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information borne by each particulyr datum evaluated by goostical theory are shown Lo satisfy an
equation of equivalence between sources of fields of information and of thermodynamical entropy,

I. Introduction and summary of previous results

A new approach to the problem of uncertainty of real data has been developed in
[1] and [2]. Real data are results of quantification which is an empirical procedure,
measurements of real quantities and/or counting of real objects. Practical quantifica-
tion is always affected by uncertainty of various origin. Uncertainty of small data
samples is not necessarily governed by a statistical law. But even if it is then a test of
statistical hypotheses on a small data sample is problematic because proper statistical
statements are related to “sufficiently big” samples. The idea of gnostical theory is not
to extrapolate features of small data samples fram big ones but to base the theory of
small data samples on detailed knowledge of features of each individual datum and on
a proper data composition law. Gnostical theory of individual data [1] is based on
Axiom | stating that each possible datum z may be represented as

=158 (zp.E6R,) i1

where R, is the interval of finite positive real numbers. The quantity z, is called the
ideal value, it is the result of an ideal guantification. The quantity £ characterizes the
uncertainty. Using its logarithm 2 we have the model of data

T =2ﬂ,'?n (2]
from which a mathematical model of quantification results:
u=K,(Qu, (3
where
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If z, is a real datum, the ideal value of which is o, then £2,=In(z,/z,) and the
corresponding u, determines the “end point” of the quantifying path starting at the
point u,. This path is an arc of a pseudocuclidean circle which has diameter
Zo=x/ «* —y? =const. The gquantity zo is thus an invaniant of the quantifying

transformation. .
Ideal estimation is an optimal transformation of a datum that yields an estimaie

ii, coinciding with the ideal value u, up to a scale factor. For a real dawum z;
pammulrizzd by {2, the ideal estimating transformation is

u, =K, (), =K (o) K (2)u, (5)

e el U = e _ [eoso —sin @
“i (U) iAo (sin o COS (1 (6)

and where the relation

where
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holds. Estimating path from u, to u; i5 thus an arc of a Buclidean circle having radius r;,
which is thus the invariant of ideal estimation,
Attenuating transformation is defined as

“D=H.[k::|wi (5}
where

K, (k)i (’[‘, f') ki=zalT, ®

For a given datum z, the parameters €, w, and k, are fixed numbers, and vectors
u,., u, and u} correspond to fixed points of a plane (x, y). For points of paths between
them the quantities 2, @ and k are variables. Considering these free points we find that
transformations (3), (5} and (8) constitute the commutative groups Gy, G, and G,
respectively. To cach u™ =(x, y) there is a “complement” w':=(y,x}. The same
transformations as (3), (5) and (8) exist for the complements.

The ideal gnostical cyele 1GC (z5,2;) (or shortly 1GC,) is formed by the
quantifying path (from u, to u,), by the estimating path ( from w, to u]) and by the linear
attenuating path (from u] back to ug ). It includes not only the defining points u,, w, and
u} but also all other points of paths between them.

The varied gnostical cyele VGC (zq, 2;) (or VGC) is a closed gnostical cycle
passing through the same defining points as 1GC; does (u, —u;— u, —u, ). It differs from
the 1GC, by small variations of the quantifying path and/or of the estimating path. For
complements u quite analogous cycles can be defined. The ideal gnostical cycle has
been shown in [1] to minimize the unavoidable loss of information due to the
contribution of uncertainty.

Quantifying and estimating changes of information I, and [, respectively, have
been shown in [1] to be given by the expressions

l,=H{I/—Hip,) 1L.=H(12)—Hp,) (10)

where
Hipr= —pnip}—{1 ~p)In (1 -p) (1
pa=i1+ \_fr—_i' h K2 pai={1+h)2 (12)

and where h, and h, are elements of matrices KJ{€2) and K2{jm),
Vfoh F —h
KZ = ! 4 2 — L4
8 (h,, l”-) Kilw) (.ﬁ, f ) (13)

