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A non-statistical ( gnostical ) theory may be used 10 develop algorithms for robust estimation, robust identification
and robust control suitable for treating small samples of inexact data, the statistical model of which is wnknown,
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Abstract—A new theory apphcable 1o data treatment is briefly
exposed. This (gnostical) theory derives s muthematical model
of data disturbed by uncertainty, the statistical model of which
may be unknown or even unjustifiable. Gnostical theory is
based on two simple axioms. It results in laws governing
the uncertainty of each individual dotum such as variational
principles of virtual kinematics of real data and of their dynamics,
closely refated to entropy and information of dota. Algorithms
resulting from gnostical theory maximize the information
‘Bbtained from data and yield data characteristics robust with
respect to outlying or inlying data. Fields of application include
the estimation of both location and scale parameters of small
data samples and of their generalized correlations, robust
estimation of probability and of probability distribution, non-
Tinear discrete filtering, prediction and smoothing, identification
of systems under strong disturbances and adaptive setting of
alarm systems, robust identification of regression models, robust
control systems etc. The main advantage of the new approach
is that it leads to slgorithms efficient even in applications to
small samples of bad data.

1. INTRODUCTION
ConNTROL necessarily includes estimation of real
quantities and identification of a system. The better
the cognition, the betler is the control. But real
cognitive processes are unavoidably disturbed by
uncertainties of various origins and natures, Practi-
cal situations are ordinarily neither stationary nor
ergodic and a full statistical description of the
unceriainties is rarely possible. Available data
samples are often “small”, ie. their size and/or
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quality are not sufficient to support a hypothesis

on a statistical model reliably. The idea of the

gnostical approach cxposcd here is to base the
treatment of small data samples on a theory of
individual uncertainty of a datum instead of using

a statistical approach assuming some large collec-

tions of random events. A foundation of a theory

of individual uncertainty can, of course, be expected
to differ from that of statistics in substance.

Each theory of uncertain data should answer two
fundamental guestions. '

(1) How should the amount of uncertainty of an
individual datum be evaluated?

(2) How should the data of a sample be composed
to suppress influence of their individual uncer-
taintics on a characteristic of the whole sample?

The former problem is closely related to the prob-

lem of defining metrics on.spaces. If a datum has

a value = instead of a true, ideal value z, then the

effect of uncertainty is usually evaluated by the

difference z — z,. The quantity |z — zg| characteriz-
ing the error should represent the distance of two

points r and 2, of one-dimensional real variety 5,.

But such a formula is true only under the assump-

tion that the metric on the variety S, is of the

Euclidean type. Should the variety of uncertain data

be a Euclidean space? [l not, then 4 more general

formula for the distance should be used which
would be valid for a more general type of a metric
space of the Riemannian type. A one-dimensional

Riemannian metric space is defined by the variety

5y on which a positive weight g{z) is given such

that an element df of the distance equals dI = g{z)d=.

The weight glz) equals identically 1 only in the

Euclidean case. In other geometries it depends on

the point z of the real variety §,. Thus the evalu-

ations of individual uncertainty can be interpreted
as a geomelrical problem. In gnostical theory
the metric enabling one to measure individual
uncertainty is fully determined as a consequence of
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the first axiom of the theory although this axiom
seems to have nothing common with the geometry
on first sight. It expresses some evident metrological
facts,

The problem of data composition is also to be
interpreted as a more complicated one than in the
classical approach; for example, in evaluating the
arithmetic mean the linear composition law is used,
whereby bad data obtain the same weight as
good ones. Ordinary estimates of variances and
covariances assume a quadratic composition law
as the proper one, giving individual outliers a strong
influence on the result. But why should the same
composition laws as those of classical mechanics
related to the centre of mass and the inertial
momentum of a system of a mass points be accept-
able? The coherence of stalistics with Newtonian
mechanics based on Euclidean geometry was cer-
tainly important two centuries ago bul present
scientific paradigm is neither Euclidean nor New-
tomian. In gnostical theory the data composition
law is given by the second axiom based, among
others, on the requirement of coherence of the
gnostical theory of data with the relativistic mech-
anics.

As shown in this paper, the two gnostical axioms
mentioned and their consequences are sufficient to
develop alporithms for the treatment of small
samples of real data under a strong influence of
uncertainty which may admit no statistical model.
Only data should be used, the idea is: “Let data
speak for themselves!™

A first exposure of the gnostical theory has been
presented in Kovanic (1984a—c). The aim of the
present paper is to attract the attention of readers
feeling the need for an efficient complement to
existing models of upcertainty which would be
theoretically founded and practically applicable.
The reader interested only in practical aspects, i.e.
algorithms and applications may find it desirable
to move on immediately to Section 3.

Some references are in order here. As already
mentioned, there exists a deep connection between
the gnostical theory of uncertain data and relativis-
tic physics. The uncertain events considered by the
gnostical theory have a general nature. However,
a general theory ol uncertainy should also hold in
a simple particular case of the uncertainty related
to the physical motion. The correspondence of such
seemingly different theories is thus not surpnsing;
it is & manifestation of Bohr's principle of correspon-
dence, The idea on relations between relativistic
physics and cybernetics appeared probably for the
first time in a paper by Jumarie (1975} and was
treated further in a series of his papers and books
on relativistic cybernetics (e.g. Jumarie, 1985)
Jumarie’s idea can perhaps be formulated as a
necessily to take into account the subjectivity of
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the observer in all cybernetical considerations.
Jumarie uses theoretical arpuments of a very general
naturc to support his point of view. They differ
from those of the gnostical theory substantially,
Nevertheless, results of the gnostical theory also
support theidea that cybernetics should be relativis-
tic. In gnostical theory, a non-Euclidean character
of metric results in different weights of data having
different errors. Each weight depends on the uncer-
tainty of the particular datum in a way which is
reminiscent of the dependence of the mass of a
relativistic particle on its relative velocity.

Individual weights of individual data derived
from statistical assumptions also appear i the
framewark of robust statistical theory. The gnost-
ical approach is quite different but its practical goal
i1s the same: to treat data. Both approaches may
thus be compared by practical results. An example
of such a comparison is given n Section 6.

L GNOSTICAL KINEMATICS OF AN INDIVIDUAL
DATLM

Kinematics deals with both actual and virtual
motion of objects. The object 15 a datum. Its value
differs from the result of an ideal qualification
because of influence of uncertainty. Changes in its
value caused by the uncertainty may be thought of
as being virtual motion along a path. Behaviour of
errors of a datum c¢an thus be studied by methods
similar to those of kinematics, but it is necessary
to have a realistic and sufficiently general starting
point Such a point is the model of data.

2.1. First gnostical axiom—the model of data

Ome usually considers an additive model

v, =1ty + 5L vy sLheR,i=1,..,n (1)

where vy is an undisturbed value of the variable v,
5 is a scale parameter and (1, is a numerical
characteristic of the influence of the ith particular
uncertainty. The scale parameter is constant for all
observations of the series. It characterizes their
variability. ;

However, of greal importance in this exposition
is a multiplicative version of model (1), easily
obtained by exponentiating

7y = zgt™, z,zaeR,, i2)

where z;, = 8", 2, = e" and R, denotes the interval
of positive finite real numbers. If not specified
otherwise, the notion “data™ will be used for the
multiplicative model (2}, which will now be con-
sidered in more detail,

A quantitative cognition process includes two
phases: the quantification and the estimation. The
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gquantification is a mapping of a structure of empiri-
cal quantities inte an interval of real numbers.
Results of quantification are data. Only two quanti-
fication procedures will be considered here,
measurements of real quantitics and countings of
real objects having a defined quality. An ideal
quantification would result in a precise datum zq
{called the ideal value). As a rule, a real quaniifi-
cation process involves uncertainty. A datum really
produced in an ith quantification procedure will be
denoted by z;,. The estimation is 2 mapping of a
collection of data into an interval of real numbers.
It should produce an estimate of the (unknown)
ideal quantity z,. To develop a mathematical model
of quantification the data model (2) will be used, but
to stress its fundamental features it is generalized as
Axiom 1 given below,

Axiom 1 of the gnostical theory. Let z be either an
actual datum already produced by quantification
or an arbitrary possible result of quantification. Let
zg be the ideal value of this datum. Let { be
a parameter characterizing the influence of the
uneertainty on this datum. Then

z=2zof zaleR., (3)

where possible values of  cover the whole con-
tinuum K.

