @, z,sh) obtained by small differentiable
variations from the path {APE}&. for which & =const. Let f,, be the estimating change of
information determined by the z;. Let 51, be a variation due to variation of the path
AB. Then

8, =0 {69)

and the path {AqB],, maximizes the quantity J,,. I
Proof. The relative length 4,5 of the path 48 satisfies the inequality

(2] = 4 (70)

as follows from Theorem 3. Because of the relation sign(£2)= —sign (h,) we ma ¥ wWrile
(62) as

[hgil
te=2"{" 10dh,| (1)
Therefore
g |
lu22 g 1A anldih,|
for all variations of the mentioned type. ' ]

A quantifying transformation corresponds thus to a path which maximizes the
estimating change of information. 1t may be shown analogously that the estimating
transformation corresponds to a path which maximizes the guantifying change of
information !, which is negative:

8l =0, {72)

8. A quadruple of mutually complementary groups of gnostical
transformations

The gronps G, and ,G, of quantifying transformations and the group G, of
estimating transformations are mutually dual, but they do not represent a system
which would be in a sense complete, Therefore a further group is to be introduced.

Definitions. Let wand o' be arbitrary events (u, u' & R,). Then the transformation

w=K(km (keR,) (73)

where

ko0 .
= 74
K, (k) = (ﬂ k) (74)

is the attenwating/amplifving transformation,

Under gnostical we shall understand quantifying, estimating and/or atten-
nating/amplifying, i

The set G, of all possible transformations K, (k) is obviously a commutative
group. Both relative lengths Q2 and o are invariants under the group G,. [t means that
the uncertainty of an event cannot be changed by attenvation or amplification,
Therefore, if f, denotes the attenuating/amplifving change of information then the
identity

[,=0 (75)

holds.

We came to four commutative groups of transformations, summarized in

Table 2.

Table I Four commutative groups of gnostical transformations

{3 Tk _
saroUp Operstor  Para- Transfor- Inva Variable
Symbal Mame K meter miakins nant
= — ¥
o quantificating K i) i W xt—y e o
20, i
- K u'=Ku foms g i
i, estimating LAl L] =K u 3y ¥ : X "
G BUDIUAEE, K, (%) k I I o
* amplificating ¥

As demonstrated in Table 2, the four groups of channels are mutually
complementary, Their usefulness is manifesied especially by their suitability to create
an important closed eyele of gnostical transformations.

9. The ideal gnostical eycle and its optimality

Definition. Ideal gnostical cvele (1GC), defined by a datom z,{z, # z,) which has a
model z=z,¢? is a triple of continuous segments of lines interconnecting successively
three points of the variety R, determined by events u, (3) and ul’ (42) {or corresponding
points i, u; and uj, respectively). The segments are: a segment of the Minkowskian
circle with the radivs z, {18), that of the Euclidian circle with the radius r; (39) and a
segment of a straight line.




The 1GC is thus a composition of effects of three groups G, G,and G or ,G,, G,
and G,. It should be a closed cycle, therefore tan ;= — th £, is assumed together with
the requirement

k=247, (76)

whljch defines the closing transformations, The IGC includes not only the defining (end)
points of the three segments but also all inner points of these scgments. A graphical
representation of an IGC is in Fig. 1.

_ C!nsmcss of a gnostical cycle corresponds to the requirement that the result of
ideal estimation should be equal to the starting (unknown, ideal) value of the quantity
which is the object of quantification. Idealness of the IGC has two important aspects:

(1) A gnostical cycle cannot be closed on practice because it would require the exact
knowledge of the particular uncertainty borne by a datum.

(2) The IGC is the best possible closed cycle between all cycles passing the same
defining (end} points, as shown below,

hfai{l theorem. Let (IGC), be the ideal gnostical cycle determined by a datum z;
and by its ideal value z,,. Let (VC), be a closed cycle passing through the points (z,, 0)

L ¢ o
.,
s
e
\"'\.
Wi f SN )=
bz shn )
/ Ha i i' t ._L'1
!
o % J,'r
e N /
/ N/
b !

Fig. I. The id:a_l gﬂqsl.ical cycle of an event w of the first kind and of an event o of the second kind.
@ — quantification, E — estimation, 4 — attenuation, A E. A — analogous for the event u

and (x;, ¥ obtained from (IGC), by small smooth variations, Let z,# z5. Let ] denote
successively 7,. I, and I,. Then the (IGC), is optimal in the sense that

dl = dl =1, i {77}

1¥Ch AT
Proof. The overall change of information [, within the ideal gnostical cycle is

given by a sum
L=l 41 +1, (78)

But I,=0 by (75). The sum I+, is negative by Theorem 10 and it represents a
maximum of such quantitics obtained by small variations of the paths in the sense of
Theorem 11 and of (69} and (72), [ |

The knowledge of the ideal gnostical cycle of each individual datum enables us to
attack effectively the problem of optimum treatment of small data samples.
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I'iocTiMecKan TEOPHA OTACTBHEEX JeRCTBHTCILALIX JARARIX

T KORAHNLL
{Tparg)

B craThe nuiomensl TEOPETHHECKNE DINOBEL HOBOTO IOZA0M K Ipodaese nepepaborie JefcTi-
TENMHEA Daninn B oTheme OF CTaTHCTHMSCKON, TPEANATAEMIN TTHOCTIMECKAA TEODAR DCHOBAHE
BEE, BT ANBHOM W3YHEHIN ORI JAK0HOMEPHOCTER MPe0bPEI0RaRME WIHIWBIAYLIGHEL JAHHE 100 BIH-
qHeM neodpegetennocteld. M enmmcreetmod npoctoil axcnombl BLIBGIATCH TEOMETPHYECKHE CBOHCTEA



MPOCTPAHGTRL, B KOTOPOM HIOGPARAIOTCA mﬂr:mrammt AEHU B ﬂmm:cm HTO KOIHYECTBEH-

:.MHMWWM LETITIFGS mmmpm YPABHCHIID MINFM; W3 KeTopare
BWROMTCH OPMYNA AN8 KOIMYeCTaa MHGOPMATAN, CONCPRNMON B BINOM DTASTRHOM JIEMENTE HA-
‘Gopa nelicrarenniny pannpx. Kasooe 3 oTHx Qaumgix GUPEAETSCT HEKOTOPRI HAEATRALI JuMKiy-
THUE URED THOSTHHECKH, | sopannil, MEHIMETHIHPYIONIH ACHIfeRUYI0 T0TEpIo Mbopsani,
Ilrm BRI ﬂt-uﬂp-:ﬂ.ﬁn:unﬁﬂl.
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