If1g 3= — th 2 then the quantifying irrelevance h, the estimating irrelevance b, and the
fidelity { are mutually related by the identities
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fr=zlzq. (17
A data sample denoted Z{z,, n) or shortly £ is an n-tuple of real data z,, .. ., 2,

the ideal value of which is z,. A funetion of all z, € Z and of z,, is a characteristic of the
data sample Z. Axiom 2 of the gnostical theory [2] is the composition rule for the
cvaluation of characteristics of data samples: Let Z(z,,n) be a data sample. Let
uli=(zych @, z,5h @) and ul.={(r, cosw,, —r sinm,) be composite vectors of the
data sample Z. Let 2, w_ and r, be characteristics of Z. Then Axiom 2 states:

1

n ] =&
leﬂ}cj= 3 EK:EQJ Kf[l’ﬂc}: ;E 2“3[“}1] “E‘}

W
where

wj =Del {}": Hj{ﬂ;j} wi=Det {i Kﬂmf}} 4 (19)

As shown in [2] the characteristics resulting from this composition rule approach the
statistical characteristics if and only if all relative values £, =z,/z(z, & Z, ¥ ) are closc to
| {the case of weak uncertainties). If uncertainties are not weak then the gnostical
characteristics differ substantially from the statistical ones in that they are less sensitive
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to outlying or inlying data. Formulae for practical estimations having such desirable
features and using only data have been derived from Axiom 2 in [2] They are optimal
in that they approach in a sense the ideal gnostical cycle as close as possible.

The aim of this paper is to propose interpretations of both axioms mentioned
and of the results derived formally from them and to show that deep interrelations exist
between information and other gnostical characteristics on one hand and fundamental
notions of physics such as entropy, energy, time and space on the other hand.

2. Correspondence between Axiom | and the measurement theory and practice

Quantification is an important parl of all cognitive processes as a NEcessary
condition of achjeving the highest level of knowledge of reality. It includes both
measurement and counting of real quantities. Theory of measurement initiated by
v. Helmholtz (1887} characterizes the measurement as a mapping of empirical
relational structures and their relations and operations onto the mathematical ones,
The specific of this mapping is that it is a bridge between reality and mathematics,
Empirical objects are always much more complicated than the mathematical ones.
Empirical notion of the relation “to be equal” between empirical objects has been
developing for thousands years together with measuring technology and instruments,
The technology of measurement includes necessarily a measuring unit. Resules of
measurements say how many times the measured quantity is greater or smaller than
the umit. Therefore, real data obtained by measurements are not arbitrary numbers,
they are positive and finite. Neither zero nor infinity can be taken as a result of a proper
measurement. The same holds for results of counting. Axiom | (1) of gnostica) theory
expresses thus the basic fact of both theory and practice of the guantilication. There are
of course many reasons to use data which have been transformed: to use shifted zero
and bipolar data. But to treat such data, it is necessary to transform them back to the
proper fundamental form before substitution into gnostical formulae. Therefore, the
notion “real data™ within the presented theory does not mclude just any data
origimating from reality but only data having the fundamental form. This is important
because only then can Axiom 1 serve its purpose: to accommaodate real data in a theory,

Theory of measurement does not include effects of uncertainty. In Axiom 1 (1)
such effects are represented by the factor £. But the lincarity of results of quantification
with respect to the ideal value z; corresponds to another important assumption of
measurement theory: the mapping of quantities onto numbers is taken to be linear.

Axiom | of the gnostical theory with its important consequences is thus based on
long-time experience of quantitative cognition of the reality,

.
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. Gnostical tensors

yndcr “gno:fn'mf” we shall understand “quantifying™ and/or “estimating”,
Gnnslrscai event w:!_l be any two-dimensional description of a result of practical
quantification or of its transform, e.g. u havin 2 either the quantifying or the estimatin e

form:
s (x)z Zoch @y reosw
v 2osh )\ —rsine (20)

rz,‘/;’fi'i. (21)
B,mh quantifying and estimating transformations of cvents of a general type
w=K,()u and u'=K,{o)u can be unified: Let v': =(x, by) where b=1 in the case of
quantification and b=/ 1 in the case of estimation. The event v may be interpreted
as a two-vector " {x=1, 2). Let K be an element (K], ; of the matrix