This data model has its own motivation indepen-
dent of (1). To obtain a realistic theory one must
start with realistic axioms. The realism of Axiom 1
is in its correspondence to the nature of data. They
are not just any real numbers but results of a
practical activity of men and of their manipulations
with real objects, measuring tools, devices and
apparatuses. They are products of quantification,
which is a special technology having its own the-
ory—metrology (Krantz et al, 1971). The theory
ol measurement has its axiomatics reflecting the
fundamental assumptions of real quantifying pro-
cedures. A result of a primary measurement says
how many times a measured quantity exceeds a
measuring unit or vice versa. Hence, the result of
such a measurement is positive and finite. The same
holds for counting.

Metrological axiomatics also includes a require-
ment of linearity of the mapping of empirical
structures into numerical structures, but metrology
deals only with precise quantification, leaving the
problem of uncertainty of quantification to post-
processing. The author wishes to include the uncer-
tainty in the quantification stage, extending the onc-
dimensional linear metralogical model by another
variable [ characterizing the effect of uncertainty.,
However, this quantity is often an object of quanti-
fication too. The roles of variables zy and { should

thus be interchangable, symmetrical. This is how
one arrives at the bilinear lunction (3) of a pair of
finite positive factors.

The metrological requirement of positiveness of
data is related only to results of primary quantifying
operations. There exist secondary manipulations
with data such as shifting of the origin of the
measurements and so on. Some processes involve
additive disturbances and additive transformations
of data. Sometimes the result of data treatment 15
required to be translation equivariant (the case of
a location parameter) or translation invanant (the
case of the scale parameter). The additive data
model (1) is suitable in such situations. All formulae
of the gnostical theory as well as gnostical algor-
ithms are applicable to multiplicative data (3)
directly and to additive data (1) after their exponen-
Liation.

22, Virtual kinematics of guantification
A datum z; may be interpreted as a result of
virtual motion caused by a continuous change of
the factor { from 1 to its final value {;. Features of
the path passed by the datum (“kinematics” of the
datum) may be derived from Axiom 1. Using the
form {2} of this axiom and the identity
e? = coshQ + sinh Q (4)
a Cartesian coordinate system is introduced,

x: = zi"cosh(Q)) y: = z3"sinh(Q2). (5)

Using the matrix notation

[l o~
NS £ I

cosh€  sinhQ
K=K = 7
o2 bl |:sinh(1 cnshﬂ] ™
gives
u=K/(Qu, u=K/(2)u. (8)

The matrix K, will be called the guantifying channel,
the vectors u and .u will be gnostical events of the
first and second kind, respectively. Vectors up and
Mg are ideal events. If w=K/(Q), and
u" = K (Q"Jug are two gnostical events then the
transformations

u" =K (o' u" =K (0 (%)
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take place, where
Q=£0"-—©@ (10)

for parameters of the channels. Thus quantifying
channels transform, in a general case, arbitrary
gnostical events of both kinds into other ones
of the same kind mn the same way (they are
“symmetrical”), Parameter £ of a channel charac-
terizes the relation between the two events due to the
effect of uncertainty. An ordinary matrix product of
two channels K ({) and K_{£2") has the parameter
equal to the sum £ + " of parameters of both
factors. A set G, of all possible quantifying channels
is casily shown to be a commutative group with
respect to multiplication of channels which corre-
sponds ta a “serial connection™ of these channels.
The group G, is an isomorphic map of the additive
group of parameters £ This parameier is an
independent variable of the quantifying process.
It characterizes a relation between two gnostical
events. The group G, is a mathematical model of
gnostical “motion” caused by uncertainty, which
may increase as well as decrease the data. This is
a good feature leading to the possibility of mutual
compensation of different gnostical motions, [t will
be important in the sequel that the group G, is an
. isomorphic map of the group of Lorentz transform-
ations. Yet another interesting feature of all quan-
tifving channels may be seen in (7):

Det{K,} = L. (11)

Channels are thus “uniformly regular™
Let the cvents of both kinds be combined into a
matrix U = [u, u]. Then (%) becomes

U” = K (U (12)
and
Det {U"} = Det {U'} = .'-:5"’ (13)

because of (11). This says that the ideal, true value
2g is an invariant of the group of guantifying
motions. [n spite of the “falsifying” influence of
uncertainty the “truth” is thus present in each
gnostical event.

2.3. Metric of quantification and estimation
Nothing has yet been said on the choice of a
metric of the space occupied by gnostical events.
What is known is only that it is a Cartesian product
R, = R, with coordinates x, v transformed by the
group G, of channels K,. Could a metric, a scalar
product to measure distances between two gnostical
evenls, be chosen [reely? The answer 15 negative.

Many mathematicians belicve that they have
freedom in the choice ol a metric for their mathe-
matical model. This is true for pure mathematics
but it may not be true for mathematical modelling
of some real processes. A long time ago, Albert
Einstein had already acknowledged Riemann's idea
on the existence of tics between metrnic tensors of
spaces for mathematical descriptions of reality on
the one hand and such lacts of real life as real forces
on the other. Both of Einstein’s theories of relativity
corroborated Riemann's daring hypothesis [or
mechanics, clectrodynamics and optics decades
after his death. The physical facts implying the
metric in special relativity are the invariance of the
speed of light and momentum conscrvation. In
general relativity theory, such facts are the equival-
ency of inertial and gravitational effects of mass
and the distribution of mass in space.

In this case the governing facts have been expre-
ssed by Axiom 1. As proved in Kovanic (1984a)
there exists exactly one metric on the space of
gnostical events invariant under the group G, It is
the Minkowskian metric for which a scalar product
is

§12 = U{gyls, (14)

where

1 1]
E.:r=[u _1} (15)

is the matrix representation of the Minkowskian
metric tensor. The scalar product of two events of
the second kind obviously differs from (14) only by
sign.

The proof of this impertant statement is simple.
A metricis invariant with respect to transformations
performed by K eG, iff the equation ujgn, =
u] K, gK, u, holds identically for a symmetric matrix
g and for all events u and all channels K, It should
thus hold: g = K_gK, for all K,eG,. This identty
is satisfied only by matrices having the form cgy -
where g, 15 (15) and ¢ is a non-zero constant. But
a constant multiplier of a metric tensor does not
produce a new metric. Therefore ¢ = | may be
chosen.

The quantity Det {U} = z3” is thus a square of
the length of the event w. It remains invarant
under transformation. The channels K, represent
(Minkowskian) orthogonal rotation of events u (or
u) without a change of their (Minkowskian) length
equalling

zif =t =yt (16)
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in the case of events of the first kind and
~/ — 1247 in the case of events of the second kind.