. {C bS
K.—(hs C_) (22)

wh::re tl'=ch £, 5=sh @ h=1for quantification and C=cosm, S=smenb=_ —1for
estimation. Then both versions of (20) ma ¥ be written in the tensor notation as

P =KEet ( f=1,2), (23)
Using the same b we obtain the invari | '
el i envanants of the transformation {23) for both cases in

Theorem 1. Let gnostical transformation i23) take place. Then the matrix K2
transforms as a twice contravariant lensor,

Proof. The direct product of the two-vectar 1 (23) with the same vector written

where

as v’ = K[ v* multiplied by an invariant g— .
¥ nta P gives

av® v = KK an® o

Such a transformation does not change the Minkowski tensor g = (I D)'
0 —1,
g =KiKig® and gy
Therefore
Q.-,ﬂ‘y= Ef a_vi xd
ot ot
where '
O¥=ar* P~y and ki= L
oan
. =¥ -
proves that Q™ is a tensor. Its components equal to that of K-, ]
a
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Corollary 1.]. Both the quantifying and estimating versions of the composition
rule (18] {Axiom 2) correspond to addition of tensors K |

Proof. Denoting
o
B:= 0 b

we obtain for b=1and b= /—1 equalities
Kf{ﬂ;]‘fﬂ{lfﬂf}h- 1 Kfz{wf.:‘:{ﬂ KA ) By -

respectively. Therefore

z Kﬁgr}i (E,KI{QJ})&T . ; Ki(”’iZ’: (B I (EI Eziw(}) B)b:;"-"!' . |

Corollary 1.2, Inverse fidelity f ' (14) and quantifying irrelevance A, l[.l 5)as well
' as fidelity f{ H-; and estimating irrelevance hi, (16) are com ponents of a gnostical tensor
' K? corresponding to a matrix KJ(€) or KZiwh rcspeclwcly: o l

The importance of tensor propertics of squared gnostical operators lies n their
connections with some physical quantities.

24)

4. Correspondence between gnostical theory of data
and relativistic mechanics
Gnostical theory considers real data of a quite arbitrary nature. I is however
natural to require suitability of such a theory also for a very special case nf data
describing simple events of relativistic mechanics. Let us show that such a requirement
is satisfied by the gnostical theory. e
| A relativistic event is a four-vector x* (2= 1, 2, 3, 0) where the component x IS ol
{observed time coordinate multiplied by speed of light ¢}, the other components being
space coordinates. A Euclidean orthogonal mmlign of the coofdmalc system
(x', x%, x") does not change observed lengths, time intervals, encrgics and masscs
depending on the velocity of the coordinate system. Therefore, from this point of view il
s sufficient to consider only a two-vector w':=(¢f, s) where

5= ,-'{_x.! 1+{x1}2 +{HJ:|1 .

Let us consider the simplest relativistic event: A lamp placed at the point =0 flashed
for 7 seconds. Let us denote wg:=(ct. 0L An observer moving with respect to the lamp
with velocity v will observe an cvent w,

(25)

w=Lw, (26)
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where

yfe :
L:( .-rl i Jlr) {}12“—1,"."'12'2} l'
'..'I|,|' L 'r'
is the operator of Lorent’s transformations. The invariant of this transformations is
the proper interval er=/e?1? — 5% . There exists a dual relativistic event: Let sg=ct be
the length ofa stick obscerved in the coordinate system fixed at the stick. Such anevent is

wi=(0, 3550 I will be observed as w':={(s, ¢t} by an observer moving with respect to
the stick with velocity v and the equality

27)

I:“I= I“'rwﬂ

(28)

will hold with the same L (27). The invariant will be the same s, =ct independently of
the velocity v The relative velocity of the observer’s coordinate system is in both cases

(29)