When a metric lensor of the space is known, it
is possible to study geodesic lines. Two families of
geodesics can be proved to exist for the particular
case under consideration: straight lines and Min-
kowskian circles, As known, a distance between
two points on a peodesicis extremal when measured
along the geodesic. The gnostical quantilying
“motion” along a path corresponding to & quantify-
ing channel {along a Minkowskian circle) should
therefore satisfy a wvariational principle, It can
indeed be shown that the modulus || of the
quantilving *time” £ is a relative length of such a
path and that it is the maximal possible relative
length of this path. The variational principle is thus
the maximization of the relative distance of daia
from the ideal value. Thos Nature “aims”™ to falsily
the data by uncertainty in the most effective way.
Itis done by means of symmetrical {(9) and uniformly
regular (11) channels.

To “move”™ in the “gnostical game™ against
Mature one chooses an estimating path which
would minimize the damage caused to data by
quantifying uncertainty. As shown m Kovanic
(1984a) there exisis exactly one estimating channel
K, (w) corresponding to each quantifying channel
K, () (where tan @ = —tanh (), which is symmetric
and uniformly regular. Its explicit form is

K_(c) = l:c::_]s @ —sin u}j|
ST ek COvE
(where tanw = —tanh ), (17
The estimating transformation 15 thus

u* = K [w)u. (18)

A set of all possible matrices K, is also a commuta-
tive group G, with respect 1o matnx multiplication.
It represents a group of estimating “motions”, the
estimating independent wvariable being the par-
ameter w. The unique metric invanant under the
group G, is the Euclidean one. The invariant of the
group is the quantity

ri=xt + 3, (19)

the (Euclidean) radius of a (Euclidean) circle, Esti-
mating motion is thus a (Euclidean) orthogonal
rotation of gnostical events. The relative length of
the path along the circle is |ew|. It 15 the minimum
of lengths of varying paths. Such a choice of
estimating channel makes estimation dual to
quantification.

24, The ideal gnostical cycle

A third type of gnostical channel can be intro-
duced to close a cycle of these transformations: the’
attenuating/amplifying channel, which has the form
of a matrix

k0
K_,=[0 k]‘ keR.. (20)

The set G, of all possible channels K, is also
a commutative group. This group represents a
generalized real motion because it is connected with
variations of the ideal gquantity z;. Both gnostical
motions are orthogonal to the generalized real
motion with respect to their “own” metric. The
three types of motions are summarized in Table L
There are three mutually complementary
motions. They may be used to create a closed
gnostical cycle—rthe ideal gnostical cycle (1GC),
defined by a real datum =z (z; # zp) which is a
triple of continuous segments of lines successively
interconnecting three points of the variety of gnost-
ical events, namely
—a segment of Minkowskian circle from (z57,0)
to (zi®ch Q, zi%sh €2
—a segment of Euclidean circle from (z§”chfy,
ziPsh Q) = (rcos oy, —rsiney) Lo (r;,0)
—a segment of straight line from (r;,0) to (25", 0).
A complementary (IGC); exists to (IGC); passing
through the points corresponding to _w, mstead of
u;. In both cases rf = z5""ch2Q; = x{ + y] and

zimch Q) = rcos ey zi%shil = —rsine,.  (21)

The “idealness™ of the [GC has two aspects.

(1) In practice, the exact value of z, 15 not known,
therefore the cycle can never be closed.

{2) The IGC is the best of possible gnostical cycles
passing through the same “edge” points. To
show the sense of this statement it is necessary
to proceed to dynamics. :

3 GNOSTICAL DYMNAMICS OF AN [NDIVIDUAL
DATLUM

3.1, Dissimilarity of gnostical evenis and its
characteristics
Squares of channels

Ki(Q) = K (2Q), Kl{w) = K. (2w) (22)

can be shown to be transformed as lensors when
gnostical events are transformed by gnostical chan-
nels. To understand the role of these tensors the
concept of dissimilarity of events 15 mtroduced,
Two events u' and u are said to be o, e—similar if
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TasLE 1. THREE GNOSTICAL GROUPS
Time
Group Independent dependent
Symhaol Maotion vartable Channel Invariant variables
G, Quantification 0 K, Ep=e S
G, Estimation a K, JeE+ysr e 0 2]
i, Attenuation/ .2 K. ¥x =tanh} \.-' 1" =+ g“.
amplification = tan o WX =
TasLe 2 MEASURES OF DISSIMILARITY OF A COUPLE OF EVENTS h,:=s5n2w= R T tanh 200 (26)
W AND W x4y
ETH:ETII::; Measure of dissimlarity o
& . Minkowskian Euclidean Quantifying irrelevance;
+1 1 sinh (@' — 0 sin (o' = ) ) 3 -
+1 —1 cosh ¥ — £3) cosfu' + w) hy:=sinh20 = ——— = —tan2w. (27)
=1 +1 sinh (£ + £1) sin {w' + w) >
—1 —1 cosh (£Y + £)) cos{w' — w)
Imfidelity:
1
x |xf — = cosh 202 (28)
o—=|-| wherco=+1,6= 41 (23a) f
¥ ¥

This condition is obviously equivalent to

ox|yl* = ¥« (23b)
If a couple of events does not satisfy (23b) then
the evenis are dissimilar to an extent which is
measurable by the difference of both sides of (23b)
or by a quantity proportional to this difference.
Using (23b) and (21) normalized measures of dis-
similarity of events are thus obtained, as summa-
rized in Table 2.

Thus the products of channels K (£2)K () =
K {2 + ) and K (@)K, ('), which are members
of the groups G, and G,, as are the channels,
characterize the dissimilarity of events. The special
cases K} and K? obtained for Q = @' (or @ = )
thus characterize the dissimilarity of an event ‘to
itself, “via the ideal value™. They can be written in
the form of matrices

HZ

Il
e
=
£
L ¥
I
1
oty
'F'
| TR |
T
2

l:"
~ =

using the following notation,

Fidelity:

(=

54

x—y
fr=co52m == J...
X+ ¥y

(25)

Estimating irrelevance:

These relations between the quantities can be
derived from (7}, (17} and (21) using formulae of
standard functions.

Using Laplace’s operator V* (which in Min-
kowskian metric has the form

) _ o)
vl ) = E-{—!- U7 . S
ul) =75 8y
and in Euclidean metric
&() 6’('})
Vifj= — + —=
el a2 T gy

gives the equations

1 4 1 .
(7)o

) _
VAN + 5l =0 @9)

proving that both infidelity 1 — f and fidelity [
(interpreted as scalar fields over the variety of
gnostical events) diffuse from a point to another.
The length of the diffusion Aow vector of these
quantities (of the vectors grad (1/f) and grad(f))
can be shown to be proportional to irrelevance h,
and h,, respectively. The gnostical tensors K] and
K2? can thus be interpreted alternatively as the
tensors of “infidelity—infidelity flow™ and of “fid-
elity—fidelity flow™
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3.2, Energy of a gnostical event

Dynamics deals with energies and their changes.
Can we lind some energetical aspects with data? If
a quantity g is measured in terms ol electrical
current, voltage or electrical pulses, then the electri-
cal energy connected with this quantity is pro-
portional to 2. [t may be measured without electri-
cal trunsformations as well but the measuring
process or the dependence of g on time or another
guantity may be modelled using an analog com-
puter. Then the energy of the clectrical quantity
modelling the g is apain proportional to g*. The
coefficient of proportionality is a matter of scale,
therefore ¢ can be taken to be the energy of the
guantity g. For a vector quantily the energy may
be attached to the square of its length. Squares
z2" and ¢* of lengths of gnostical events may thus
be imterpreted as their energies. Their changes
within an ideal gnostical cycle can be shown
(Kovanic, 1984c) to satisfy the first thermo-
dynamical law: the overall change of the energy of
a gnostical event within an 1GC is zero.

The motion of energy of a datum will be used in
Section 3.3 to show the relations between thermo-
dynamical entropy of data and their geometrical
features such as their mutual dissimilarity,

3.3. Thermodynamical entropy of a gnostical event

Fidelity has been introduced as one of the mea-
sures of uncertainty. As shown in Kovanic (1984c)
it may also be interpreted as a linear funection of

thermodynamical entropy § defined by J.T‘idg,

where @ is an amount of heat and Tthe temperature
at which the heat dQ is transferred into or from
the system. The invariant energy z3 of a quantiflying
channel may be thought to be converted into
heat, the amount of which can be measured by
temperature using a calorimeter. Thus a constant
temperature may be attached to the quantifying
channel proportional to z3. The amount of heat
transferred into the channel during quantification
is proportional to the increase of energy of the
event from z to r’. Analogical Gedanken exper-
iments may be made with the estimating channel.
The following relations thus hold between the
changes 5, and S, of thermodynamical entropy
during quantification and estimation and the infi-
delity 1/ and fidelity f, respectively:

Sq=:"("i;—]) .!=L“U'—|], (30)

where ¢ is a constant.
Neither the uncertainty of an event nor the entropy
changes during an attenuating phase of the 1GC.

The owverall change of entropy within an 1GC
therefore equals S, + S,. For a datum (z; # z,)

ﬂ; dS =10 (3la)
LIGC]..

for the integrating path coinciding with (IGC),.
This is an analogy of the second law of thermo-
dynamics for non-invertible closed cyeles: even in
the case of an ideal estimation process an increase
of entropy is unavoidable. Now consider a varying
gnostical cycle (VGC); passing through the same
“edge” points as (IGC);, defined by a couple (=4, 7;).
Both the quantilying and estimating vanational
principles related 1o £ and «w are already known.
Using them together with (25) and (28) gives

§ ds = § ds (31b)

(VGCy QAGEC),

proving the thermod ynamical oprimality of the ideal
gnostical cycle.

Equalities (30) and (29) offer a [urther interpret-
ation of gnostical tensors K? and K as tensors of
entropy—entropy flow.

3.4, “Probability” of an individual darum

Both equations (29) hold for all points of the
variety, however only the circles corresponding to
the paths of events within channels for a fixed z,
or fixed r will be considered. Points of these paths
will be denoted x' and ', The first terms V() and
Vi) of (29) then represent the distribution of
sources of both fields 1/J and f along the paths
corresponding to channpels. The same holds for
entropy changes 5, and S, due to (30). The second
terms 4 ~'/{x* — y*}and 4f/(x* + +*) can be rewrit-
ten to obtain the form of sources of scalar fields /1,
and [, over the intervals of irrelevancies
—®m < h, < mand —1 < h, < 1, respectively. The
equivalences of sources of both kinds of scalar fields
then take the form

(S )Ly = 1° d_‘f_}
Ptk [dh‘ .y

{x* + ¥* and ¢, are constanis) (32a)

[V(S.) = ¢ [ﬂ}
ReeeT T L
(x'* — y'* and ¢, are constants). (32b)

The guantities I, and [, (interpretable as changes
of information) can thus be defined by right sides
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of (29) and (32) by integrals

n L

@7 H:drnf_ .
L+n= L= | [ o)
0 0o

or after integration —

Fi=—

o

I,= H(1/2) — Hip,) [, = H(1/2) - Hip.), (34)
where
‘Hip)= —plnp— (1 — p)In{l — p) (35)

and
1 1
= E“ + -1 hq] P.= E“ +h,). (36a)

Using (26) and (4) for a given datum z = z; the last
quantity may be rewritten as

Pei = 11 + &*¥) = 1/(1 + (z}/23)'"). (36b)

It is a monotonically increasing function of the
unknown quantity z, taking values between 0 and
1. It can be interpreted as the distribution function
of z, given z;, as an analogy of the conditional
probability P(z, = z|z). The quantity p.{zys) —
Peilzoy) (Where 757 = 25, > 0) induces a finite mea-
sure on Borel subsets of R, (given z;). It makes
possible evaluation of the confidence that the
unknown, z,, has a value from the interval {z4:24,
< 24 < Zp2) when the value of the datum has been
z;- An estimate of the distribution function of the
data sample can be obtained by application of the
composition law to functions p,, ol all data, as
shown below. Such an estimate will approach the
empirical probability distribution function when
the size n of the sample increases. *

3.5, Information of an individual datum
The reasons for accepting the quantities , and

{, as changes of information of a datum within the

quantification and estimation, respectively, are as

follows.

{a) Both are monotonic real funclions of uncer-
tainty parameters £ and w, equalling zero for
zero parameters. They may therefore be used
for an evaluation of the amount of uncertainty.

(b} If p was a classical probability then (35) would
be Boltzmann's statistical entropy. Consider a
couple of mutually excluding messages having
a priori and a posteriori probabilities (1/2,1/2)
and (p, | — p), respectively, then (34) would be
the Shannon information. The parameter p,

may be interpreted as an analogy of probability
plzg > z|2)), also applicable without statistical
model to an individual datum.

(c) Sources of the fields of I, and I, are pro-
portional to sources of thermodynamical
entropy according to (32). Equations (32) are
thus conversion laws of information into
entropy and vice versa [or the quantification
and estimation, respectively.

There are two important properties of the chanpes

of information to be noted here.

(1) For each datum =z differing [rom z,
I, + 1, < 0. Attenvation does not change the
information. Therefore, the overall change of
information within an 1GC is negative. This is
intuitively expected as a plausible counterpart
of the second law of thermodynamics as well
as of 11s gnostical version (31).

{2) Let (IGC); be the closed path corresponding
to the 1GC defined by a datum :z, and its
ideal value z5. Let (VGC); be a varied closed
gnostical cycle passing through the same
“edge” points like (IGC),. Then an analogue of
the variational principle (31b) holds (Kovanic,

1984a)
i; di < § di <0 (37)

VG, 1GCy

stating the informational optimality of the 1GC: it
represents the path minimizing the (unavoidable)
overall loss of information.

4. GNOSTICAL THEORY OF DATA SAMPLES
4.1. Gnostical characteristics of a data sample
A dara sample is defined as an n-tuple

Z=Fzg. 50 =421 T ([l <0 < o),

(38)

where all n data (2) have the same pdrameters s
and z;. Both of these parameters are to be estimated
using the data sample. Formulae derived above lor
individual data hold for data from a sample too.
To express all characteristics by means of data the
ratio (z,/zo)'* is substituted into (25)-(27) instead
of &% using the data model (2), giving

fi=20a + 477 (39)
hy = (g7 — a7 )2 (40)
ha={a" —gi\al + a7 ) (41)

where
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4i = (z/20)'". (42)

The infidelity is still £, with £ (39).

Each datum has been characterized by a gnostical
evenl u or u to which two channels K, and K,
correspond  together with their squares, lensors
of entropy-entropy flow. A data sample will be
characterized in an analogous way by two composite
events u, and . having the same form (6) as the
individual ones and being parumeterized by €3, and
w3, They should both be functions of data, the type
of the functions being given by a composition law.
Thus they will also be composite channels K (£}
and K, ) and composite tensors Kilﬂtl and
K (e, )applicable as characteristics of a data sample.
To obtain them the composition law is used,

42 0On a rriplet af mappings

A striking formal correspondence between the
quantifving formulae of gnostical theory and the
formulac of relativistic physics provides a realistic
basis for a choice of data composition axiom.