Ifboth s and t are observed then there is no uncertainty in such relativistic observations
and the proper quantities ¢t or s, as well as the velocity ¢ can be calculated. But a
different situation occurs when only the sum cf + 5 is available for observations. Such
an observation may be called incomplete observation. In such a case we identify er with x
and s with y. The relativistic event w is thus identified with a gnostical event u(4)in this
case and ,w with the gnostical event ,u” =(y, x). Then the uncertainty of incomplete
relativistic observation will be characterized guantitatively by a real parameter Q for
which the identity

re=3s/ct.

th2=y/x=xs/ct (30)

holds. We obtain an identity
L=K,£) (31)

and the correspondence of the Lorentz's transformations {26) and (28) with quantifying
transformations (3). Incompletely observed relativistic events can be thus interpreted
as same gnostical evenls and vice versa. The quantifving uncertainty is then modelled
by the unknown velocity of the coordinate system and the quantifying transformations
by Lorentz's transformations and vice versa.

There is an important correspondence between the quantifying tensor
{represented by the matrix K;(©2)) and the energy-momentum tensor of relativistic
mechanics. Using the notation introduced above we represent a relativistic event in the
form (et ch £2, e1 sh £y where 1 is Lorentz’s invariant proper time. The two-vector of the
velocity is therefore {c ch 2, ¢ sh ) and the energy-momentum tensor T (a, fi=1,0) of
a flow of relativistic particles having the local density of masses g has the following
components: T'0=pue? ch? 2, T =T = uc*sh Qeh 2, T""= pc ch? Q2.

Lj.
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To distinguish between mathematical statements and statements using facts
taken from outside mathematics, the latter will be stated below as Propositions, not
Theorems. o - |

Proposition |. Let(cr ch 2,ctsh £2) be 2 relativistic event giving rnse toan eqerg} -
momentum teasor T, Let (z, ch €, 2, sh Q) be the gnostical evenl corresponding to
this event and let K, (©) be its quantifying operator. -

Then there exists 4 linear dependence of the quantifying tensor represenied by
K2{£2) on the tensor T*. | .

Proof. Writing the tensor 77 in the matrix representation

X ch®i? shfch .U) (32)
T=p (sh Qch  sh?®
and using the Minkowskian malrix
Y (33)
MEAD —1
we gel
2
Kjij= 5 T—gu. (34)
HC "

The importance of this stalement consists in that it supports Axiom 2 {18§) of

gnostical theory: Energy-momentum 1ensors corresponding to individual particles are .

added in physics 1o obtain an cnergy-momentum Iunsor_nl the whole system. if‘ l_his
way the conservation laws are res pected. Because of lincarity of Eq.(34) the quantifying
tensors of gnostical events carresponding Lo individual particles are (o he zluddcd, 100, 10
preserve the correspondence between the tensor of the system of particles and the
tensor of the composite gnostical event. -

Nevertheless, it cannot be concluded that gnostical theory of quantification 15
nothing but an application of relativistic mechanics, 'I'h_c gnns!icaj theory has been
built up on Axiom 1 which is quite different from relativistic fucmmﬁ and has a much
broader ficld of application. The point of these considerations is o show Ihai_ a natuoril
requirement for a general model is here satisficd: it isapplicable to a very special, maybe
even trivial case. Tt would not be casy to demonsirate such a correspondence for a
statistical model of the uncertainty.

5. Gnostical kinematics of real data
Let us consider a subclass of gnostical events for which the coordinate x

represents a dimensionless change of observed time while v is a dimensionless change of
a time-dependent coordinate of 4 real object. but not necessarily its geometrical
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position. This class 1s thus much broader than the class of events of relativistic
mechanics, The ideal value =, 1o be quantified is either an interval of the proper time
(gnostical event a “of the first kind™) or 4 proper change of the space coordinate (the
event . “of the second kind™), The component x =z, ch £ differs from =, because of the
uncertainty which causes also that y =z, sh € dilfers from zero, x is more relevant and y
less relevant with respect Lo ideal value =, and their ratio y/x=th £ is entirely
determined by the uncertainty, it characterizes the irrelevance (15), (16) and does not
depend on z,,. For a fixed uncertainty ({2 =constant) both x and y increase or decrease
proportionally to the ideal value z, which in turn increases or decreases with the real
guantity. The velocity of variations of the real quantity is, however, not limited by the
speed of light in the general case being considered here. For example, a sudden
devaluation of currency causes a real motion of economical data without changing any
physical quantities the velocity of which is limited, This is an example of a real motion
of a gnostical event of the second kind observed under a fixed relative uncertainty,
Generalized real motion can be modelled as attenuation or amplification and
characterized by a loganthmic variable

k=In fﬁ— =]|n i d (35)

o Zon
where 2, is a constant. But both quantities 242 and 2o have a similar structure