Consider a system 5, of relativistic events character-

ized by points of a two-dimensional space-time. A

system §, of gnostical events can ecasily be shown

to exist together with three isomorphic mappings
in which;

(1} agnostical event corresponds to each relativis-
tic event;

(2) a quantifying channel from the group G,
corresponds to each operator from the Lor-
entz’s group of transformations of space-time;

{3} a gnostical tensor of entropy-entropy flow
corresponds to the energy—momentum tensor
of cach relativistic event.

It is important that the mappings are linear. These

mappings appeared as consequences of Axiom |1,

having nothing common with mechanics. This
axiom reflects the nature of real data obtained via
quaniification in an arbitrary application field, but
mechanics can be a special case and a general
theory should hold for a special case too. Let the
points of §, be obtained by means of an uncertain
quantification and let each of them be measured
using a coordinate syslem moving with an unknown
(individual) velocity, Then the mentioned corre-
spondence will not only be formal, but also the
system §, will turn out to be a model of 5, and vice
versa. But a system of relativistic events can be
represented by a single characteristic event (a “com-
posite” event) using the known relativistic compo-
sition law which is a law of Nature: the conservation
of energy and of momentum. The same mapping

ol composite events as for the individual ones

thus warrants a correspondence of the gnostical

composition law to the relativistic one. The energy-
momentum tensors are composed additively and

the mapping is linear. The gnostical tensors should
therefore also be added Lo get a tensor of the proper
composite event.

4.3. Data composition law

Axiom 2. This axiom of the gnostical theory (the
data composition law) states the following. Let
K,(2Q) and K_(2w;) be gnostical tensors corre-
sponding to data z; from a data sample Z(zq, 5, n);
let £, and e, be parameters of the composite event.

Then
1 n
Kq[mc} T ek Z Kq{ml}
W, T
K (2m,) = % Y K, (2w, (43)
& 1
where w, and w, are normalizing weights of com-

posite tensors K {2Q,) and K,{2w,) determined by
the normalizing condition

DetK,(2Q) = DetK,(2u) =1,  (44)
analogous to (11).

Comment. This axiom appears to be a generalization
of the “relativistic™ special case discussed above.
The generalization extends its validity for compo-
sition of uncertain data of an arbitrary nature
satisfying Axiom 1. It also relates to estimation.
This extension is motivated by the duality between
estimation and quantification.

44. Explicit formulae of composition

Using (43), (7). (38), (42) and (39) the infidelity
and the quantifying irrelevance of the composite
event of a data sample Z{zq, 5, n) 1s obtained:

U-m=wf$ﬁ* (45)

h-ac =Wy : ihuh (46)

where

Ve J (}:f' ‘), - (E !-qi)z- (47)

The estimating versions are analogously

f=wi'Y S (48)
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hoe=w "'} hy (49)

i

(BTG o

Having obtained estimates § and 2, and substituted
them into (42) instead of parameters s and zg,
respectively, estimates of composite characteristics
(45)-(50) are thus obtained as [unctions only of
data z,..... z, [rom the sample Z.

4.5, Statistical interpretation of gnostical
characteristics
Denote

o=y -1, A=1..n (51)
& = max le;{(z; e Z). (32)

Let & and e be arithmetical means of all errors e,
and their squares. The case of a small £ will be
referred to as the case of weak uncertaintics. Using
Taylor's expansion the following relations, valid for
the simplified case with 5 = 1, are obtained.

(f Y. =142 +0@EY

fi=1—2 +0(e%) (53)
hoe = 28 + O(e%)
h,.= —2¢ + 0% (34)

w, = n{l + 2e” — (@) + 0eY)
w, = n(l — 2(e* — (&%) + 0{sY). (55)

Under weak uncertainties both irrelevancies b, and
h,. and the infidelity (£ ~"), as well as the fidelity
[ approach linear functions of the ordinary relative
error € and of the relative value of sample variance
e, respectively. The weights w, and w, approach
the size n. In such a situation the gnostical compao-
sition law approaches the classical statistical com-
position law. Otherwise the results can be quite
different. It can be shown by simple analysis of
formulae (39)-{42) and (45)—(50) that the estimating
characteristics will be more robust with respect to
outliers and the quantifying characteristics will be
more robust with respect to inliers then the classical
statistical characteristics. Components (f '), and
[, of gnostical tensors K, and K2 are thus general-
ized characteristics of the variability of the data
from a sample, the /i, and h,. being characteristics
of relative errors of data measured using ceriain

non-Euclidean geometries,

Robust generalizations of ordinary covariances
appear here as well. Denoting arithmetic means by
bars as belore (47) and (50) are obtained in the form

wo=n (" = hF w,=n/]? + hZ. (56)

MNow new characteristics of a data sample Z(z, n, 5)
are introduced so that

=1
P i(EH 5 n' k
k=1

=- 1 C.,m) (57)

. =i I
F = E(hi +2% 2 ] "c;k}), (58)
k=]

where hZ and /2 can be interpreted as the quantify-
ing and estimating variance, respectively, and where
the quantities C (k) and C (k]

1 a=ik

C, (k) = —= l;::. hoihgisa (59)
1 n—i

Clh): = mlz heiheisy (60)
=1

are gnostical generalizations of correlation

coefficienrs. It obviously holds that
C0) =hi C.0)=h; (61)

as in the case of ardinary statistical variances and
correlation coefficients. All these quantities can be
expressed as functions of the data ratio g,(42) using
formulae (39)-(41).

4.6, Robusiness of characteristics of a data sample

The following aspects of robustness of sample
characteristics will be discussed here.

(A) Robustness with respect to assumptions on
the model and to changes of the model (*model
robustness”).

(B) Robustness with respect to “bad™ data (“data
robustness™):

(a) outlier robustness;
(2) inher robustness.

A datum is an owutlier if its value is far from the
values of data (inliers) forming a main cluster
of data. A fealure opposite to robustness is the
sensitiviry. High model sensitivity of sample charac-
teristics of classical statistics motivated the develop-
ment of robust statistical theory. However, most
robust statistical methods are based not only on
axioms of classical theory but also on some
additional heuristic assumptions.



A new theoretical basis 667

Gnostical characteristics follow directly from the
gnostical axioms without using statistical assump-
tions at all. The robustness of gnostical charac-
teristics appears not as a result of some additional
requirements but as their inherent, natural feature.
Their model robustness will depend of course on
actual distnbution of data but in a way determined
by data robustness: inlier robust characteristics will
be less sensitive to changes of central parts of
distributions while outlier robustness will suppress
the influence of their outer parts.

Both kinds of robustness may be required
depending on the application. Noise flters, esti-
mators of location and of scale parameters, identifi-
ers and fitting procedures working under strong
disturbances of data should be outlier robust. The
inlier robustness can be practically desirable too,
e.z. for detection of signals over noise background
and for testing of hypotheses, in image enhance-
ment, protection, and emergency systems.

5. APPLICATIONS OF GNOSTICAL THEORY
The theoretical results above can be used to
obtain solutions of different practical problems.

5.1. Estimation of the scale parameter of a data

sample
Problem. A data sample Z(zq,5n) of ordered
data z,....,z, (z; = z;_,) is given, having a model

(38) where z, and s are unknown parameters of the
location and scale, respectively. It is required to
find an estimate § of the scale parameter s.

Solution.

§ = argmin max max UPpe; = Fi-li1Ppe; — Fyol}
(62)

where (for j = 1,...,n)

F,_ and F;. are values of the empirical
distribution function at
the points z; — ¢ and
z; + £ (for small £ > 0)

Peey =(1 + h, /2 asin(36) (63)
hoy=w;'% h, asin(49) (64)
i
and for i = 1,....n

hey = (95" — af)/lgl; + ;%) asin(41) (65)

qy = (z,/z)'* asin(42) (66)

AUT I33k-p

wh = (; ,.r,',)1 + (; he| asin(S0)  (67)

Jii=2flqi; + g7} asin(39). (68)

Comment. The quantity p,.; is the value of gnost-
ical distribution function of data at the point z = z;.
Equation (62) is thus a condition of the uniformly
best approximation of the empirical distribution
function by the gnostical distribution function.

5.2. Estimation of the probability distribution
Junction

Problem. Under the formulation of 5.1, it is
required to estimate the probability that a new
datum {of the same onigin as z,,...,z,) will be not
smaller than a quantity z(z;e R.).

Solution. (1) Estimate the scale parameter s
according to 5.1.
(2) Substitute the estimate ¥ into (66).
(3) Evaluate the probability as p = p,,;
where p,.; is given by (63) using (64)-
(68).

5.3. Estimation of probability density

Problem. Under the formulation of 5.1, it is
required to estimate the density of probability of
data at an arbitrary point z;(z;eR,).

Solution. (1) Differentiate (63} to get the data
density

dpe; 1 (FPT* + Jhe(hf) (69)

dz, sz (7 + BT

(2) Estimate the scale
according to 5.1.

(3) Substitute the estimate § into (66)
and (69).

(4) Evaluate the density (69) using (64)—
(BE).

paramecter

Comment. Data density function (69) is not
necessarily unimodal for a particular data sample.

34. Robust estimation of a parameter of location
af a data sample

Problem. Under the formulation of 5.1, it is
required to find an outlier robust estimate £, of
the location parameter (of the ideal value z,)
maximizing the data density function.

Solurion. (1) Estimate the scale parameter s as in
5.1
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(2) Find the estimate Z, by solving the
equation

Z, = arg max (9’:“') (70}

where the function to be maximized
is (69).

Comment. The non-linear equation (70) is o be
solved iteratively. As a first approximation the
arithmetic mean £ will generally be suitable. Equ-
ation (70) can have more than one solution if the
density function i1s not umimodal. In this case, there
is more than one clusier within the data sample.
Each of the clusters has its parameter of location
of the density maximum.

It can be shown that the estimate (70) 15 outlier
robust; even more, the influence of peripheral data
and peripheral subclusters of the sample on the
location parameter is also suppressed.

5.5. Estimation of a parameter of location of a
symmetrical data sample

Problem. Under the formulation of 51 it is
required to find the optimal estimate Z; of the
location parameter z, under the assumption that
the data sample is multiplicatively symmetric. The
estimate should be

(z) outlier robust

or {b) inlier robust

Solution. (1) Estimate the scale parameter 5 as in
5.1 and substitute the estimate into

(42]).
(2) Find the estimate Z; by solving the
equation
{a) h.(3)=0 (T1a)
or
(B) helZe) =0, (71b)

respectively, using relations (66), (40), (41), (46) and
(49).

Comment. An example of the multiplicative sym-
metry: the values 2z; and z,/2 are symmetrically
located with respect o the value z,. It is obvious
that by taking the logarithm of multiplicatively
symmetric data, additve symmetry results. The
solution of (71b) and (71a) is unique. The optimality
condition can be interpreted as a requirement to
get zero information loss of the composite event
(see (34) and (43))

5.6. Testing of unimodality of the density of a
sample
Problem. Under the formulation of 5.1, it is

required to test the hypothesis that the density
function of the sample is unimodal.

Solution. (1) Estimate the location paramcter
(Zg), according to 5.4 using the initial
value of 2 for iterations equalling
miin EA)

{2) Repeat the same, starting the iter-
ations from max (z,) 10 pet (£4)..

(3) Test: il (Z5), = (Z5)x then the data
sample has a unimodal density.

3.7. Test af a membership of a datum with a data
sample

Problem. Given a unimodal data sample Z(z,, 5, 1)
of data z,...,z, and a datum z, . |, it is required to
test the hypothesis that the datum z,, | could be a
member of the sample Z,

Selution. (1) Extend the data sample Z by the
datum z,,, to get a data sample
Z'(zp, 5, n+ 1).
(2} Test the unimodality of the density
of the sample Z' according to 5.6.
The datum =, , ;, may be considered
to be a possible member of the
sample Z iff the sample Z2' has a
unimodal density function.

5.8. Analysis of gnostical variance

Gnostical variances appearing in (57) and (58)
may be used alternatively to get robust estimates
of location (Kovanic, 1984hb), 10 analyse data den-
sity, to test the unimodality of data samples and so
on, in 2 manner analogous to procedures mentioned
above.

5.9. Robust filtering of a time series

Problem. A time series z,...,z, of noisy obser-
vations of a process is given, the true value of which
can be considered to be a constant equal to z,. The
model of observed data is (38). It is required to
propose a filtering procedure treating the last n-
tuple of cbservations z,_, ., ...., z, the output of
which, £,, would be robust with respect to strong
noisc.

Solurion. Proceed in the same way as in 54 or
5.5, successively forming and treating the data
sample Z [rom the last n-tuple of observations, Use
the estimate I, as the robustly filtered output,
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Comment. Applying the procedure according to
5.2 to Z also, a reliable and adaptive diagnosis of
sudden changes of the process can be obtained: the
estimate may be compared with a given threshold to
activate signalization of appearance of unexpected
changes of data.

Another robust filtering procedure may be
obtlained as a recursive solution of the identification
problem dealt with below in 511

5.10. Robust correlation function of a process

Problem. A time series of equidistant observations
Zye.e-aZ, Of 2 process is given. The data maodel s
(38), where =, and s are constant. Estimated values
of the correlation function of the data series at
some given points kAr (where Kk =0,1,2,... and
At is the distance between two observations) are
required. Estimates of correlations should be robust
with respect 10 slrong errors.

Solurion. (1) Estimate parameters 5 and zq
according to 5.1 and 5.4 or 5.5.

(2) Estimate values of the correlation
function according to (59) (inlier
robust) or (60) (outlier robust) for all
required values of k using (40}-{42).

5.11. Robust identification of parameters of a
dynamical system

Problem. A mathematical model of a multidimen-
sional dynamical system is given in the form of a
system of ordinary differential equations of first
order (with some given intial conditions), parame-
terized by an unknown parametric vector c. A set
of k observations of values of m variables of the
system, obtained in an experiment starting with the
given initial conditions, and the estimates $,,....,
5, of scale parameters, charactenzing the random
errors of observed vanables, are given. Given an a
priori estimate of the vector ¢, an improvement of
this estimate, in a manner robust with respect to
strong observation errors, is required.

Solution. (1) Integrate the equation system using
the estimate € resulting from the
preceding iteration to get all m x k
theoretical values ,z;; of variables in
observation points corresponding to
experimental data =z fori=1,...,k
andj=1, ..,m

(2} Evaluate all & = m quantities

gy = {.Iu.n'r.,a?f_r]i"'-l (72)

and corresponding values h_;; (65) of

estimating irrelevancies,

wij

(3) Get a new estimate & by solving the
equation

E m
&' = argmin (Z}: h3 J-) (73)
L3 ]

of minimization of the estimating
variance (61),

{(#) 11 the distance between € and € is
not sufficiently small then go to (1),
Else go to end.

Comment. Using alternatively h_; of the type (40)
instead of f,; a solution robust with respect to
inliers may be obtained.