20 =2arcth (;) N (36)

y l... x+iy
2= — darcly (%) = il

i K—iy

(i=y/=1). (37)

As already mentioned, the quantity 1 may be the proper time of a real event in the
case of an event of the first Kind which is a generalization of a "lime-like™ relativistic
event. But even in the case of an event of the second kind (see example above) the
guantity z, = ot remains to be 3 parameter of such an event, the independent variable.
(Such an event is a generalization of a “space-like” relativistic event.) We can therefore
consider the quantity 1 to be a generalization of the proper real time. It is not strange
that also a “space™ variable will be measured by a time interval. Distances between stars
can be measured by time intervals as well as economical quantities can (“lime is
money™),

A change of a generalized “space” variable versus generalized "time™ variable is a
motion. We are thus coming to a real motion of a general kind measured by the
logarithmic time variable r. The generalized time variable ¢ can change in the case of
events of the second kind in both directions (because g prices may — al least
theoretically — fall as well as rise). The quantity r (6) is a Euclidean analog of this
generalized real time.

. | _
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Using this generalization of the real motion and the analogy demonstrated by
{35}4{37) we may interpret the quantification and estimation as two kinds of grostical
mations,

The pseudocuclidean angle 202 and Cuelidean angle 2w play role of the gnostical
time. The three kinds of motions are modelled by three groups of transformations G,
G, and G,. The velocity of each motion of an event is equal 10 its time derivative:

Table 1. Summary of three kinds of motions of events u” =1, ),
My, T =y, X

Maotion Greup L“H:'i':_::mlc Welneity Invamant  Yariable
Generalized real G. . jr'ln g-': j:‘ : ﬂ;'; Qo oz
Ginostieal quantifying 0, Q ;:5 i %3 Iy o
Gnosteal estimatng &, L I:E. ;—g r 2.2

It can be easily proved that the paths of generalized real motion and of the
quantifying motion are orthogonal in pseudoeuchdean metric, Analogically, the paths
of generalized real motion and of the estimating molion are orthogonal in Euclidesn
metric.

Thus, we may speak of kinematics of a generalized real motion and kmematics of
both quantifying and estimating gnostical motions. Forees driving the generalized real
motion lie outside the gnostical theory. The quantifying motion is caused by
uncertainty of quantification while the estimating gnostical motion 1s a result of an
effort of a subject to compensate the effect of uncertainty on data as much as possible,

Gnostical motion of bath kinds is governed by certain vanational principles as
derived in [1] from Axiom 1, i is thus a motion along geodesics. The theory of gnostical
motion may be therefore interpreted as kinematics of real data.
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6. Gnostical dynamics of real data
6.1, Energy of a real datum

Dynamics is dealing with forces but forces are closely connected with variations
of energy. Gnostical dynamics includes consideration of energies as # basis for
consideration of the entropy of real data.

If a quantity g is measyred in terms of electrical current, voltage, or in terms of
clectrical pulses, then the electrical energy connected with this quantily is proportional
to g*. Tt may be measured without electrical transformations as well but the measuring
process or the dependence of g on time or another quantity may be modelled using an
analog computer, Then the energy of the electrical quantity modelling the g is again
proportional 10 ¢°. The coefficient of proportionality is a matter of scale, we may
therefore take g° 1o be the ¢nergy of the quantity 4.