5,12, Identification of a regression model robust to
both inpur and output disturbances

Prablem. Let F be a differentiable function of a
known type,

F:R,xR,—R,. (74)
Let ceR,, be a column vector of unknown par-

ameters. Let xe R, denote an “input” vector of a
regression model

z = Fle,x) (75)
the quantity z being the “output”. Suppose that
neither the input nor output is known precisely.

Let the true values x; and z,; at an ith observation
point be related through the equation

zu= Fle,x,). (76)

Let %, and z; denote the uncertain observations of
x,; and z,;, respectively, fori=1,...,n

Given a kth iteration ¢, of the esiimate € of ¢, an

estimate § of the scale parameter s, and a twice
differentiable criterion lunction

=YDk, (7
i

where
Di=r =R, (78)

hy = ((Z/2*F — (/2,0 WEil 20" + /20

B = Fley, xy), (79)

it is required to find a (k + 1)th iteration ¢, .,
maximizing the lunction ¢.
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Solution. Introduce the column-vector

1
g‘=h—[F},,.,.,F{mJT. (80)
zvnl'
where
‘8F
Fl.={— 1
i (ac;)u_“ (81)
and
r = "
D= (ﬂh,)n..
. 2D
Bl e i =E

Then the (k + L)th iteration of the solution—if it
exists—is approximated by the formula

Cipy = O+ f[iﬁ‘ﬂi'&ﬂ}_ e
[Sileom]

where f* =1 —h% and where all quantities on
right-hand side are estimated by substitution of ¢,
and Z,; instead of ¢ and z,;, respectively,

Proof. The equation
(de). =10 (84)

can be solved iteratively by the Newton-Raphson
method. When the kth approximation ¢ is already
given then the quantity (¢, , ) may be approximated
by the first two terms of the Taylor expansion of
the function ¢ at the point ;. This apprunmntmn
is taken as a solution. Therefore

(de +dy), =0 (83)

Both differentials are functions of the irrelevance
h,, hence

(E Didh,, + d*h,) + Zn;*a&f,) =0. (86)
i i

o5

The second differential dh,; is neglected since it is
a small quantity with respect to the first one dh,;,
The total differential of the variable z, as a function
of ¢, at the ith point is

: 2 aFi(x, e .
dzy = (dzg), = E( ; k) dey, = "-’.JEEdCh
i Coj  Ix

(87)

where ¢,; denotes the jth component of the vector
¢,. Thus,

dir, = 2(*dz, /(52,) = 275 'glde,  (88)

and
dhZ; = 475 delg,elde,. (89)

Equation (86) will hold identically for all de, when

[i_;:‘n:'a.-gfl de, = [i ¥ %g;l - (90a)

Il the system matrix is regular then for de,
= €4y — ¢ equation (83) actually holds. These
results can be explained by comparing them with
the simplest least-squares identification. Indeed, the
expression (83) may be interpreted as the Jeast-
squares solution

co-a=[Ser| [Ses] e

of a system of n linear equations having the form

Glesry — ) =E, (90b)
where
Gr=j1y /—bg, (91)
and
A} A
Byss mmeds: 92
=3 7-pr g

Vector G; plays the role of the input of the
linear model (90b) the scalar E; being the output.
Transformations g, — G, consisting of multiplying
g by a function of the ratio z,/Z,, may be interpreted
as non-lincar filtering. Three examples of gnostical
criterion functions D) are given in Tablc 3
together with corresponding weights f}° \f -
Graphically this is depicted in Fig. 1. All we:ghts
decrease rapidly with a deviation of the observed
datum z; from the predicted “true”™ value =,

The quantity E; (92) represents a gnostical error
function, an error of the fth datum z; with respect
to the “true™ walue Z,;. In other words, the
expression (92) shows how errors are measured
when using a gnostical metric. For a weak uncer-
tainty (the ratio z,/Z, differing from unity only
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| 1

& o ! -
El_g L 21
‘..:;: u.;z_h'uzi._
L wo & 12,15,
- £l

;E w, fzrr.ffu,l

b the hdelhty

3
i)
= = [;*D; appearing on the left hand side
of {50), which represeni the i{l|l.lhDH of the robust identification

problem. Index j denotes the type of criterion lunction (see
Table 31

Fig, 1. Weights w,

slightly) the error E, approaches z;/Z,, — 1, which
is the “classical™ (Euclidean) relative error. How-
ever, for a strong uncertainty the behaviour of the
error function E(h,)) (i.e. E(z;/Z,;)) is far {rom linear
as seen in Table 3 and Fig 2 for the three types of
gnostical criterion functions. Equation (92) may be
also interpreted as a non-linear filter, This filter is
applied to the output gquantity of the indentified
model. As seen from Table 3 and Figs | and 2,
both filters protect the identification process against
the influence of outlying (both input and output)
data.

5.13, Robust control

There are at least three levels of possible appli-
cations of results of gnostical theory to leedback.
control systems with an improved robustness with
respect to bad data:

(1) application of a filter of the type described in
Section 5.9 or 5.11;

(2] appheation of an identifier of the type
described in Section 3.11;

(3) using a gnostical error [unction instead of
relative difference between reference and actual
values of a controlled variable as a control
Error.

These suggestions open a broad field of theoreu-
cal problems. An example of their possible practical

impact 15 given in Section 6.2

£y, = zlri;c-l_1|
By, == ;02
E3| = sl arctanh th /2

:Ll =-4.--‘1r. i

| . |
o 1 g 3 i

I.I'rmﬁ e—

Fig. 2 Weighted errors E; (92) of the solution of the robust
identification problem. Indr:.'x j wdentifies the type ol criterion
function (see Tabie 3).

6, EXAMPLES
6.1. Example 1. A comparison of robust estimators
af location
To compare a gnostical estimator with the stas-
tistical ones a well-known study of Stigler (1977)
can be extended (Kovanic and Novovitova, 1986).
Two ancient and popular estimators (mean and
median) and nine recent robust and adaptive stat-
istical estimators have been tested in Stigler’s study
using real data from famous physical experiments
performed in 18th and 19th century. The set of
estimators is extended by the gnostical estimator
described in Section 54 above using the scale
parameter accurdmg to Section 5.1. The estimators
are applied to 16 independent data series from three
experiments:
(1) Short’s {1763) determinations of the parallax
of the sun {eight data samples};
(2} Newcomb's (1882) measurements of the pass-
age time of light (three samples); ’ -
{2) Michelson's (1879) determinations of the vel-
ocity of light in air (five samples)
A complete reference for these data is in Stigler
{1977).
The size of each of 16 data samples was about
20. The same relative deviation as in Stigler’s study
has been used for evaluation

gy = mu —0,l/5;,

12
where §; = % Y18, —ay (93)
i=1
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TABLE 3. “LINEARIZING™ TRANSFORMATION FOR ROBUST IDENTIFICATION

Weight of
Case Uncertainty Type of gnostical Weights of summands in (90} the ith
i of data criterion function —f* D5 —fDL equation Error function, £
1 Weak 0y =D;=D I E e | 1 = R |
3 Stong o, =Jl=-K=f | &b \.IJE _Eﬁhﬁ"'z
3 Strong | Dy= —ih) ? #larctanhik,)2 3 A — & an:mnh,h_,:l,"]
" Strong Sy=U-kI2 A KA i Y S

and is the estimaie of location parameter of the
Jth samplﬂ (=1, lﬁ} nhmmed by the ith !
estmating method {1 =ik e 12) Thc quantity Ej
is the currently used "lluc" val.r‘ of the measured
quantity. Stigler’s evaluation has been “the less e,
the better the itk sstimator when tested .on jth
sample™. Bur as shiown in his study 2s well as in
the discussion which {oflowed _it, «the real dawa .
under consideration were strongiy biased. All tested
estimators are asyvmptotically anbiased, ‘therefore -
there is a 2o0d -eason tasaccept the unit (o be the..
true value of e}; for all tests,qat l¢ast friom the pointy
of view of an “zxpert :board™ consisting of all 12
estimating methods together. Then the evaluation'
should be “thsrcloser is the value of e; to 1, the
better is the ith: estimator: when tested on _rth
sample”. fi1q
The results of such a comparison are summarized
in Tahle 4 for all 12 esfimators ordered according
to the mean error. A description of all 11 statistical
estimators under consideration is in Stigler (1977). .
The gnostical estimator-used aigorithms described
in 54 and 5.1 sbove.:Data were Exponentiated
before application of this estimator and the logar-
ithm of result was taken:’ The gnostical estimator
appeared to be superior over the statistical ones.