For a vector quantity q the energy may be attached 1o the square [|q]|* =q"ggof
the length (where g is a weighting matrix which corresponds to the metric tensor). This
is natural ¢.g. for a vector g modelled by velocity of a particle, in which case the energy
llqlI* is proportional to the kinetie energy. To obtain positive kinetic energy for both
kinds of vector events ¢ in the case of Minkowskian metric we shall use the ¢nergy
9 =197gsq| where g,, denotes the Minkowskian matrix (33}

In considerations of gnostical kinematics of data we have met two velocities of

; . du
gnostical motion, 10 (or %-g) and E . These vectors have the same length when the
same metric is applicd because the equalities

du fy du [y
@\ iec _x) (38)

hD!i..‘]. Thus using Minkowskian and Euclidean metric we obtain {wo energetical
variables characterizing gnostical event

E, =x*4 ¢ {39)

l'ﬁ:ipl?cti‘-’f:'}'. The event u corresponds to a datum z=x+y. Let z, be a fixed real datum
obtained as a result of quantification of an ideal value 2y, Let the event u follows the
pfuh of the ideal gnostical cycle (IGC),. Then both energies £ and E, and their
difference £, —E_ evolve as shown in Table 2.

Itis clear from (39) that the increase of the energy k., during quantification is due
10 the contribution of uncertainty because F. _ . =2y, This increase of energy is

—I:"IIE; m;rnp-ensalcd during estimation. Therefore, the following statement results from
able 2.

E.=x?—y
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Table 2. Evolution of energies £ and £, ofa prostical event and of their diference during the ideal gnestical
cycle
Phase of the ideal Energy Change of the energy
gnosticgl eyele E E. E.—-E,
Ouantification invariant varable variable
(E_=z]) {Trom =3 to rf) ifrem O o 2%
Estimation varable inwarian varmable
{ffrom =z 1o ) (E.=r]) ifrom 2y to Oy
Attenuation varble variahle invariam

{from v} 1o 235} {from rf 1o 33 £, —E_ =)

Proposition 2. Total change of cnergy of a gnostical event within an ideal
gnostical cycle equals 1o zero. ]

This is a specific form of the energy conservation law as manifested by the ideal
gnostical cyele.

6.2, Grostical ehunmels and their temperature

Both quantificating and estimating transformations have been unified into the
form (23). This linear transformation can be interpreted as a linear channel with input ¢°
and output #*. Both versions of this channel have their lengths measured by the
parameters £ or e, They both have their invariants equal to £ or £, . This means that
the event ¢* keeps its input energy while passing through the channel.

There exists a close connection between energy, amount of heat and temperature.
Energy of different kinds can be converted into its thermal form and heat can be
measured by temperature. Let us consider the simplest case of lingar dependence of
absolute temperature on the energy. Then we can speak of the temperature of a gnostical
channe! which is proportional to the invariant input energy of the event ¢*. We are thus
coming to the temperature of the quantifying channel T, and of the estimating
channel T )

T=ck. T.=¢E. {40)

where ¢, 15 4 constant,

6.3, Entropy of a real datum

The thermodynamical entropy is defined by the integral

§— FTQ_ (41)
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where () 1s an amount of heat and T'the absolute temperature at which the heat 4@ is
transferred into or from the system,

Proposition 3. Let z; be a real datum, the result of quantification of an ideal value
zq. Let f; be the fidelity (14) of this datum. Then changes Se—Sepand S,—5.; of
thermadynamical entropy due 1o the quantifying and estimating phase of the Eildcal
gnostical eyele 16Oz, ) are

S{i_h‘.qll’.i:k{j..l = 1 Hrf_ Sulj-:'t‘{,llrr - ” {‘1‘2}

where ¢ 15 a constant, i
Proof. For both guantification and estimation we have from Table 2

dQ=c,diE, —E (43)

where ¢, is & constant. Temperature T, and 7, {40) are invariants of quantification and
estimation, respectively. Therefore

¥l

Su—Sp0m Lod—ypy | 2ayr= A (S ) LG
WS =N o \dwg )= P it =1 {44)
[¥]

The quantity S, S, can be obtained guite analogously, |

6.4. The second law of thermodynamics for a closed cyele
of transformations of a real datum

Let us further consider a real datum 2, the ideal value of which would be z,.

: MAIN PROPOSITION A4, Lel 1Oz, 7)) and VGCizg, 2,0 be the ideal and

varied gnostical cycles respectively. Let z, # Zy. Let d§ denote successively dS,, dS, and

dS,, the changes of entropy § during the quantifying, estimating and a::enualing
phases of the cycles, respectively. Then

§ dsz § ds>0. (45)

KOy L

.me’j: Entropy does not change during attenuation because during this phase
equality £, = E_ holds. Therefore by (42)

§ AS=8y—Se0+Sy—Suo=elf + fi— 20 (46)

Tic,

where f;< | because z,# z,,.
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The sum of changes of entropy in (47} may be rewritten using (4] as
Soi—Sga+ 84— Sao=cll/ch 202+ cos 20, —2). {47}

It has been proved in [ 1] that the quantity || is the relative length of the quantifying
path of the /G C, and that varied paths have a shorter relative length. Anatogm_isl;f. the
quantity ex] 15 the relative length of the estimating path of the /G, and 1t 15 the
minimum of lengths of the varied paths. Therefore the lefl inequality in (45) rr.:ul]cwa;

The ideal gnostical cycle is thus optimal not only from the point of view of losses
of information (as shown in [17), it is also thermodynamically optimal in the sense of
the left inequality in (43). But even in the case of an ideal gnostical cycle the entropy
increases afler a gnostical event (corresponding to the datum z; which does not equal
the z,) passes through the closed cycle.

6.5, A thermedynamical interpretation of gnostical tensory

Both §_and 5, are functions of the fidelity f(42) which is defined on the w.ariel)r of
events u=(x,y) and w'=(y, x). This varicty has two metrics: Minkowskian and
Euclidean ones. Therefore, we can consider the quantities §,{x, ¥} and 5.(x, y) to be
scalar fields over Minkowski plane M, and Euchdean plane £.. respectively.

Proposition 4. The contravariant gradient of the field S (x, y) over the plane M ; is

a two-vector
.y 20, du

VilSy=—c S 2 48)
and the gradient of the ficld 5,{x, ¢} over the plane £, is
2h, du
. e et —-——, 449
ViiSd I (49)
i

Proof. The covariant form of the gradient of a scalar field 5 (x, v} is the two-
veclor

oS, = (_E? ‘3) (50)

ox  dy

the covariant form of which can be obtained by rising the index a. This is effected by
multiplying (50) by the metrical tensor:

c ‘s, sy of M _4x1}' 51
FulSy= (K = """') SR ({xz_}.z}z TR ) (31

dy
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Using expressions (15), (20) and (38) we come to (48), The Euclidean case is analogical,
only the difference between covariant and contravariant forms of the gradient
disappears. [ ]

Corollary 4.1 Let || P4 {S,t ||y and ||F!5.} || ; denote lengths of both gradients of
entropy measured in corresponding metrics. Then

S LATAT (52)

’ J
Bath irrelevances may be thus interpreted as intensities of the diffusion fMows of
thermodynamical entropy in planes M, and E,. Because both inverse fidelity f ~ " and
fidelity fare linear functions of the entropy (see (42)) we may interpret both versions of
the gnostical tensor K*? {Theorem 1) as tensors of entropy-entropy flow, We have
already scen that the tensor K corresponds to the energy-momentum fensor of
relativistic mechanics  Proposition 1). We now see that the role of relativistic energy is
played by entropy in both gnostical cases {quantification and estimation). However,
both gnostical tensors have been obtained originally as geometrical “dissimilarity”
lensors for a very general case. Their application field is therefore much hroader than
that of relativistic physics.

hy=

Zg .
Wrria MNViSlle b=

6.6. A law of equivalence of the thermodynamical entrapy
and of the information of a gnostical event

The correspondence between information and thermodynamics has been an
object of scientific interest for decades. The gnostical theory offers a mathematical
model of such correspondence relating 1o cach particular real datum.