6.2, Emmpfe 2 Can:m! ::-_i" a :i:srrere non-linear
EL’.!'ffm =

Consider a Voltérra-Lotka discn:te system nf r,
rabbits and f foxes a: nm: t

E T

= IH""{{I U5 + ﬂﬂSx, ,

— (003 = 0.02%, i f/fo —uJr)  (94)
fioy = INT((LIS + 0.05x,,
— 10,135 + 0.045x; Jro/r, — 1)} (95)

which can be observed only with a delay and with
observation errars naving intensity ¢ as

oo eXplox, )

1 — | EXp tcxs.‘,_i.

r

-rli.

- (96)

where the variables x, ; are independent random
variables uniformly distributed between —0.5 and

fa = rafG0. INT denotes the: integer part of a

TapLe 4, RESULTS OF THE COMPARISON OF THE GROSTICAL
ESTIMATOR OF LOCATION WITH 11 STATISTICAL ESTIMTORS

Estimator Errors
' Siandard
deviation .  Mean error - Range
Type T, by — 1] R,
1 Gnastical 0.038 0.001 0138
1l HoggTl 00461 0017 0261
3 15% Trim 0070 0.029 0261
4  Edgeworth 0079 0011 0.273
5  15% Tom 104 0,032 0447
6 Tukey Bi-weight 13l 0.043 0631
7 Andrews AMT 0147 0.025 0660
&  Huber P15 0210 0083 (0.856
9 10% Trim 0211 0.097 0821
10 Mean 0212 0.078 1.055
11 Median 0278 0124 © 0962
12 Oul-ﬂ'Iﬂn 0.610 0.086 2603

m, Number uIindrp-:nd:ﬂl 1esting data samples {m = -1 2 Mormalized
result of estimation defined by (93k &), Mean of ¢, over saimples

(HI - Eru.'m}. o, Standard deviation (d,- = fEIr_-u = g im); B, Range
i v

of eprors (R, = HJ_I].;EU =1] = ?-'I'inlr,, = 1l
T r it

1700 and
real
number, and u, and v, are the control variables. They
should maintain constant levels of both controlled
variables r and f, the set.points being r, and f,. The
equations of the controller are:

[ 1

0.5, and the initial values are r, =

ir; > r, thenw, = 08elri,r) + 0.16(£;’.f)

+ 0.5e(F(r),r)), elseuw, =0, (97)
if''=f, [henu = | Tq” .f} 0.7e(r; or)

+ us».-fﬂf ) f), elser,=0. . (98)

Here Fly,) represents a ﬁltered value of a variable
v at time 1 obtained recursively as

Fl.]’r:' = ¥ /T, where ¥, = G_E?;_l + ¥,

and T, = 08T,_, + ¢ (99)
The symbal & y,, ¥,; characterizes the control error
of the abserved valus y/ of a variable y with respect
to its reference value y,. There are two kinds of
error functions of interest here. The control error
in the classical (Euchidean) metric:
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Fio. 3. Automatic control of the sysiem of Example 3 using the

ordinary (Euclidean) metric for the evaluation of the mntul'p_lf,

errar. Control is sensitive 10 observarion errors. | .

q § T o

ey, v =¥ /v, = | (100)
and the control error in gnostical metric:
celp. ) = tf,-'zitéf— g3 .,,-,’ +-q7 %), [tm}

where g, = (y;/y)'"
;

and where § is an estimate of the scale parameter
of the data y,. One-way action’ of the controller

corresponds to the nature of the process: the number

of rabbits or foxes can be decreased immediately by '

killing some of them but their increase can be
influenced only indirectly.

The parameters of the controller have been |

estimated experimentally as 'Ecn-caily optimal values
for the case of zero observation errors (¢ = 0) and
for the classical control error function to minimize

the mean absolute control error. Figure 3 shows::

the course of the number of rabbits for this-case: -

together with the case of strong observation errors
{c =09} and lor the controller working also with
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FiG. 4. Automatic control of the system of Example 2 using
the gnostical metnc for the evaluation of the cantrol error.
Application of a non-lingar filier of gnostical type increases the
robustness of the comrol with respect to observalion errors

classical error functioms: ‘Both cases « =10 and
¢ = 0.9 are depicted in Fig. 4 for. the gnostical error
function, with the fame ddtd sequence as in the
classical case and: the same parameters of the
controller. Numerical results are summarized in
Table 5. /A mere substitution of the gnastical error
function instead of the.classical one substanually
improves the robustness of the system. :
It is worth mentioning that the'gnostical error
function (101) has been obtained rigorously as a
vervispeoial “case :of the gnostical, identification
problem 5.11.

T EONCLUS{GNS' i

The gnostical theory of real data offers new
formulae of characteristics for data samples. These
formulae can be directly evaluated from data. They
inciude! analogies of -classical - statistical charac-
teristics of data samples and possess esther increased
robustness or increased sensitivity with respect to
outlving cr inlying data, New.characteristics of
individual data and of small data samples are
available, too, such as informatjon, thermo-
dynamical entropy and pmhabﬂ:l}' distribution,
not based on a priori assumptions on a statistical
model but using only data. Gnostical charagtenistics
are also suitable as criterion functions for optimiz-
ation to obtain new efficient and mbust algorithms
for identification of models, filtering and prediction,
decision making, clustdr analysis and aulumalm
control.

REFERENCES

Jumarie, G. A. (1975). A relativistic information theory model
for general sysiems.. [nt, J. Syst. Sci 6, B63-286,
1

7 % TanLd 5. MEAN ABSOLUTE- CONTROL ERROR FOR EXAMPLE 2
Intensity of obhservation errors  « - '
(e i {96)) R 1] 0l 02 03 04 0s 6 0.7 0% 0ng
Classical egror L _— g
Control Tunction (100) 010 . 0019 0029 Q037 OB 006l 00R0 D033 DTRS 0006
error Gnostical error bl el »
function (101} 0013 s 0017 0021 0023 0024 0024 0024 0022 002




674 P. Kovanic

Jumarie, G. A, (1985). Subjectivity, Information, Systems, Intro-
duction to @ Theory of Relativistic Cybernetics. Gordon and
Breach, Mew York.

Kovanie, P. (1984a). Gnostical theory of individual data. Probl.
Control Inf. Theory, 13, 259-274,

Kovanic, P, (1984b). Gnostical theory of small samples of real
data, Probl. Control Inf. Theory, 303-319,

Kovanic, P. (1984c) On rclations between information and
physics. Probl. Control Inf. Theory, 13, 383-399,
Kaovanic, P. and J. Novovitovd (1986) (to appear).

Krantz, D, H, R. D. Luce, P. Suppes and A. Tversky (1971).
Foundations of Measurement. Academic Press, New York,
Stigler, 5. M. (1977} Do robust estimators work with real data?

Ann, Statist, 5, 1055-1098.