MAIN PROPOSITION B. Let S, und 5, be thermodynamical entropies of a
gnostical event during quantification and estimation, respectively. Let ¥ i!S,) and

VE(S,! denote the Laplace’s operators F{ -} =divgrad | -] in Minkowskian and
L

Euclidean metric, respectively. Let I (h) and I (h,) be quantifying and estimating

changes of information, respectively, defined by (10)-(13) and (15), (16). Then it holds

2 ) d‘"fr
{FMISJ'_'I:,}‘},;L-J-:Q H;T (53)
CRFAE S

Where x4 y? =" and where both #2 and ¢, are constants.

(FZJS'(_T j']” oy = ﬂ {54_}
EU 1 f 2R 4 d'ﬁi o
where x"? — "% = 2% and where both 72 and €, Are constants. 1
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Proof. Apply the operator div |- | to gradients (48) and (49), differentiate the
quantities 1, and !, and use the invariancy conditions for ' and 23, |

The left-hand sides of (35) and (56) are proportional to the intensitics of sources of
fields of entropy over M, and K., respectively, The right-hand sides are proportional to
intensitics of the information on the intervals of both irrelevancies. The correspondence
of entropy and information take thus place not at the level of these quantities (fields)
but at the level of sources of fields,

The explicit form of the functional relationship between iformation and
entropy may be easily obtained from (53), (54), (42) and (14). Both entropy and
information can be evaluated numerically for cach data sample as functions of the
argament z,.

7. Relativistic cybernetics, relativistic statistics?

The notion “relativistic cybernetics™ appeared probably for the first time in &
paper of G. Jumarie who has been publishing a series of papers on this subject for a long
time {see Jumarie (1975 and his book [4]) Jumarie's idea can be perhaps formulated as
a necessity to take into account the sybjectivity of the observer in all cybernetical
considerations, Q3. Jumarie supported his point of view by theoretical arguments. They
differ from that of the gnostical theory and the level of the considerations is very
general. Bul the correspondence between relativistic and gnostical events demon-

strated above supports the point of view of G. Jumarie in a quite particular and

quantitative way. A guestion may be raised on the necessity and usefulnes of such
“complications”. Cybernetics uses statistics. Relativistic statistics already exists for a
long time de facte, although it 1s hidden under the name “robust statistical theory™ In
the framework of the robust statistics, individueal random events are given individual
weights depending on the uncertainty of the events. This is an analogy of the
dependence of masses of particles on the relative velocity of the observers. 11 has been
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3. Jumarie, G, A relativistic information theory model for genecal systems, Int. Journal of System Science &,
Mo, & (1975

4. dumarie, G, Subjectivilé Information Systéme, synthise pour une ¢ybernctiyue rebaliviste, Les Bditions
Linlvers Inc. 1980, Québec.
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Il EORA R
[RLVERTEN

B crathe mHTCpnpeTHPYIOTCH DEMVILTATLL 19BOi, TR HYIRIBACMON TR0, TeopI
AeHETEHTEIBEME TARHBR ¢ TpAMEtines oomstui deoskd, Bonese HeONPEOEAeN oS TeR B nei-
CTBHTENEHER [JUHHEC 3KBMBLICHTHD BUDTYATLHOMY JBHACHO JTAHARY ROOME DeQUeanseckuy TR,
Aoxaseigaerca, 410 UM TMEHYTRIL UHEDOE DT T P T (TN CHpaBcIUIHBE g
TEPMOIMHEMUNOSKHK 3AK0HA, HIMEHEHHS HEGOPMng, corepaamelics B KOKI0M DTAETREOM JEMERTE
HAGOPE  WAHHLIX, CUCHHBJEMES COPMACHD  FHOCTHUCCKON  TeODHM, YADRICTRODAIOT  YPABHCHHIO
FKEHBLICH THOGTH HETOMHUKOR T00EH HHOPMATIHE W TEPMO IR MPEoeE it T[T,

P. Kovanic
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Crechoslovakia

shown above that using the gnostical model of uncertainty we may obtain a consequent
correspondence of this type. 1t has been shown in [2] how practically applicable
estimating algorithms can be derived from the gnostical theory, making it possible to

hiandle small samples of poor data, If this is true then this is a good reason to consider ‘
both thegretical and practical problems of relativistic cybernetics,
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